Skip to main content

Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4835))

Abstract

In an edge deletion problem one is asked to delete at most k edges from a given graph such that the resulting graph satisfies a certain property. In this work, we study four NP-complete edge deletion problems where the goal graph has to be a chain, a split, a threshold, or a co-trivially perfect graph, respectively. All these four graph classes are characterized by a common forbidden induced subgraph 2K 2, that is, an independent pair of edges. We present the seemingly first non-trivial algorithmic results for these four problems, namely, four polynomial-time data reduction algorithms that achieve problem kernels containing O(k 2), O(k 4), O(k 3), and O(k 3) vertices, respectively.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brandstädt, A., Le, V.B., Spinrad, J.P.: Graph Classes: a Survey. In: SIAM Monographs on Discrete Mathematics and Applications (1999)

    Google Scholar 

  2. Burzyn, P., Bonomo, F., Durán, G.: NP-completeness results for edge modification problems. Discrete Applied Mathematics 154, 1824–1844 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary properties. Information Processcing Letters 58, 171–176 (1996)

    Article  MATH  Google Scholar 

  4. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press and McGraw-Hill (2001)

    Google Scholar 

  5. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  6. Fellows, M.R., Langston, M.A., Rosamond, F., Shaw, P.: Polynomial-time linear kernelization for Cluster Editing. In: Csuhaj-Varjú, E., Ésik, Z. (eds.) FCT 2007. LNCS, vol. 4639, Springer, Heidelberg (2007)

    Google Scholar 

  7. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg (2006)

    Google Scholar 

  8. Földes, S., Hammer, P.L.: Split graphs. Congressus Numerantium 19, 311–315 (1977)

    Google Scholar 

  9. Gramm, J., Guo, J., Hüffner, F., Niedermeier, R.: Graph-modeled data clustering: Exact algorithms for clique generation. Theory of Computing Systems 38(4), 373–392 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo, J.: A more effective linear kernelization for Cluster Editing. In: Chen, B., Paterson, M., Zhang, G. (eds.) ESCAPE 2007. LNCS, vol. 4614, pp. 36–47. Springer, Heidelberg (2007)

    Google Scholar 

  11. Guo, J., Niedermeier, R.: Invitation to data reduction and problem kernelization. ACM SIGACT News 38(1), 31–45 (2007)

    Article  Google Scholar 

  12. Mahadev, N.V.R., Peled, U.N.: Threshold Graphs und Related Topics. Annals of Discrete Mathematics 56 (1995)

    Google Scholar 

  13. Margot, F.: Some complexity results about threshold graphs. Discrete Applied Mathematics 49(1-3), 299–308 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  14. Natanzon, A., Shamir, R., Sharan, R.: Complexity classification of some edge modification problems. Discrete Applied Mathematics 113, 109–128 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Niedermeier, R.: Invitation to Fixed-Parameter Algorithms. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  16. Niedermeier, R., Rossmanith, P.: A general method to speed up fixed-parameter-tractable algorithms. Inf. Process. Lett. 73, 125–129 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  17. Protti, F., da Silva, M.D., Szwarcfiter, J.L.: Applying modular decomposition to parameterized bicluster editing. In: Bodlaender, H.L., Langston, M.A. (eds.) IWPEC 2006. LNCS, vol. 4169, pp. 1–12. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  18. Sharan, R.: Graph Modification Problems and Their Applications to Genomic Research. PhD thesis, School of Computer Science, Tel-Aviv University (2002)

    Google Scholar 

  19. Yannakakis, M.: Computing the minimum fill-in is NP-complet. SIAM Journal on Algebraic and Discrete Methods 2(1), 297–309 (1981)

    MathSciNet  Google Scholar 

  20. Yannakakis, M.: Edge-deletion problems. SIAM Journal on Computing 10(2), 297–309 (1981)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Takeshi Tokuyama

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guo, J. (2007). Problem Kernels for NP-Complete Edge Deletion Problems: Split and Related Graphs. In: Tokuyama, T. (eds) Algorithms and Computation. ISAAC 2007. Lecture Notes in Computer Science, vol 4835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77120-3_79

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77120-3_79

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77118-0

  • Online ISBN: 978-3-540-77120-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics