Grid’BnB: A Parallel Branch & Bound
Framework for Grids

Alexandre di Costanzo!, Laurent Baduel?,
Denis Caromel’, and Satoshi Matsuoka?

! INRIA - I3S - CNRS - UNSA, France
2 Tokyo Institute of Technology, Japan

Abstract. This article presents Grid’BnB, a parallel branch and bound
framework for grids. Branch and bound (B&B) algorithms find optimal
solutions of search problems and NP-hard optimization problems.
Grid’BnB is a Java framework that helps programmers to distribute
problems over grids by hiding distribution issues. It is built over a master-
worker approach and provides a transparent communication system among
tasks. This work also introduces a new mechanism to localize computa-
tional nodes on the deployed grid. With this mechanism, we can deter-
mine if two nodes are on the same cluster. This mechanism is used in
Grid’BnB to reduce inter-cluster communications. We run experiments
on a nationwide grid. With this test bed, we analyze the behavior of a
communicant application deployed on a large-scale grid that solves the
flow-shop problem.

1 Introduction

Branch and bound (B&B) algorithm is a technique for solving search problems
and NP-hard optimization problems. B&B aims to find the optimal solution
and to prove that no ones are better. The algorithm splits the original problem
into sub-problems of smaller size and then, for each sub-problem, the objective
function computes the lower/upper bounds.

Because of the large size of handled problems (enumerations size and/or NP-
hard class), finding an optimal solution for a problem can be impossible on a
single machine. However, it is relatively easy to provide parallel implementations
of B&B. Many previous work deal with parallel B&B as reported in [1].

Grids gather large amount of heterogeneous resources across geographically
distributed sites to a single virtual organization. Resources are usually orga-
nized in clusters, which are managed by different administrative domains (labs,
universities, etc.). Thanks to the huge number of resources grids provide, they
seem to be well adapted for solving very large problems with B&B. Neverthe-
less, grids introduce new challenges such as deployment, heterogeneity, fault-
tolerance, communication, and scalability.

We present Grid’BnB, a parallel B&B framework for grids. Grid’BnB aims
to hide grid difficulties to users, especially fault-tolerance, communication, and
scalability problems. The framework is built over a master-worker approach and

provides a transparent communication system among tasks. Local communica-
tions between processes optimize the exploration of the problem. Grid’BnB is
implemented in Java within the ProActive [2] Grid middleware. Our second con-
tribution is an extension of the ProActive deployment mechanism to localize
computational resources on grids. We detect locality at runtime providing the
grid topology to applications in order to improve scalability and performance.

2 Grid’BnB: Branch and Bound Framework

2.1 Principles

Branch and bound is an algorithmic technique for solving optimization problems.
B&B aims to solve problems by finding the optimal solution and by proving
that no other ones are better. The original problem is split in sub-problems of
smaller sizes. Then, the objective function [3] computes the lower/upper bounds
for each sub-problem. Thus for an optimization problem the objective function
determines how good a solution is. The upper bound is the worst value for the
potential optimal solution, the lower bound is the best value. Therefore, if V' is
the optimal solution for a given problem and f(z) the objective function, then
lower bound < f(V) < upper bound. Problems aim to minimize or maximize
the objective function, in this paper we assume that problems minimize.

B&B organizes the problem as a tree, called search tree. The root node of this
tree is the original problem and the rest of the tree is dynamically constructed
by sequencing two operations: branching and bounding. Branching consists in
recursively splitting the original problem in sub-problems. Each node of the tree
is a sub-problem and has as ancestor a branched sub-problem. Thereby, the
original problem is the parent of all sub-problems: it is named the root node.
The second operation, bounding, computes for each tree node the lower/upper
bounds. The entire tree maintains a global upper bound (GUB): this is the best
upper bound of all nodes. Nodes with a lower bound higher than GUB are
eliminated from the tree because branching these sub-problems will not lead to
the optimal solution; this action is called pruning. Conceptually it is relatively
easy to provide parallel implementations of B&B. Many previous work use the
master-worker paradigm [4, 5].

The optimization problem is represented as a dynamic set of tasks. A first
task (the root node of the search tree) is passed to the master and branched. The
result is a set of sub-tasks to branch and to bound. Even in parallel generating
and exploring the entire search tree leads to performance issues. Parallelism
allows to branch and to bound a large number of feasible regions at the same
time, but the pruning action seriously impacts the execution time. The efficiency
of the pruning operation depends on the GUB updates. The more GUB is close
to the optimal solution, the more sub-trees are pruned. The GUB’s updates are
determined by how the tree is generated and explored. Therefore, a framework
for grid B&B has to propose several exploration strategies such as breadth-first
search or depth-first search (more details in Section 2.2).

Other issues related to pruning in grids are concurrency and scalability. All
workers must share the GUB as a common global data. GUB has multiple parallel
accesses in read (get the value) and write (set the value). A solution for sharing
GUB is to maintain a local copy on all workers and when a better upper bound
than GUB is found the worker broadcasts the new value to others.

In addition, for grid environments, which are composed of numerous hetero-
geneous machines and which are managed by different administrative domains,
the probability of having faulted nodes during an execution is not negligible.
Therefore, a B&B for grids has to manage fault-tolerance. A solution may for
instance be that the master handles worker failures and the state of the search
tree is frequently saved in a file.

2.2 Architecture

Grids lead to scalability issues owing to the large number of resources. Aida
and al. [6] show that running a parallel B&B application based on a hierarchical
master-worker architecture scales on grids. For that reason we choose to provide
Grid’BnB with a hierarchical master-worker. Our hierarchical master-worker is
composed of four kind of entities: master, sub-master, worker, and leader.

The master is the unique entry point: it receives the entire problem to solve as
a single task (it is the root task). At the end, once the optimal solution is found,
the master returns the solution to the user. Thus, the master is responsible
for branching the root task, managing task allocation to sub-masters and/or
workers, and handling failures. Sub-masters are intermediary entities whose role
is to ensure scalability. They are hierarchically organized and forward tasks from
the master to workers and vice versa by returning results to the master (or their
sub-master parent). The role of the workers is to execute tasks. They are also
the link between the tasks and the master. Indeed when a task does branching,
sub-tasks are created into the worker that sent them to the master for remote
allocation. Leader is specific role for workers. Leaders are in charge of forwarding
messages between clusters (more details further).

Users who want to solve problems have to implement the task interface pro-
vided by the Grid’BnB API. Figure 1 shows the task interface and the worker
interface implemented by the framework. The task interface contains two fields:
GUB is a local copy of the global upper bound; and worker is a reference on
the associated local process, handling the task execution. The objective func-
tion that users have to implement is explore. The result of this method must
be the optimal solution for the feasible region represented by the task. V is a
Java 1.5 generics: the user defines the real type. The branching operation is
implemented by the split method. In order to not always send to the master
all branched sub-problems, the Grid’BnB framework provides, via the worker
field, the method availableWorkers, which allows users to check how many
workers are currently available. Depending on the result of this method, users
can decide to do branching and to locally continue the exploration of the sub-
problem. To help users to structure their codes, we introduced two methods to
initialize bounds: initLowerBound and initUpperBound. These two methods

public abstract class Task<V> {
protected V GUB;
protected Worker worker;
public abstract V explore(Object[] params);
public abstract ArrayList<?extends Task<V>> split();
public abstract void initLowerBound();
public abstract void initUpperBound();
public abstract V gather(V]] values); }

public interface Worker {
public int availableWorkers(); }

Fig.1: The task and worker Java interfaces.

are called for each task just before the objective function explore, and they are
not mandatory. The last method to implement is gather: the (sub-)master calls
this method when all its tasks are solved. The method returns the best results
from all tasks, i.e. the optimal solution.

The root task is passed to the master that performs the first branching. Then
when a task is allocated to a worker that starts to explore it. As soon as a worker
is available, a new task can be allocated. The worker starts by heuristic methods
to initialize lower/upper bounds for the current feasible region, then it calls the
objective function. Within the objective function, the user can decide whenever
to branch the current region with the help of the availableWorkers method,
which returns the current number of free workers.

The master and the search tree strategy handle task allocation; thereby the
master works as a queue for task scheduling. The exploration algorithm of the
search tree is important regarding performances. Therefore, Grid’BnB allows
users to choose adapted algorithms to solve their problems. We propose four
algorithms: breadth-first search explores the tree in larger, depth-first search ex-
plores all branches one by one, first-in-first-out (FIFO) explores the tree fol-
lowing the order tasks have been sent to the master, and priority explores in
priority branches that updated the GUB the most frequently. If none of those
algorithms satisfy the problem, users can implement their owns.

The tasks produce new GUB candidates while they are computed by workers.
The GUB must be available to all tasks to prune the maximum of none promising
branches of the search tree. The strategy for sharing GUB is to use a local copy
of GUB on all workers and to broadcast updated value. Figure 2 shows the
process of updating GUB when a worker finds a new better upper bound. To be
efficient, a B&B framework has to broadcast the GUB as fast as possible. With
a large number of workers, directly broadcasting GUB to every worker cannot
scale. For that reason Grid’BnB organizes workers in groups.

Groups are sets of workers, which can efficiently broadcast GUB between
them. The master is in charge of building groups. Thus, the main criterion to
put workers in the same group is their localization on the same cluster. Clusters

K

3. Broadcast the new best upper bound

Host [Host Host
Node 3 Node Node
/ \

Worker Worker Worker A Communication

A . Push the
2. Broadcast Task new best % Execution thread

solution per bound

|
Task Task
1. A new best upper bound is found bounding

Fig.2: Update the best global upper bound.

usually provide a high performance environment for communication. The master
elects a worker as leader in each group. This leader has a reference to all other
group leaders. When a leader receives a communication from outside its group,
it broadcasts the communication to its group. Inversely when the leader receives
a communication from a member of its group, it broadcasts the communication
to the other leaders but only if the new upper bound is better than its own GUB
value. Figure 3 shows an example of broadcasting GUB between groups.

Group of Workers with Node Tag 0-0 i
clusterA-nodel clusterA-node2 L .
Node - Tag 0-0 Node - Tag 0-0| | ! { Group of Workers i
Worker Worker i with NodeTag 0-2 E -_————
> o ! clusterB-node1 { <7 Group T,
7 3=r"~J Node-Tago0-2|||{ ~Lleaders_~
H - ~ H
dusm\&mdes ', oifisterA-nodes” : (L Worker M 1|1 _— Communication intra-grou
Node - L2 ; vl b - ! group
ode - Tag 0-0~ /No_d&la_q\oo : E . o
Worker ‘ ‘ o Worker ,‘ | (4 { - A Communication inter-groups
R ! clustexB-node2 !
>~ : NoMe - Tag 0-2] | |
H
1: A new best upper bound is found | "\ ke {
then broadcast this solution 3 |
{
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, U . NS
| Group of Workers with Node Tag 0-}/ !
! 1
E clusterC-node1 clusterC-node2 clusterC-node3 {
! Node - Tag 0-1 Nade-Xag 0-1 Node - Tag 0-1] |
- ~
! Worker . Worker Worker {
] - —_—— H
i =4 e ?

Fig.3: Broadcasting solution between groups of workers.

Within the user code, errors can occurs, such as uncaught exceptions. Work-
ers handle user exceptions. When a worker catches an exception, it forwards it
to the master, and then the master stops the whole computation and returns
the exception to the user.

The last feature of Grid’BnB is the fault-tolerance. Fault-tolerance is a real
issue of grid environments; the large number of resources that are distributed

on different administration domains implies a high probability of faults, such as
hardware failures, networks down time, or maintenance.

Master and sub-masters hierarchically manage infrastructure failures, such
as host failures. The monitoring consists of frequently pinging entities. When the
ping call fails (communication timeout, network errors, etc.), the remote host is
considered as unreachable and down. In that case, the master re-allocates the
task to an available worker. If for the same task several results are returned to
the master (worker considered down for network problem and come back), only
the first one is kept, others are flushed. Masters handle the fault of their sub-
masters: if a sub-master does not answer to a ping call, the master chooses a
free worker and re-instantiates it as a sub-master. Masters also handle the fault
of leaders; the master frequently pings leaders. When a leader is unreachable,
the master elects a new leader in the group.

The master must be deployed on a stable machine, because it is at the top of
the monitoring hierarchy. As opposed to sub-masters and workers, master host
failures cannot be dynamically handled by the framework but require users in-
tervention. The status of the current execution (GUB and all tasks) is frequently
saved on disk. Thus for long-running problem, if the master node faults the user
can restart the solving at a recent state of the execution.

Grid’BnB provides a high level-programming model for solving problems
with parallel B&B. From the users points of view, the framework handles all
issues related to distribution/parallelism and fault-tolerance.

2.3 Implementation

Grid’BnB is designed for grids and is implemented with Java, which allows to
use a large kinds of resources, operating systems, and machine architectures.
More of Java, Grid’BnB is implemented within the ProActive Grid middleware.

ProActive [2] is a Java library for concurrent, distributed and mobile com-
puting. ProActive features transparent remote active objects, asynchronous two-
way communications with transparent futures, high-level synchronization mech-
anisms, and migration of active objects with pending calls. As ProActive is built
on top of standard Java APIs, neither does it require any modification to the
standard Java execution environment, nor does it make use of a special compiler,
preprocessor or modified Java Virtual Machine (JVM). A distributed or concur-
rent application built using ProActive is composed of a number of medium-
grained entities called active objects. Method calls sent to active objects are
asynchronous with transparent future objects and synchronization is handled by
a mechanism known as wait-by-necessity. ProActive provides typed group com-
munication, an important feature for high-performance and grid computing. The
group communication [7] extends the ProActive elementary mechanism for asyn-
chronous remote method invocation and automatic futures.

In Grid’BnB, master, sub-masters, and workers are active objects. Each ac-
tive object serves remote calls in FIFO order. Master manages futures on cur-
rent executing tasks. Then, groups of workers are ProActive groups. Leaders
are also member of a ProActive group. Thereby, hierarchical ProActive groups

represent workers. A hierarchical group is indeed a group of groups. Finally, to
optimize communication between workers to solve more rapidly problems, the
management of workers in groups lay to the ProActive deployment framework.
ProActive features a system for the deployment of applications on grids. The
next section explains the deployment mechanism and how we improved it to
manage organization of workers in groups of communications.

3 Grid Node Localization

The key principle of ProActive deployment [8] is to eliminate from the source
code the following elements: machine names, creation protocols, registry, and
lookup protocols. 1t allows to deploy any application anywhere without modifying
the source code. The deployment sites are called nodes and correspond to JVMs,
which host active objects. The deployment framework uses Virtual Nodes (VNs).
VNs are the deployment abstractions for the applications; they are defined in
the program source and after activation they are mapped to a set of nodes. The
deployment framework relies on XML descriptors. They are composed of two
parts: mapping and infrastructure. The VN, which is the deployment abstraction
for applications, is mapped to nodes in the deployment descriptors, and nodes
are mapped to physical resources, i.e. to the infrastructure. Nodes are created
using remote connection and creation protocols. Deployment descriptors allow
combining these protocols in order to seamlessly create remote JVMs.

In Section 2 we proposed to organize workers in groups for optimizing commu-
nication. The selection criterion for group acceptance for a worker is its physical
localization on a cluster. Therefore, the node localization on the grid is important
for an efficient implementation of our Grid’BnB framework. The ProActive de-
ployment framework provides a high-level abstraction of the underlying physical
infrastructure. Once deployed, the application cannot easily access to the topol-
ogy of the physical infrastructure. For instance, programmers have to compare
node addresses for determining if two nodes are deployed on the same cluster.
Nevertheless, two nodes may have the same sub-net address on different clusters,
with network of NATSs. Hence, programmers may use metrics, such as latency,
to determine if nodes are “close”. Consequently, organizing workers in group
by clusters and optimizing communication between clusters is a very difficult
and complicated task. For that reason we introduced a new mechanism in the
ProActive deployment framework to identify nodes, which are deployed on the
same cluster or even on the same machine.

The creation of a node is the result of a deployment graph (a directed acyclic
graph: DAG) with connection protocols. This deployment graph is specified
within the XML deployment descriptor. Our deployment node tagging mech-
anism aims to tag nodes in regard of the deployment graph on which they are
mapped in the deployment descriptor. This tag will allow the application to or-
ganize groups in regard to the deployment process that created nodes. With this
mechanism, all deployed nodes are tagged with an identifier at deployment time.
Nodes that have the same tag value have been deployed by the same deployment

process. As a result, they have a high probability to be located in the same the
same local network.

Figure 4 shows the process of tagging nodes. The tag is built by a concate-
nation of identifiers at each level of the deployment graph. At the beginning of
the deployment, a new tag is instantiated for each virtual node. For leaf nodes of
the DAG, which are JVM creations, no identifier is added. Therefore, all nodes
deployed with the same path in the DAG have the same tag.

- Node 1 Deployment Tag: 0-0
Node 2,3, and 4 Deployment Tag: 0-1-0-0

JVM Creation - Deployment Tag
Connection
Protocols
RSH Frontal }——[(LSF) qsub-3 nodes]

Fig. 4: Deployment tag mechanism.

The tag is an abstraction of the physical infrastructure; it provides more in-
formation about how nodes have been deployed. It is now possible to know at
the application level that the same deployment graph has deployed two nodes.
The deployment tag can be used for instance by applications to optimize com-
munication between nodes or to do data localization. More especially Grid’BnB
uses the deployment tag to dynamically organize worker communications be-
tween clusters. Figure 3 shows the deployment result of a single virtual node on
three clusters. The deployment has returned nine nodes: four nodes on clusterA,
two on clusterB, and three on clusterC. The node tag mechanism has tagged the
nodes 0-0 on clusterA, 0-1 on clusterC, and 0-2 on clusterB. Tags are finally
used to organize workers in groups of communication to optimize communication
between clusters.

4 Experiments

4.1 The Flow-Shop Problem

Flow-shop is a NP-complete permutation optimization problem. The flow-shop
problem consists in finding the optimal schedule of n jobs on m machines. The
set of jobs is represented by J = {4j1,j2,...7n}, €ach j; is a set of operations
ji = {01, 0i2, ... 0im} Where 04, is the time taken on machine m and the set of
machines is represented by M = {my, ma,...my,}.

The operation 0;; must be processed by the machine m;. The sequence of
jobs are the same on every machines, e.g. if j3 is treated in position 2 on the
first machine, j3 is also executed in position 2 on all machines.

We consider the mono-objective case, which aims to minimize the overall
completion time of all jobs, i.e. makespan. The makespan is the total execution
time of a complete sequence of jobs. Thus, the mono-objective goal is to find the
sequence of jobs that takes the shortest time to complete.

4.2 Single Cluster Experiments

These experiments aim to choose the best search strategy and to determine the
impact on performances of dynamically sharing GUB with communications. We
use a 32 nodes cluster at INRIA Sophia lab, powered by dual-processors AMD
Opteron with a speed of 2 GHz and connected via Gigabit Ethernet.

Figure 5a shows results of applying different search strategies (described in
section 2.2) to flow-shop. The selected instance of flow-shop is 16 jobs / 20 ma-
chines. Results show that FIFO is the fastest for all those experiments; the
speedup between 20 CPUs and 60 CPUs is 4.63. This is a super linear speedup
owing to increase the total of CPUs allows a larger generation of the search
tree in parallel and thereby, improving the GUB faster to prune more branches.
Breadth-first search scales with a very good speedup, the speedup between 20
CPUs and 60 CPUs is 5.44, also super linear. The high speedup is normal because
more breadth-first search is deployed on nodes the more the tree is explored in
parallel. Depth-first search speedup is linear, 3.00, and for priority search the
speedup is 1.73. The speedup is particularly high with all these experiments,
because with 60 CPUs the chosen flow-shop instance can be widely explored in
parallel whatever the search strategy. The built search tree rapidly provides the
best solution as upper bound, thus each process can delete many branches.

250 80 3

N
S
3

’

o]

g
v

/
¥

@
g
*
1
4
4o /
A ;
s
Sl e :
o 5

Time in minutes
/
/
r
Time in minutes
/
/N
/
/
N
Speedup Factor

S
8
/
r
!
/
!
!
"
Noow
5 8
\
\
%
1
[
I
.

20 30 40 50 60 cPUs

CPuUs ——With Communications —= - Without Communications

—+—FIFO - ‘= - Depth-first search —a— Breadth-first search --»-- Priority —4— Speedup (With Com / No Com)

(a) Benchmarking search tree strategies (b) Dynamic GUB sharing vs. no sharing

Fig. 5: Single cluster experiments: flow-shop n = 16, m = 20.

With the same instance of flow-shop and with the FIFO strategy, we now
benchmark the impact of dynamically sharing GUB with communications. We
benchmark flow-shop with communications between workers for sharing GUB
and without dynamically sharing GUB between workers (no communication). In

the case of no communication, the master keeps the GUB up-to-date with all
results from computed tasks; and when a task is allocated to a worker by the
master, it sets the current GUB value to the task. Figure 5b shows the results.
Using communications to share GUB improves performance. But the speedup,
TTNgoglOr;"ﬂ?g;‘:ﬁg", is lower for 50 CPUs than 40 CPUs, this decrease comes
from the fact that since 40 CPUs this flow-shop instance has enough CPUs to
explore the whole tree in parallel, i.e. it is the optimal deployment.

These experiments on a single cluster show that dynamically sharing GUB
with communications between workers improve execution time, and that choos-

ing the right search strategy considerably affects performances.

4.3 Large Scale Experiments

In order to experiment Grid’BnB on grids, we used a large-scale nationwide
infrastructure for grid research, Grid’5000 (G5K) [9]. The G5K project aims
at building a highly reconfigurable, controllable and monitorable experimental
grid platform gathering 9 sites geographically distributed in France currently
featuring a total of about 3000 CPUs. G5K is composed of a large number
of machines, which have different kinds of CPUs (dual-core architecture, AMD
Opteron 64 bits, PowerPC G5 64 bits, Intel Itanium 2 64 bits, Intel Xeon 64 bits),
of operating systems (Debian, Fedora Core 3 & 4, MacOs X, etc.), of supported
JVMs (Sun 1.5 64 bits and 32 bits, and Apple 1.4.2), and of network connection
(Gigabit Ethernet and Myrinet).

Grid experiments run with the same implementation of flow-shop, as previous
single cluster experiments. The instance of flow-shop is now a larger problem:
17 jobs / 17 machines. The search tree strategy is FIFO and communications
are used to dynamically share GUB. Results of experiments with G5K are sum-
marized in Figure 6a and Table 1.

120 03 1,2
100 0,25 1

\
\
. A~
80 02 £ 0,8 ~

60 +——— 0153

Time in minutes
Efficiency
°
>

40 S 01 g

t
|
I
|
°
'Y

20 0,05

o
N

0
cPUs 90 140 190 240 290 340 390 440 490 540 590 640

—e— Execution Time —=— Total Work CPUs

(a) Results (b) Efficiency

Fig. 6: Large scale experiments: flow-shop n = 17, m = 17.

10

Table 1: Large scale experiments results.

CPUs|Sites|Execution time|Tasks|% of explored search tree|/Gathered time
100 1 104 m 1567 0.152% 167 h
200 1 60 m 2515 0.165% 181 h
300 2 44 m 3729 0.189% 196 h
492 4 40 m 5447 0.239% 251 h
621 5 35 m 6968 0.261% 267 h

The broken line in Figure 6a shows that the execution time strongly decreases
until 272 CPUs, the speedup between 96 CPUs and 272 CPUs is 2.32. From 272
to 621 CPUs the execution time is almost constant, the speedup between 272 and
621 CPUs is 1.31. Then, the global speedup, between 96 and 621 CPUs, is 3.01.
Our Grid’BnB flow-shop scales well up to 272 (close to linear speedup). However,
for more than 272 CPUs, the execution time decreases slowly. Nevertheless, the
solid line shows the percentage of branches explored in the search tree, i.e. total
number of tested permutations, this line increases with the number of CPUs.
This line is indeed the total work done by the computation.

Figure 6b shows the efficiency FE, this value estimates how CPUs are utilized
for the computation. Values of F are between 0 and 1, a single-processor compu-
tation and linear speedup have E = 1. Here, we consider the execution time (7')
efficiency corrected with the work (W: total number of tested permutations) be-
cause Grid’BnB computes more work with increasing CPUs. Thus, the efficiency
for n CPUs: E,, = %‘;‘SG/M. The figure shows that between 96 and 300
CPUs, E is close to 1 (0.9), which is very good. However, for 422 and more, F
decreases to 0.8, it is still a good value. This decrease can be explain by the fact
that for experiments with less than 422 CPUs are done on 1 or 2 grid sites and
for 422 and more 3 up to 5 sites nationally-distributed. In addition, grid sites
are heterogeneous in regards of CPUs power and inter-site network connections.

Experiments on single cluster and large scale grid show that it is better to use
communications to dynamically share GUB, and that it is important for users
to choose the adapted search tree strategy to their problems to solve. Large
experiments also show that Grid’BnB can be used on grid environments, we
deploy flow-shop on a nationwide grid of five clusters gathering a 621 CPUs.

5 Related Work

Branch and Bound: Many work reported by the survey in [1] are based on
a centralized approach with a single manager, which maintains the whole tree
and hands out tasks to workers. This kind of approach clearly does not scale
for grid environments.Aida and al. [5] present a solution based on hierarchical
master-worker to solve scalability issues. Workers do branching, bounding, and
pruning on sub-problems, which are represented by tasks. The supervisor han-

11

dles the sharing of the best current upper bound. Supervisor and sub-masters
gather results from workers and are in charge to hierarchically update the best
upper bound on all workers. We show in section 4.2 that using dynamic com-
munications rather than using the master to share GUB allows to complete the
computation faster. In [6] Aida and Osumi propose a study of their hierarchi-
cal master-worker framework implemented using GridRPC middleware [10] and
Ninf-G [11]. The authors discuss the granularity of tasks, notably when tasks are
fine-grain the communication overhead is too high compared to the computation
of tasks. Thereby, Grid’BnB introduces a method to check how many workers
are available. This method helps users to program tasks and to dynamically
determine the most appropriate granularity of the tasks.

Tamnitchi and Foster [12] proposes a solution to do B&B over grids that
differs from Grid’BnB and others because it does not base on master-worker
paradigm, but on a decentralized architecture that manages resources through a
membership protocol. Each process maintains a pool of problems to solve. When
the pool is empty, the process asks for work to other processes. The sharing of
the best upper bound is handled by circulating a message among processes. The
fault-tolerance issue is addressed by propagating all completed sub-problem to
all processes. This approach may result in significant overhead, in terms of both
duplicated work and messages.

ParadisEO [13] is an open source framework for flexible parallel and dis-
tributed design of hybrid meta-heuristics. Moreover, it supplies different natural
hybridization mechanisms mainly for meta-heuristics including evolutionary al-
gorithms and local search methods. All these mechanisms can be used for solving
optimization problem. Like Grid’BnB, the grid version of ParadisEO is based
on the master-worker paradigm. ParadisEO splits the optimization problem in
tasks. Then, the task allocation is handled by MW [4], a tool for scheduling
master-worker applications over Condor [14], which is a grid resource manager.
Unlike Grid’BnB, ParadisEO just provides mechanisms for searching algorithms.

Skeletons: The common architecture used for B&B on grids is “master-worker”.
For parallel programming, the master-worker pattern is called farm skeleton [15].
Muskel [16] is a Java skeleton framework for grids that provide farm. Skeleton
frameworks usually provide task allocation and fault-tolerance. Thus, skeletons
seem well adapted for implementing B&B for grids. Like Grid’BnB users just
have to focus on the implementation of the problem to solve all other issue related
to grid and tasks managing are handled by the framework. However in farm
skeletons tasks cannot share data, such as a global upper bound to prune more
promising branches of the search tree to find more rapidly the optimal solution.
In addition, another skeleton that fits B&B algorithm is the divide-and-conquer
skeleton. This skeleton allows to dynamically split task, ¢.e. branching, but like
farm it is not possible to share the global upper bound between task.

Divide-and-Conquer: Conceptually, B&B technique fits the divide-and-conquer
paradigm. The search tree can be divided into sub-trees, and each sub-tree is

12

then assigned to an available computational resource. This is done recursively
until the task is small enough to be solved directly.

Satin [17] is a system for divide-and-conquer programming on grid platforms.
Satin express divide-and-conquer parallelism entirely in the Java language it-
self, without requiring any new language constructs. Satin uses so-called marker
interfaces to indicate that certain method invocations need to be considered
for parallel execution, called spawned. A mechanism is also needed to synchro-
nize with spawned method invocations. Satin can be used directly to implement
B&B. Thus, users can mark branching methods to be executed in parallel. Like
Grid’BnB, Satin is in charge to distribute sub-problems through grids. But unlike
our framework, Satin does not provide any mechanisms for sharing global upper
bound and more generally no mechanism for communication between parallel
executed sub-problems.

6 Conclusion and Perspectives

We described Grid’BnB a parallel B&B framework for grids. Grid’BnB provides
a framework to help users to solve optimization problems hiding grids, paral-
lelism, and distribution related issues. It is based on a hierarchical master-worker
architecture enhanced with communications between processes to share the best
global upper bound thus exploring less parts of the search tree and decreasing
the execution time. Because grids provide a large-scale parallel environment, we
propose to organize workers in groups of communications. Groups reflect grid
topology. This feature aims to optimize inter-cluster communications and to up-
date more rapidly the global upper bound on all processes. Grid’BnB proposes
different search tree algorithms to help users to choose the most adapted one
for the problem to solve. Finally, the framework allows fault-tolerance for long-
running executions. In addition, we introduced a new mechanism, deployment
node tagging, to localize deployed nodes on grids. The deployment node tagging
allows Grid’BnB to identify nodes, which are on the same cluster, and to opti-
mize group communications between processes. This mechanism is integrated in
the deployment framework of the ProActive grid middleware.Experiments show
that Grid’BnB scales on a real nationwide grid, such as Grid’5000. We were able
to deploy a permutation optimization problem, flow-shop, on up to 621 CPUs
distributed on five sites.

In future work, we plan to improve our flow-shop implementation with a bet-
ter objective function, such as the technique proposed by Lageweg [18]. Likewise,
we want to run larger scale experiments on a worldwide grid, by mixing clusters
located in France and Japan. We believe that Grid’BnB can used for more than
B&B. Without modification of the framework it may be used to do divide-and-
conquer or as farm skeleton. Grid’BnB is framework for parallel programming
that targets all embarrassingly parallel problems.

References

1. Gendron, B., Crainic, T.: Parallel Branch-And-Bound Algorithms: Survey and
Synthesis. Operations Research 42(6) (1994) 1042-1066

13

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Caromel, D., Delbé, C., di Costanzo, A., Leyton, M.: Proactive: an integrated

platform for programming and running applications on grids and p2p systems.
Computational Methods in Science and Technology 12(1) (2006) 69-77

Atallah, M.: Algorithms and theory of computation handbook. CRC Press (1999)
Goux, J., Kulkarni, S., Linderoth, J., Yoder, M.: An Enabling Framework for
Master-Worker Applications on the Computational Grid. Proc. 9th IEEE Symp.
on High Performance Distributed Computing (2000)

Aida, K., Natsume, W., Futakata, Y.: Distributed computing with hierarchical
master-worker paradigm for parallel branch and bound algorithm. Cluster Com-
puting and the Grid, 2003. Proceedings. CCGrid 2003. 3rd IEEE/ACM Interna-
tional Symposium on (2003) 156-163

Aida, K., Osumi, T.: A Case Study in Running a Parallel Branch and Bound
Application on the Grid. Proc. IEEE/IPSJ The 2005 Symposium on Applications
& the Internet (SAINT2005) (2005) 164-173

Baduel, L., Baude, F., Caromel, D.: Efficient, Flexible, and Typed Group Commu-
nications in Java. In: Joint ACM Java Grande - ISCOPE 2002 Conference, Seattle,
ACM Press (2002) 28-36 ISBN 1-58113-559-8.

Baude, F., Caromel, D., Mestre, L., Huet, F., Vayssiere, J.: Interactive and
descriptor-based deployment of object-oriented grid applications. In: Proceedings
of the 11th IEEE International Symposium on High Performance Distributed Com-
puting, Edinburgh, Scotland, IEEE Computer Society (2002) 93-102

Cappello, F., Caron, E., Dayde, M., Desprez, F., Jeannot, E., Jegou, Y., Lanteri, S.,
Leduc, J., Melab, N., Mornet, G., Namyst, R., Primet, P., Richard, O.: Grid’5000:
a large scale, reconfigurable, controlable and monitorable Grid platform. In:
Grid’2005 Workshop, Seattle, USA, IEEE/ACM (2005) to appear.

Seymour, K., Nakada, H., Matsuoka, S., Dongarra, J., Lee, C., Casanova, H.:
Overview of GridRPC: A Remote Procedure Call API for Grid Computing. 3rd
International Workshop on Grid Computing, November (2002)

Tanaka, Y., Nakada, H., Sekiguchi, S., Suzumura, T., Matsuoka, S.: Ninf-G: A
Reference Implementation of RPC-based Programming Middleware for Grid Com-
puting. Journal of Grid Computing 1(1) (2003) 41-51

Tamnitchi, A., Foster, I.: A Problem-Specific Fault-Tolerance Mechanism for Asyn-
chronous, Distributed Systems. 29th International Conference on Parallel Process-
ing (ICPP), Toronto, Canada, August (2000) 21-24

Cahon, S., Talbi, E.G., Melab, N.: Paradiseo: A framework for parallel and dis-
tributed metaheuristics. In: IPDPS ’03: Proceedings of the 17th International
Symposium on Parallel and Distributed Processing, Washington, DC, USA, IEEE
Computer Society (2003) 144.1

Litzkow, M., Livny, M., Mutka, M.: Condor - a hunter of idle workstations. In: Proc.
of the 8th International Conference of Distributed Computing Systems. (1988)
Cole, M.: Algorithmic skeletons: structured management of parallel computation.
MIT Press, Cambridge, MA, USA (1991)

Danelutto, M.: Qos in parallel programming through application managers. In:
PDP ’05: Proceedings of the 13th Euromicro Conference on Parallel, Distributed
and Network-Based Processing (PDP’05), Washington, DC, USA, IEEE Computer
Society (2005) 282-289

van Nieuwpoort, R.V., Maassen, J., a nd Thilo Kielmann, G.W., Bal, H.E.: Satin:
Simple and efficient java-based grid programming. Accepted for publication in
Journal of Parallel and Distribute d Computing Practices (2004)

Lageweg, B., Lenstra, J., Kan, A.: A General Bounding Scheme for the Permutation
Flow-Shop Problem. Operations Research 26(1) (1978) 53-67

14

