Skip to main content

Stop Wasting Time: On Predicting the Success or Failure of Learning for Industrial Applications

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 4881))

Abstract

The successful application of machine learning techniques to industrial problems places various demands on the collaborators. The system designers must possess appropriate analytical skills and technical expertise, and the management of the industrial or commercial partner must be sufficiently convinced of the potential benefits that they are prepared to invest in money and equipment. Vitally, the collaboration also requires a significant investment in time from the end-users in order to provide training data from which the system can (hopefully) learn. This poses a problem if the developed Machine Learning system is not sufficiently accurate, as the users and management may view their input as wasted effort, and lose faith with the process. In this paper we investigate techniques for making early predictions of the error rate achievable after further interactions. In particular we show how decomposing the error in different components can lead to useful predictors of achievable accuracy, but that this is dependent on the choice of an appropriate sampling methodology.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohavi, R., Wolpert, D.H.: Bias Plus Variance Decomposition for Zero-One Loss Functions. In: Proceedings of the 13th International Conference on Machine Learning (1996)

    Google Scholar 

  2. Brian, D., Webb, G.I.: On the effect of data set size on bias and variance in classification learning. In: Proceedings of the 4th Australian Knowledge Acquisition Workshop, pp. 117–128 (1999)

    Google Scholar 

  3. Geman, S., Bienenstock, E., Doursat, R.: Neural Networks and the bias/variance dilemma. Neural Computation 4, 1–48 (1995)

    Article  Google Scholar 

  4. Rodriguez, J.J., Alonso, C.J., Prieto, O.J.: Bias and Variance of Rotation-based Ensembles. In: Cabestany, J., Prieto, A.G., Sandoval, F. (eds.) IWANN 2005. LNCS, vol. 3512, pp. 779–786. Springer, Heidelberg (2005)

    Google Scholar 

  5. Breiman, L.: Bias, variance, and arcing classifiers, Technical report 460, Statistics Department, University of California, Berkeley, CA

    Google Scholar 

  6. Domingos, P.: A unified bias-variance decomposition and its application. In: Proceedings of the 17th International Conference on Machine Learning, Stanford University, USA, pp. 231–238 (2000)

    Google Scholar 

  7. Friedman, J.H.: On bias, variance, 0/1-loss, and the curse of dimensionality. Data Mining and Knowledge Discovery 1(1), 55–77 (2000)

    Article  Google Scholar 

  8. James, G.: Variance and bias for general loss functions. Machine Learning 51(2), 115–135 (2003)

    Article  MATH  Google Scholar 

  9. Kong, B.E., Dietterich, T.G.: Error-correcting output coding corrects bias and variance. In: Proceedings of the 12th International Conference on Machine Learning, pp. 313–321. Morgan Kaufmann, San Francisco (1995)

    Google Scholar 

  10. Webb, G.I.: Multiboosting: A technique for combining boosting and wagging. Machine Learning 40(2), 159–196 (2000)

    Article  Google Scholar 

  11. Webb, G.I., Conilione, P.: Estimating bias and variance from data (2003) (Under Review), http://www.csse.monash.edu.au/~webb/Files/WebbConilione03.pdf

  12. Putten, P.I.D., Someren, M.V.: A Bias-Variance Analysis of a Real World Learning Problem: The CoIL Challenge 2000. Machine Learning 57, 177–195 (2004)

    Article  MATH  Google Scholar 

  13. Duda, R O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley Interscience, New York (2000)

    Google Scholar 

  14. Quinlan, J.R.: C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers Inc, San Francisco (1993)

    Google Scholar 

  15. Jain, A.K., Duin, R.P.W., Mao, J.: Statistical Pattern Recognition: A Review. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(1), 4–37 (2000)

    Article  Google Scholar 

  16. Cover, T.M., Hart, P.E.: Nearest Neighbor Pattern Classification. IEEE Transactions on Information Theory 13(1), 21–27 (1967)

    Article  MATH  Google Scholar 

  17. Witten, I.H., Frank, E.: Data Mining: Practical machine learning tools and techniques, 2nd edn. Morgan Kaufmann, San Francisco (2005)

    MATH  Google Scholar 

  18. Breiman, L.: Bagging predictors. Machine Learning 24(2), 123–140 (1996)

    MATH  MathSciNet  Google Scholar 

  19. Freund, Y., Schapire, R.E.: Experiments with a new boosting algorithm. In: Proceedings of International Conference on Machine Learning, pp. 148–156 (1996)

    Google Scholar 

  20. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)

    Article  MATH  Google Scholar 

  21. Kohavi, R.: The Power of Decision Tables. In: Proceedings of the 8th European Conference on Machine Learning (1995)

    Google Scholar 

  22. Platt, J.: Fast Training of Support Vector Machines using Sequential Minimal Optimization. In: Schoelkopf, B., Burges, C., Smola, A. (eds.) Advances in Kernel Methods - Support Vector Learning, MIT Press, Cambridge (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Hujun Yin Peter Tino Emilio Corchado Will Byrne Xin Yao

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Smith, J.E., Tahir, M.A. (2007). Stop Wasting Time: On Predicting the Success or Failure of Learning for Industrial Applications. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds) Intelligent Data Engineering and Automated Learning - IDEAL 2007. IDEAL 2007. Lecture Notes in Computer Science, vol 4881. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77226-2_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77226-2_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77225-5

  • Online ISBN: 978-3-540-77226-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics