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Abstract. Microarray experiments help researches to construct the str-
ucture of gene regulatory networks, i.e., networks representing relation-
ships among different genes. Filter and knowledge extraction processes
are necessary in order to handle the huge amount of data produced
by microarray technologies. We propose regression trees techniques as
a method to identify gene networks. Regression trees are a very use-
ful technique to estimate the numerical values for the target outputs.
They are very often more precise than linear regression models because
they can adjust different linear regressions to separate areas of the search
space. In our approach, we generate a single regression tree for each genes
from a set of genes, taking as input the remaining genes, to finally build
a graph from all the relationships among output and input genes. In this
paper, we will simplify the approach by setting an only seed, the gene
ARN1, and building the graph around it. The final model might gives
some clues to understand the dynamics, the regulation or the topology
of the gene network from one (or several) seeds, since it gathers rele-
vant genes with accurate connections. The performance of our approach
is experimentally tested on the yeast Saccharomyces cerevisiae dataset
(Rosetta compendium).

1 Introduction

In a microarray experiment the mRNA expression level of several thousands of 
genes is measured systematically, and this allows researchers to analyze data by 
using statistics or data mining techniques. Lately, a new approach for the inter-
pretation of high–throughput gene expression has been proposed, gene networks 
which is based on the study of network topologies and it addresses a variety 
of biological systems, metabolic networks, networks of proteins, protein inter-
actions, etc. A gene network is a direct graph, in which each node represents 
a gene and the relationship among different genes is represented by the edges. 
Several methods have been proposed to model such gene network that can be 
derived from gene expression data. These methods identify genes with similar 
expression in different situations and cluster them according to this similarity



[1]. One of the differences between such models is whether they are determinis-
tic or probabilistic. Amongst deterministic models, we consider: discrete boolean
network [2], differential equations [3] as continuous method and petri nets [4] as
hybrid method. The first is more computationally tractable and less accurate
than continuous methods. The hybrid method can model systems with contin-
uous flows and the discrete part models the logic functioning. Amongst prob-
abilistic models, we consider: probabilistic boolean networks [5]; co-expression
graphs [6], which are easy to interpret but they cannot distinguish direct from
indirect dependencies between genes; conditional independence models as sparse
Gaussian Graphic Models [7] and mutual information [8], these methods cannot
estimate relationships if the number of variables is large compared to the number
of samples; and finally bayesian networks [9].

In regression domains, Quinlan presented the system M5 [10]. It builds mul-
tivariate trees using linear models at the leaves. In the pruning phase for each
leaf a linear model is built. Recently Witten and Frank have presented M5’ in
[11], a rational reconstruction of Quinlan’s M5 algorithm. M5’ first constructs a
regression tree by recursively splitting the instance space using tests on single
attributes that maximally reduce variance in the target variable. After the tree
has been grown, a linear multiple regression model is built for every inner node,
using the data associated with that node and all the attributes that participate
in tests in the subtree rooted at that node. Then the linear regression models
are simplified by dropping attributes, if this results in a lower expected error
on future data (more specifically, if the decrease in the number of parameters
outweighs the increase in the observed training error). After this has been done,
every subtree is considered for pruning. Pruning occurs if the estimated error for
the linear model at the root of a subtree is smaller or equal to the expected error
for the subtree. After pruning terminates, M5’ applies a smoothing process that
combines the model at a leaf with the models on the path to the root to form
the final model that is placed at the leaf. Also Karalic studied the influence of
using linear regression in the leaves of a regression tree [12]. As in the work of
Quinlan, Karalic shows that it leads to smaller models with increase of perfor-
mance. Torgo has presented an experimental study about functional models for
regression tree leaves [13]. Later, the same author [14] presented the system Re-
gression Tree (RT). RT is a system which is able to use several functional models
at the leaves, including partial linear models. RT builds and prunes a regular
univariate tree. Then at each leaf a linear model is built using the examples
that fall at this leaf. In the regression setting few works consider multi–variable
splits. One of them has been presented by Li et al. in [15], where decision nodes
contain linear regressions and data is split according to the sign of the residuals.

Using regression trees has the goal of showing that functional relationships
can be found in the genetic network obtained from those trees. We propose to
take each gene as output for the regression tree and the remaining genes as
input. The output gene and its input genes define a gene–gene interaction, i.e.,
an edge in the graph. Therefore, the topology of the gene network is based on
the accuracy of linear regressions.



The paper is organized as follows: Section 2 presents other approaches that
use regression techniques to infer gene networks; Section 3 presents the approach
based on regression trees; the experiments are discussed in Section 4; finally, the
most interesting conclusions are summarized in Section 5.

2 Related Work

There is a wide range of approaches available to build gene network up. Several
of this methods are mentioned before. The novelty of this work is using regression
technique to infer gene–gene relationship. As mentioned above, our approach is
based on the accuracy of linear regressions and we use parallel regressions of
each gene onto the other genes by trees. This involves splitting the instances
space and we use regression trees. Therefore our approach can be classified as a
deterministic model.

The most significant approaches using bayesian network are [16,17]. The lat-
ter involves learning a probabilistic model from partially observed data by using
SEM (Stochastic Expectation and Maximization) algorithm. First, the algorithm
is initialized by using a standard expression clustering technique to choose assign-
ments of genes to process. Second, successive iterations of the algorithm are run
to learn the graph topology and the parameters of each conditional probability
distribution. Learning graph topologies is much harder than learning parameters
and [16] uses regression trees to learn those graph topologies, i.e. they use this
techniques for each biological process (represented by a subset of genes from the
microarray) that maximizes bayesian score. However, unlike Battle, we use the
regression trees to study the relationship between genes and learning gene–gene
interactions from the whole microarray data.

3 Approach

The goal of our approach is to discover distinct expression patterns in which
a set of genes is associated to each gene. The groups of ORFs are obtained
from their prediction ability by means of regressions. We use regression trees
because these representations work like several linear regressions at the same
time, each of them identified by a leaf of the tree. The main advantage of this
methodology is that each regression is specialized in a specific area of the search
space, and hence the regression tree is generally more accurate than a global
linear regression.

3.1 Building Regression Trees

A decision tree induction algorithm builds an initial tree without pruning. We
use in this algorithm smoothed predictions to compensate sharp discontinuities
that will inevitably appear between adjacent linear models. This is an usual
problem for models constructed from a small number of training instances.



We use as splitting criterion of the search space the attribute of the data
set that maximizes the expected error reduction. This error is called SDR for
Standard Deviation Reduction and is calculated by:

SDR = sd(T ) −
∑

i

|Ti|
|T | × sd(Ti)

where T1, T2,. . .,Tk are the sets that result from splitting the node according to
the chosen attribute, and sd is the standard deviation.

The BMT (Build a Model Tree) and SP (SPlit node in branchs) algorithms
(see Algorithms 1 and 2, respectively) present the pseudo–code for the regression
tree algorithm explained above. Inputs of the BMT algorithm are a gene and a
matrix that represents the microarray experiments. The output is a regression
tree that represents the input.

3.2 Building the Gene Network

Next, we build a gene network from the regression trees, i.e., from a repre-
sentation of each gene expression. The idea behind our approach is to build
a regression tree for each input gene from the dataset. Every regression tree
has internal genes, which divide the search space, and regression genes, which
are involved in the linear regressions. They are considered as output genes of
the algorithm SP. Internal genes (IG) split the search space according to their
values and regression genes (RG) adjust the linear regressions in the subspace
defined by internal genes. When the algorithm is run, a direct labelled graph
defined from dependencies among output and input genes are provided by our
approach.

A graph is defined as a tuple (G,E) of nodes G and edges E. An edge is an
ordered pair of nodes (gene1, gene2) and we can interpret that the first gene
or node encodes a knows transcription factor that binds to the promoter of the
second gene. We build a forest of trees and we learn the gene network in terms of
input–output dependency of genes between input genes and output genes (i.e. IG
and RG) of each regression tree. So the relationships among output and input
genes define the edges of the graph that represents the topology of the gene
networks.

The algorithm BGN (see Algorithm 3) builds the forest of regression trees
and the gene network step by step. The construction of gene networks from
expression data is a difficult and problematic task due to the huge amount of

Algorithm 1. BMT - Build a model tree
INPUT matrix : a set of instances in a data set (gene expression data)
OUTPUT RT : Regression Tree
begin

SD ← Calculate the standard deviation of the class values of matrix
RT ← SP(matrix,SD)

end



Algorithm 2. SP - Split node in branchs
INPUT matrix, SD : gene expression data and standard deviation of the class values

of a set of instances
OUTPUT RT : Regression Tree
begin

sd ← standard deviation of the class values of matrix
if sd < 0.05 × SD then

type of node ← LEAF
else if sd > 0.05 × SD then

type of node ← INTERMEDIATE
for all genes do

for all possible split positions of the gene do
Calculate the attribute’s SDR

end for
end for
gene ← attribute with maximum SDR
matrixl ← conditions from the matrix to the left of the gene’s split
matrixr ← conditions from the matrix to the right of the gene’s split
gene.left ← SP(matrixl, SD)
gene.right ← SP(matrixr, SD)

end if
end

data, thousand of genes [18] and [19]. This implies deciding which genes must
be included in the learning process. As an example, Peér et al. work with 565
initial genes and excludes the remaining 5751 in the yeast study.

Peña et al. [20] construct a gene network from seed genes. In this paper, we
adopt the same idea, because of its simplicity, although we have increased the
gene network by means of an iterative process. The algorithm BGN starts with
a set S of genes, which at the beginning has only one seed. For this seed–gene,
we build the regression tree and the output genes (from the regression tree) are
added to the set S of genes. The genes recently added are then used as output to
enlarge the levels of the graph. This is an iterative process, in which the number
of iterations is calculated by experimentation.

To measure how frequent is used a local regression by experimental conditions,
the support of a leaf is taken into account: Support = LM∗100

N where N is the
number of instances in the data set and LM is the number of conditions that
are classified in the specific area of the search space covered by the regression.
The estimate error is defined as follows:

error =
100 × MSE

global absolute deviation

where MSE is the mean squared error defined by:

MSE =
(p1 − a1)2 + ... + (pn − an)2

n



Algorithm 3. BGN - Build Gene Network
INPUT matrix : gene expression data
OUTPUT GR, GN: Gene rank and Gene Network
begin

GR ← ∅
GN ← ∅
SeedGenes ← {ARN1}
for all attribute–gene from SeedGenes do

RT ← BMT(matrix, attribute–gene) //build a regression tree
GR ← update the rank of genes GR from RT
GN ← update the gene network GN from RT
SeedGenes ← ∅
SeedGenes ← update the SeedGenes from RT

end for
end

with p1, p2,. . .,pn being the predicted values on the test instances, a1, a2,. . .,an

being the real values and n is the number of attributes.
Among all the trees in the forest, we consider those whose relative error is

lower than a threshold value. In a regression tree generated for an output gene,
we only consider the branches of the tree whose support is greater than a thresh-
old value, i.e., linear regressions with small number of conditions met are not
accepted. In addition, we consider the genes that appear as input in a linear
regression if its estimated error is smaller than a threshold value. Then the edge
defined by the output and input genes is added to the graph. Otherwise, the gene
is not considered in the graph, and hence it is not in the gene network either.

4 Experiments

We use the Rossetta compendium to evaluate the results obtained and to analyze
if a gene network is biologically coherent. The Rosetta compendium consists
of 300 full–genome expression profiles of the yeast Saccharomyces cerevisiae.
Therefore, we work with a dataset with 300 examples and 6316 genes.

We use the iron homeostasis pathway in yeast (which regulate the uptake,
storage, and utilization of iron so as to keep it at a non–toxic level) to evaluate
the accuracy of our model. The most important genes in this process are: FRE1,
FRE2, FTR1 and FET3, which control the reductive mechanism; ARN1, ARN2,
ARN3 and ARN4, which control the non reductive mechanism and, finally, FIT1,
FIT2 y FTI3 which are connected in the iron transport. Relevant set of genes
have been taken from [21]. This set of genes has been used to measure the
accuracy of bayesian gene networks in previous projects, as in [22], [23] and [20].
Specifically, those papers show models of the iron homeostasis pathway from the
Rossetta compendium and are centered on ARN1 gene. Therefore, we study our
approach starting at ARN1 gene in the first iteration.



Fig. 1. An example of gene network generated using a seed gene (ARN1) and only
one iteration for the algorithm. We weight the edges of the network. The weight is
calculated by: weight = 1

error×frequency
where error is the relative absolute error and

frequency is the number of times that a gene is in the regression tree.

Fig. 2. Gene network for the iron homeostasis process, starting with the gene ARN1
and allowing up to 12% of the instances, i.e. each leaf of the regression trees have to
cover al least 12% of the total number of instances in the dataset

The algorithm starts using as a seed the gene ARN1 (ORF YHL040C). In
order to control the accuracy of each leaf, each of them has to cover at least 33%
of the total number of instances in the dataset. In the first iteration (distance 1
from the seed gene), the algorithm finds the gene FIT3 (ORF YOR383C) (see
Figure 1) whereas the next gene is found in the fourth iteration. If the constraint
is relaxed (allowing up to 12% of the instances), the algorithm finds in the first



iteration two genes related to the iron homeostasis: FIT3 (ORF YOR383C) and
ARN2 (ORF YHL047C). The gene network is depicted in Figure 2.

In the experiment above we run the algorithm from a seed gene and a gene
network is built step by step from that seed gene. This is an iterative method
where the number of iterations must be calculated by experimentation. Now,
we study the results of the algorithm studying the whole regression trees gener-
ated for each gene. Evaluating the results is a difficult task because of the huge
network generated taking into account all the genes of the dataset. Therefore
the structure of the network is analyzed considering, in the task of build the
network, only those regression trees whose relative absolute error is lower than a
threshold value together with the branches of the trees whose support is greater
than a threshold value. These two thresholds are studied by experimentation as
we can see in Figure 3. The top-left figure shows the size of the network as a
function of the relative absolute error. Each line is obtained by setting the value
of the other threshold as 0%, 25%, 50%, 75% and 100%. We can observe that the
size of the network increases slowly for an absolute relative error higher than 60.
The top-right figure shows the size of the network as a function of the support.
Each line is obtained by setting the value of the error as 0%, 25%, 50%, 75%
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Fig. 3. The top figures show the size of the networks as a function of the relative ab-
solute error and support and the bottom figures show the distribution of node linkages



and 100%. In the bottom-left and bottom-right figures, we depict the distribu-
tion of node linkages. The bottom-right figure is another representation of the
bottom-left one, in which we can better appreciate that it follows a power law in
that most nodes have just a few connections and only a few have a huge number
of links.

5 Conclusions

In this work we present a method to build gene networks from regression trees.
The approach has several advantages: first, the gene network is based on the
accuracy and support of the regression trees, which leads to solutions driven by
the user; second, the gene–gene interactions are based on the local regressions,
much more accurate than global regressions; third, many possible relationships
are initially pruned if they do not fit the thresholds; and fourth, the depth and
size of the graph is controlled by the number of iterations or the number of the
studied genes, so some relationships among genes are discovered indirectly, as
they might not be directly related.

The approach has an accurate performance, although we are working on de-
signing better pruning techniques, focused on selecting only relevant genes from
the regression trees to be further included in the gene network. Secondly, we
are working on preparing an experimental study in which the performance of
our approach is compared with other methods. And finally, we are working on
determining the number of iterations and the threshold values of our approach.

Results presented in this paper, using only one gene as a seed to build the
gene network are very promising, as the gene network involves genes that might
have interesting biological properties for the process in study.
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