
Generalized Sudan’s List Decoding for Order
Domain Codes�

Olav Geil1 and Ryutaroh Matsumoto2

1 Department of Mathematical Sciences, Aalborg University, Denmark
olav@math.aau.dk

2 Department of Communications and Integrated Systems, Tokyo Institute of
Technology, Japan

ryutaroh@rmatsumoto.org

Abstract. We generalize Sudan’s list decoding algorithm without mul-
tiplicity to evaluation codes coming from arbitrary order domains. The
number of correctable errors by the proposed method is larger than the
original list decoding without multiplicity.

1 Introduction

Høholdt et al. [6] proposed the new framework for algebraic code construction,
which they called evaluation codes. Evaluation codes are defined by either gen-
erator matrices or parity check matrices. Evaluation codes defined by parity
check matrices include many classes of algebraic codes, including generalized
Reed-Muller, Reed-Solomon, and one-point geometric Goppa codes CΩ(D, G),
and they provided lower bounds on the minimum Hamming distance and de-
coding algorithms in a unified manner, while relatively little work was done for
evaluation codes defined by generator matrices in [6]. The framework of evalua-
tion codes and order domains was later generalized by O’Sullivan [7], Geil and
Pellikaan [3].

Andersen and Geil [1] studied the evaluation codes defined by generator ma-
trices, which also include generalized Reed-Muller, Reed-Solomon, and one-point
geometric Goppa codes CL(D, G), and they also provided lower bounds on the
minimum Hamming distance in a unified manner. Their work [1] can be regarded
as a generator matrix counterpart of [6]. In this paper we study evaluation codes
defined by generator matrices.

On the other hand, Sudan [10] and Guruswami-Sudan [5] proposed the list
decoding algorithms for Reed-Solomon and one-point geometric Goppa codes,
and the latter method dramatically increased the number of correctable errors of
the conventional bounded distance decoding algorithm, such as the Berlekamp-
Massey algorithm. Following those work, Shokrollahi and Wasserman [9] gener-
alized the Sudan method [10] to one-point geometric Goppa codes, and Pellikaan
� This research is in part supported by the Danish National Science Research Coun-

cil Grant FNV-21040368 and the MEXT 21st Century COE Program: Photonics
Nanodevice Integration Engineering.

S. Boztaş and H.F. Lu (Eds.): AAECC 2007, LNCS 4851, pp. 50–59, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Generalized Sudan’s List Decoding for Order Domain Codes 51

and Wu [8] generalized the Guruswami-Sudan method [5] to generalized Reed-
Muller codes as the first algorithm among three new list decoding algorithms in
[8]. Augot and Stepanov [2] improved the estimation of error-correcting capabil-
ity of the first algorithm in [8].

However, up to now, nobody has successfully generalized the list decoding
algorithms [10,5] to evaluation codes from arbitrary order domains. The diffi-
culty lies in the fact that existing methods [10,5,8] deal with codes coming from
polynomial rings or their factor rings and utilize their polynomial structure such
as the degree of a polynomial and the pole order of an algebraic function.

We will distill essential ingredients from Sudan’s original decoding method
[10], which allow us to carry over it to evaluation codes from arbitrary order
domains. After that, we examine the error-correcting capability of the proposed
generalization when we apply it to generalized Reed-Muller and one-point ge-
ometric Goppa codes, and show that the proposed method can correct more
errors than [9] and the first algorithm in [8]. We have to note that the proposed
method usually cannot correct more errors than the Guruswami-Sudan method
[5] with multiplicity.

The paper is organized as follows. In Section 2 we present the modified Sudan
decoding algorithm without multiplicity. Our description does not require that
the reader has any previous experience with order domains. Some knowledge
about generalized Reed-Muller and one-point geometric Goppa codes should do.
In Section 3 we study decoding of generalized Reed-Muller codes. We compare
our findings to the results by the first algorithm of Pellikaan and Wu in [8] and
by Augot and Stepanov in [2]. Then in Section 4 we apply our method to some
codes coming from norm-trace curves.

2 Decoding of Order Domain Codes

In this section we state the modified decoding algorithm for a large family of
codes defined from order domains. We provide translations into the case of gen-
eralized Reed-Muller codes and one-point geometric Goppa codes. Our presen-
tation relies on [1,3,7].

Definition 1. Let R be an Fq-algebra and let Γ be a subsemigroup of N
r
0 for

some r. Let ≺Nr
0

be a monomial ordering on N
r
0. A surjective map ρ : R →

Γ−∞ := Γ ∪ {−∞} that satisfies the following six conditions is said to be a
weight function

(W.0) ρ(f) = −∞ if and only if f = 0
(W.1) ρ(af) = ρ(f) for all nonzero a ∈ Fq

(W.2) ρ(f + g) �Nr
0

max{ρ(f), ρ(g)} and equality holds when ρ(f) ≺Nr
0

ρ(g)
(W.3) If ρ(f) ≺Nr

0
ρ(g) and h �= 0, then ρ(fh) ≺Nr

0
ρ(gh)

(W.4) If f and g are nonzero and ρ(f) = ρ(g), then there
exists a nonzero a ∈ Fq such that ρ(f − ag) ≺Nr

0
ρ(g)

(W.5) If f and g are nonzero then ρ(fg) = ρ(f) + ρ(g).

52 O. Geil and R. Matsumoto

An Fq-algebra with a weight function is called an order domain over Fq. The
triple (R, ρ, Γ) is called an order structure and Γ is called the value semigroup
of ρ.

We have the following two standard examples of weight functions.

Example 1. Consider the polynomial ring R = Fq[X1, . . . , Xm] and let ≺Nm
0

be
the graded lexicographic ordering on N

m
0 given by (i1, . . . , im) ≺Nm

0
(j1, . . . , jm)

if either i1 + · · · + im < j1 + · · · + jm holds or i1 + · · · + im = j1 + · · · + jm

holds, but left most non-zero entry of j1 − i1, . . . , jm − im) is positive. The map
ρ : R → N

m
0 ∪ {−∞}, ρ(F) := max≺Nm

0
{(i1, . . . , im) | X i1

1 · · ·X im
m ∈ Supp(F)} if

F �= 0 and ρ(0) := −∞ is a weight function.

Example 2. Let Q be a rational place of a function field in one variable over
Fq. Then R = ∪∞

m=0L(mQ) is an order domain with a weight function given
by ρ(f) = −νQ(f). Clearly, in this case the value semigroup Γ is simply the
Weierstrass semigroup corresponding to Q and the monomial ordering is the
unique monomial ordering on N0.

For the code construction we will need a few results.

Theorem 1. Let (R, ρ, Γ) be an order structure. Then any set B = {fγ |
ρ(fγ) = γ}γ∈Γ constitutes a basis for R as a vector space over Fq. In particular
{fλ ∈ B | λ � γ} constitutes a basis for Rγ := {f ∈ R | ρ(f) � γ}.

A basis as in Theorem 1 is known in the literature as a well-behaving basis.
In the remaining part of this section we will always assume that some fixed
well-behaving basis has been chosen for the order domain under consideration.

Definition 2. Let R be an Fq-algebra. A surjective map ϕ : R → F
n
q is called

a morphism of Fq-algebras if ϕ is Fq-linear and ϕ(fg) = ϕ(f) ∗ ϕ(g) for all
f, g ∈ R, where ∗ denotes the componentwise multiplication of two vectors.

The class of codes E(λ) below includes as we shall recall generalized Reed-Muller
codes as well as one-point geometric Goppa codes.

Definition 3. Consider an order domain R over Fq and a corresponding mor-
phism ϕ : R → F

n
q . For λ ∈ Γ we define E(λ) := ϕ(Rλ).

Example 3. This is a continuation of Example 1. Consider F
qm

q = {P1, . . . , Pqm}
and let ϕ : Fq[X1, . . . , Xm] → F

qm

q be given by ϕ(F) = (F (P1) . . . , F (Pqm)).
If we choose λ = (u, 0, . . . , 0) then E(λ) is simply the generalized Reed-Muller
code RMq(u, m) no matter how the well-behaving basis for the order domain
R = Fq[X1, . . . , Xm] has been chosen. For simplicity we choose in this paper
always the well-behaving basis B to be the set of monomials in X1, . . . , Xm.

Example 4. This is a continuation of Example 2. Let {P1, . . . , Pn} be ratio-
nal places different from Q and consider the morphism ϕ : R → F

n
q given by

ϕ(f) = (f(P1), . . . , f(Pn)). The code E(λ) is the one-point geometric Goppa
code CL(D, λQ) where D = P1 + · · · + Pn.

Generalized Sudan’s List Decoding for Order Domain Codes 53

We next consider some terminology from [1].

Definition 4. Let α(1) := 0 and define for i = 2, 3, . . . , n recursively α(i) to be
the smallest element in Γ that is greater than α(1), α(2), . . . , α(i−1) and satisfies
ϕ(Rγ) � ϕ(Rα(i)) for all γ < α(i). Write Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)}.
Definition 5. For η ∈ Δ(R, ρ, ϕ) = {α(1), α(2), . . . , α(n)} define

M(η) := (η + Γ) ∩ Δ(R, ρ, ϕ)

where η + Γ means {η + λ | λ ∈ Γ}. Let σ(η) := #M(η).

The first part of the following theorem plays a fundamental role in our modifi-
cation of the Sudan decoding algorithm without multiplicity.

Theorem 2. If c ∈ E(λ) but c �∈ E(η) for any η with η ≺Nr
0

λ then wH(c) ≥
σ(λ) holds. In particular we have d(E(λ)) ≥ min{σ(η) | η ∈ Δ(R, ρ, ϕ), η � λ}.

Example 5. The above bound gives the true minimum distances of generalized
Reed-Muller codes and of Hermitian codes. For the case of one-point geomet-
ric Goppa codes the bound is an improvement to the usual bound by Goppa
which states that the minimum distance of a one-point geometric Goppa code
CL(D, λQ) is at least n − λ. More precisely, we have σ(λ) ≥ n − λ for any
λ ∈ Δ(R, ρ, ϕ). For high dimensions the inequality is in general sharp.

Theorem 2 suggests the following improved code construction.

Definition 6. Given any fixed basis B = {fγ | ρ(fγ) = γ}γ∈Γ as in Theorem 1
we define Ẽ(δ) := SpanFq

{ϕ(fα(i)) | α(i) ∈ Δ(R, ρ, ϕ) and σ(α(i)) ≥ δ}.
We have

Theorem 3. d(Ẽ(δ)) ≥ δ.

The codes Ẽ(δ) are sometimes very much better than the corresponding codes
E(λ). This is for instance the case for the improved generalized Reed-Muller
codes known as hyperbolic codes (or Massey-Costello-Justesen codes). Regard-
ing one-point geometric Goppa codes the picture very much relies on which
particular curve we consider, but the improvement may also in this case be sig-
nificant. The idea of controlling the minimum distance of a code by choosing the
functions fλ to be used in the code construction in a clever way will be one of the
main ingredients of our modified Sudan decoding algorithm without multiplicity.

We now describe the modified Sudan decoding algorithm without multiplicity
for the codes E(λ) and Ẽ(δ). To ease notation we state the algorithm for a larger
class of codes, namely for any code C of the form

C = Span
Fq

{ϕ(fλ1), . . . , ϕ(fλk
)} where {λ1, . . . , λk} ⊆ Δ(R, ρ, ϕ). (1)

The first part of the decoding algorithm is to find a proper interpolation poly-
nomial Q(Z) with coefficients from the order domain R. To set up the decoding
procedure for a given fixed code C we first need to describe sets from which
we will allow the coefficients to be chosen. To this end consider the following
definition.

54 O. Geil and R. Matsumoto

Definition 7. Given a code C as above let E be some fixed value (representing
the number of errors we would like to correct). For s ∈ N0 define

L(E, s) := {λ ∈ Δ(R, ρ, ϕ) | for all i1, . . . , is ∈ {1, . . . , k} we have

fλ

s∏

v=1

fλiv
∈ Span{fα(1), . . . , fα(n)} and (2)

σ(λi) > E for all fλi ∈ SuppB(fλ

s∏

v=1

fλiv
)}, (3)

where SuppB(f) of f ∈ R is the set of g ∈ B that appears in the unique linear
combination of f by elements in B.

Note, that there is no requirement that i1, . . . , is are pairwise different. Note also
that the set L(E, s) relies on the actual choice of well-behaving basis {fλ}λ∈Γ .
Further we observe that for large values of s we have L(E, s) = ∅. What we
will need for the modified version of Sudan type decoding without multiplicity
to work is a number E such that

∑∞
s=0 #L(E, s) > n. As indicated above the

value E will be the number of errors we can correct and therefore we would of
course like to find a large value of E such that the above condition is met. On
the other hand the smallest value t such that

t∑

s=0

#L(E, s) > n (4)

holds will to some extent reflect the complexity of the decoding algorithm. So
in some situations it might be desirable to choose a smaller value of E than
the largest possible one to decrease the complexity of the algorithm. Choosing
parameters E and t and calculating the corresponding sets L(E, 0), . . . , L(E, t)
is something that is done when setting up the decoding system. Hence, the
complexity of doing this is not of very high importance. However, as we will
demonstrate in the case of generalized Reed-Muller codes, there are often tricks
to ease the above procedure. We are now able to describe the modified Sudan
decoding algorithm without multiplicity.

Algorithm 1
Input: A code C as in (1), parameters E, t such that (4) is met and corresponding
sets L(E, 0), . . . , L(E, t). A received word r
Output: A list of at most t codewords that contains all codewords within distance
at most E from r
Step 1. Find Q0, . . . , Qt ∈ R not all zero such that Qs ∈ SpanFq

{fλ | λ ∈ L(E, s)}
for s = 0, . . . , t and such that

∑t
s=0(ϕ(Qs)) ∗ rs = 0 holds. (Here rs means the

component wise product of r with itself s times and r0 = 1.)
Step 2. Factorize

∑t
s=0 QsZ

s ∈ R[Z] and detect all possible f ∈ R such that
Z − f appears as a factor, which can be done by the method of Wu [11].
Step 3. Return {ϕ(f) | f is a solution from step 2}.

Generalized Sudan’s List Decoding for Order Domain Codes 55

Theorem 4. Algorithm 1 gives the claimed output.

Proof: Condition (4) ensures that the set of linear equations in step 1 has
more indeterminates than equations. Therefore Q0, . . . , Qt as described in step
1 indeed do exist.

Consider any code word c. That is, let c = ϕ(f) where f is of the form
f =

∑k
v=1 βvfλv . From the conditions (2) and (3) we get that

s∑

i=0

Qif
i ∈ Span{fα(1), . . . , fα(n)} (5)

holds and that

all fα(v) ∈ SuppB(
s∑

i=0

Qif
i) satisfies σ(α(v)) > E. (6)

Assume now that c = ϕ(f) is a code word within Hamming distance at most
E from r. But then

∑t
s=0(ϕ(Qs)) ∗ (ϕ(f))s differs from

∑t
s=0(ϕ(Qs)) ∗ rs = 0

in at most E positions implying

wH(ϕ(
t∑

s=0

Qsf
s)) ≤ E (7)

Combining (5), (6) and (7) with the first part of Theorem 2 lead to the conclusion
that ϕ(

∑t
s=0 Qsf

s) = 0 must hold, and Eq. (2) implies
∑t

s=0 Qsf
s = 0. That

is, f is a zero of Q(Z). But order domains are integral domains and therefore
Quot(R) is a field. It follows that Z − f divides Q(Z) ∈ Quot(R)[Z]. As the
leading coefficient of Z − f is 1 we conclude that Q(Z) = (Z − f)K(Z) for some
K(Z) with coefficients in R. Hence, indeed Z − f appears in the factorization in
step 2 of the algorithm. Finally, as Q(Z) has degree at most t the list in step 3
is of length at most t. �
Remark 1. We have used the Hamming weight to ensure Q(Z) = 0 in the above
argument. The conventional method [10,9] used the degree of a polynomial and
the pole order of an algebraic function to ensure Q(Z) = 0. The use of Hamming
weight allows us to list-decode codes from any order domains.

The following example illustrates the nature of our modification.

Example 6. Consider a one-point geometric Goppa code E(η) where η < n. Let,
g be the genus of the function field or equivalently let g = #N0\Γ . The set

L′(E, s) = {λ ∈ Γ | λ + sη < n − E}

is easily calculated and we have L′(E, s) ⊆ L(E, s). Replacing L(E, s) with
L′(E, s) in Algorithm 1 gives the traditional algorithm [9] without multiplicity
for the one-point geometric Goppa code E(η). Hence, for one-point geometric
Goppa codes the modified algorithm can correct at least as many errors as the
original one and in cases where the sets L(E, s) are larger than the sets L′(E, s)
we will be able to correct more errors by the modified algorithm.

56 O. Geil and R. Matsumoto

3 Generalized Reed-Muller Codes

In this section we consider the implementation of Algorithm 1 to the case of
generalized Reed-Muller codes of low dimensions. Recall, from Example 1 that we
have a weight function ρ : Fq[X1, . . . , Xm] → N

m
0 given by ρ(F) = (i1, . . . , im) if

X i1 · · · X im is the leading monomial of F with respect to the monomial ordering
from Example 1. Recall from Example 3 that we always choose the well-behaving
basis B of Fq[X1, . . . , Xm] to be simply the set of monomials in X1, . . . , Xm. From
Definition 4, for the weight function under consideration the σ function is easily
calculated as follows

σ ((i1, . . . , im)) =
m∏

v=1

(q − iv).

We get the following Lemma that significantly eases the job with finding L(E, s).

Lemma 1. Let u < q and consider the generalized Reed-Muller code RMq(u, m).
The description of L(E, s) simplifies to

L(E, s) = {(l1, . . . , lm) ∈ N
m
0 |

l1 + su, . . . , lm + su < q, (8)
(q − l1 − su)(q − l2) · · · (q − lm) > E,
...
(q − l1) · · · (q − lm−1)(q − lm − su) > E}

(9)

Proof: To see that (9) corresponds to (3) we observe that the σ function from
this section is concave. The fact that (8) corresponds to (2) follows from similar
arguments. �

To decide how many errors our algorithm can correct we should according to (4)
look for the largest possible E such that a t exists with

∑t
s=0 #L(E, s) > n = qm.

Of course such an E can always be found by an extensive trial and error. For the
case of m = 2 that is, codes of the form RMq(u, 2) we now give an approximative
trial and error method that requires only few calculations. It turns out that this
approximative method is actually rather precise.

For a fixed s the conditions to be satisfied are

l1 + su < q, l2 + su < q (10)
(q − l1 − su)(q − l2) > E, (q − l1)(q − l2 − su) > E (11)

We make the (natural) assumption

0 ≤ l1, l2 < q. (12)

Equations (11) and (12) imply (10) which we therefore can forget about. When
E < q, it is easy to lower-bound the number of solutions to (11) and (12). Under
the assumption E ≥ q we now want to count the number of possible solutions

Generalized Sudan’s List Decoding for Order Domain Codes 57

to (11) and (12). The number of such solutions is bounded below by the area in
the first quadrant of the points that are under both the curve

l2 = q − E

q − l1 − su
(13)

as well as are under the curve

l2 = q − su − E

q − l1
(14)

By symmetry these two curves intersect in two points of the form (γ, γ). We
have to use the point closer to the origin, which we calculate to be

γ =
2q − su −

√
s2u2 + 4E

2
.

Therefore (again by symmetry) the area is

2
(∫ γ

0
(q − su − E

q − l1
)dl1 − 1

2
γ2

)

= 2(γ(q − su) − E(ln(q) − ln(q − γ)) − 1
2
γ2)

A rougher but simpler estimate is found by approximating the above area with
the area of the polygon with corners (0, 0), (0, q − E

q − su), (γ, γ), (q − E
q − su, 0).

Here the second point is found by substituting l1 = 0 in (14) and the fourth
point is found by substituting l2 = 0 in (13). The estimate can serve as a lower
bound due to the fact that both functions in (13) and (14) are concave. The
area of the polygon is found to be γ(q − (E/q) − su). Whether we use the first
estimate or the second estimate we would next like to know the largest value of
t such that L(E, t) �= ∅. But this is easily calculated from the requirement γ ≥ 0
implying t = �(q − (E/q))/u�. Combining the above results with Theorem 4 we
get.

Proposition 1. Consider the code RMq(u, 2) with u < q. For E ≥ q Algo-
rithm 1 can correct at least E errors if the following holds

�(q−E/q)/u�∑

s=0

(2(γ(q − su) − E(ln(q) − ln(q − γ)) − 1
2
γ2)) > q2.

Corollary 1. Consider the code RMq(u, 2) with u < q. For E ≥ q Algorithm 1
can correct at least E errors if the following holds

�(q−E/q)/u�∑

s=0

(γ(q − E

q
− su)) > q2.

Augot and Stepanov in [2] gave an improved estimate of the sum of multiplicities
in terms of the total degree of a multivariate polynomial as follows

58 O. Geil and R. Matsumoto

Theorem 5. The sum of multiplicities in F
m
q of an m-variate polynomial of

total degree d is upper bounded by dqm−1. The number of zeros with multiplicity
r of such a polynomial is upper bounded by dqm−1/r.

The above bound is better than the combination of Lemmas 2.4 and 2.5 in [8].
As noted by Augot and Stepanov Theorem 5 allows us to use more monomials
in the first list decoding algorithm in [8], and the resulting decoding algorithm
has the larger error-correcting capability.

The error correcting capability of the modified list decoding algorithm with
Theorem 5 is compared with ours and the original Pellikaan-Wu. The multiplic-
ity used in Augot and Stepanov’s estimate is 10. EPW , EPWA, Eours are the
error correcting capability of the original Pellikaan-Wu, Augot-Stepanov, and
our method, respectively. Finally, EPWA1 respectively EPWA2 are the error cor-
recting capability of the Augot-Stepanov modified the Pellikaan-Wu algorithm
when multiplicity is 1 respectively 2. q = 16, m = 2, n = 256.

u 2 3 4 5 6 7 8 9 10 11 12
EPW 63 46 34 26 19 14 10 7 5 3 2
Eours 76 55 44 34 27 21 15 13 11 9 6
EPWA 118 99 83 70 59 49 41 33 25 19 11
EPWA1 47 31 15 -1 -17 -33 -33 -49 -49 -65 -65
EPWA2 87 63 47 31 23 7 -1 -9 -17 -25 -25

Remark 2. The authors of the present paper have done a lot of computer experi-
ments regarding the error correcting capability of the proposed decoding method
for generalized Reed-Muller codes. In all of these experiments we were able to
correct as many errors as Remark 2.1 in [8] guarantees Pellikaan-Wu algorithm
(with multiplicity) to be able to.

4 One-Point Geometric Goppa Codes

As already mentioned our proposed decoding algorithm applies among other
things to one-point geometric Goppa codes. In this section we will be concerned
with codes defined from the norm-trace curve introduced in [4]. These are defined
by the polynomial X(qr−1)/(q−1)−Y qr−1 −Y qr−2 −· · ·Y ∈ Fqr [X, Y]. We consider
codes

CL(P1 + · · · + Pq2r−1 , sP∞) (15)

where P1, . . . , Pq2r−1 , P∞ are the rational places of the corresponding function
field and P∞ is the unique place among these with νP∞(x) < 0. We do not go
into detail with how to implement the proposed algorithm but present only some
examples.

Example 7. In this example we consider the norm-trace curve corresponding to
q = 2 and r = 6. These are of length n = 211. In the table below s is the value
used in (15) whereas Eour is the error correcting capability of the proposed

Generalized Sudan’s List Decoding for Order Domain Codes 59

method and EGS1 is the error correcting capability of Sudan’s algorithm [10]
without multiplicity. By 900-929 we indicate that maximal performance is a
number between 900 and 929. With multiplicity, Guruswami-Sudan’s algorithm
[5] outperform the proposed method.

s 64 96 192 288 480
Eour 1008 900-929 660-669 527 346
EGS1 962 804 479 237 14

Example 8. In this example we consider the norm-trace curve corresponding to
q = 3 and r = 3. These are of length n = 35. In the table below s is the value used
in (15) whereas Eour is the error correcting capability of the proposed method
and EGS1 is the error correcting capability of Sudan’s algorithm [10] without
multiplicity. With multiplicity, Guruswami-Sudan’s algorithm [5] outperform the
proposed method.

s 63 70 80 88
Eour 55 51 43 38
EGS1 53 47 39 33

References

1. Andersen, H.E., Geil, O.: Evaluation Codes From Order Domain Theory. Finite
Fields and Their Appl. (2007) doi:10.1016/j.ffa.2006.12.004

2. Augot, D., Stepanov, M.: Decoding Reed-Muller Codes with the Guruswami-
Sudan’s Algorithm. In: Slides of Talk Given by D. Augot at Workshop D1 Spe-
cial Semester on Gröbner Bases and Related Methods, RICAM, Linz (2006),
http://www.ricam.oeaw.ac.at/specsem/srs/groeb/download/Augot.pdf

3. Geil, O., Pellikaan, R.: On the Structure of Order Domains. Finite Fields and Their
Appl. 8, 369–396 (2002)

4. Geil, O.: On Codes From Norm-Trace Curves. Finite Fields and Their Appl. 9,
351–371 (2003)

5. Guruswami, V., Sudan, M.: Improved Decoding of Reed-Solomon and Algebraic-
Geometry Codes. IEEE Trans. Inform. Theory 45(4), 1757–1767 (1999)

6. Høholdt, T., van Lint, J., Pellikaan, R.: Algebraic Geometry Codes. In: Pless,
V.S., Huffman, W.C. (eds.) Handbook of Coding Theory, pp. 871–961. Elsevier,
Amsterdam (1998)

7. O’Sullivan, M.E.: New Codes for the Berlekamp-Massey-Sakata Algorithm. Finite
Fields and Their Appl. 7, 293–317 (2001)

8. Pellikaan, R., Wu, X.-W.: List Decoding of q-ary Reed-Muller Codes. IEEE Trans.
Inform. Theory 50, 679–682 (2004)

9. Shokrollahi, M.A., Wasserman, H.: List Decoding of Algebraic-Geometric Codes.
IEEE Trans. Inform. Theory 45(2), 432–437 (1999)

10. Sudan, M.: Decoding of Reed Solomon Codes Beyond the Error Correction Bound.
J. Complexity 13, 180–193 (1997)

11. Wu, X.-W.: An Algorithm for Finding the Roots of the Polynomials Over Order
Domains. In: 2002 IEEE International Symposium on Information Theory, p. 202.
IEEE Press, New York (2002)

http://www.ricam.oeaw.ac.at/specsem/srs/groeb/download/Augot.pdf

	Generalized Sudan’s List Decoding for Order Domain Codes
	Introduction
	Decoding of Order Domain Codes
	Generalized Reed-Muller Codes
	One-Point Geometric Goppa Codes

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

