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Abstract. Research has shown that speaker verification based on high-
level speaker features requires long enrollment utterances to be reliable.
However, in practical speaker verification, it is common to model speakers
based a limited amount of enrollment data. To minimize the undesirable
effect of insufficient enrollment data on system performance, this paper
proposes a new adaptation method for creating speaker models based on
high-level features. Different from conventional methods, the proposed
adaptation method not only adapts the phoneme-dependent background
model but also the phoneme-independent speaker model. The amount of
adaptation in the latter is adjusted by a proportional factor derived from
the phoneme-independent background models. The proposed method
was compared with traditional MAP adaptation under the NIST2000
SRE framework. Experimental results show that the proposed method
can solve the data-spareness problem effectively and achieves a better
performance when compare with traditional MAP adaptation.

1 Introduction
Text-independent speaker verification systems typically extract speaker-dependent
features from short-term spectra of speech signals to build speaker-dependent
Gaussian mixture models (GMMs) [1]. To increase the ability to discriminate be-
tween client (target) speakers and impostors, a GMM-based background model
is used to represent the characteristics of impostors. The background model
can be trained using the speech of non-target background speakers from large
speech corpora. Therefore, finding enough speech to train the background model
is usually not too difficult. However, obtaining a large number of client utter-
ances is difficult and impractical because most clients are not willing to spend a
long time for enrollment. To address this problem, various adaptation methods,
such as maximum a posteriori (MAP) [1], maximum-likelihood linear regres-
sion (MLLR) [2], kernel eigen-space MLLR (KEMLLR) [3], and adaptation of
phoneme-independent speaker models [4] have been proposed for creating low-
level acoustic speaker models from a small amount of client data. It has been
shown that KEMLLR outperforms other adaptation methods when the amount
of enrollment data is very limited and that when a large amount of enrollment
data is available, MAP is a better candidate for creating speaker models [5].
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Recently, to improve the robustness of speaker verification systems, researchers
have started to investigate the possibility of using long-term, high-level features
to characterize speakers [6]. One problem of using high-level features is that
it requires a large amount of speech data for creating reliable speaker models.
Although Leung et al. [7] have shown in their articulatory feature-based pro-
nunciation model (AFCPM) that this problem can be tackled by classical MAP
adaptation, the client models that they created are essentially a linear weighted
sum of enrollment data’s distribution and background models. It was found that
the modeling capability of the AFCPMs drops rapidly when the amount of en-
rollment data decreases [8].

To alleviate this problem, we propose to adapt not only the phoneme-dependent
background models but also the phoneme-independent speaker models to create
client speaker models. A scaling factor, which is derived from the ratio between
the phoneme-dependent background model and the phoneme-independent back-
ground model, will also be used to adjust the phoneme-independent speaker mod-
els during adaptation. The results show that the proposed adaptation method,
which uses as much information as possible from the training data, significantly
outperforms the classical MAP adaptation method.

2 Phoneme-dependent AFCPM

Articulatory features (AFs) are representations describing the movements or
positions of different articulators during speech production. In Leung et al. [7],
manner and place of articulation were used for pronunciation modeling. The
manner property has 6 classes, M ={Silence, Vowel, Stop, Fricative, Nasal,
Approximant-Lateral}, and the place property has 10 classes, P ={Silence, High,
Middle, Low, Labial, Dental, Coronal, Palatal, Velar, Glottal}. The AFs were
automatically determined from speech signals using AF-based multilayer per-
ceptrons (MLPs). See [7] for detail description of AFCPM approach.

In phoneme-dependent AFCPM, N phoneme-dependent universal background
models (UBMs) are trained from the AF and phoneme streams of a large number
of speakers to represent the speaker independent pronunciation characteristics.
Each UBM comprises the joint probabilities of the manner and place classes
conditioned on a phoneme. The training procedure begins with aligning two AF
streams (lMt and lPt ) obtained from the AF-MLPs and a phoneme sequence qt

obtained from a null-grammar recognizer. The joint probabilities corresponding
to a particular phoneme q is given by

Pb(m, p|q) = Pb(LM = m,LP = p|Phoneme = q, Background)

=
#((m, p, q) in the data of all background speakers)
#((∗, ∗, q) in the data of all background speakers)

,
(1)

where m ∈M, p ∈ P, (m, p, q) denotes the condition for which LM = m,LP = p,
and Phoneme = q, ∗ represents all possible members in that class, and #()
represents the total number of frames with phoneme labels and AF labels fulfill
the description inside the parentheses. The unadapted speaker models Ps(m, p|q)
are created in the same way:
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Fig. 1: Data-set utilization in different adaptation methods. Methods A and B
only use part of available models. Methods C and D fully utilize all of the
possible models that can be obtained from training data. ‘*’ means that the
corresponding model is phoneme-independent.

Ps(m, p|q) = Ps(LM = m,LP = p|Phoneme = q, speaker = s)

=
#((m, p, q) in the enrollment utterrence of speaker s)
#((∗, ∗, q) in the enrollment utterrence of speaker s)

.
(2)

We can see for each phoneme, a total of 60 probabilities can be obtained. These
probabilities are the products of 6 manner classes and 10 place classes.

3 Adaptation Methods for AFCPMs

Here, we review the classical MAP adaptation and propose three MAP-based
adaptation methods that use as much information obtainable from training data
as possible (see Fig. 1).

Method A: Adapted from phoneme-dependent background models (classical MAP
used in [7]).

Method B: Adapted from phoneme-independent speaker models.
Method C: Adapted from phoneme-independent speaker models with a phoneme-

dependent scaling factor.
Method D: Adapted from phoneme-dependent background models and phoneme-

independent speaker models with a phoneme-dependent scaling fac-
tor.

Method A: In [7], MAP adaptation is applied as follows:

P̂s(m, p|q) = βq
sPs(m, p|q) + (1− βq

s )Pb(m, p|q) (3)

where, βq
s ∈ [0, 1] is a phoneme-dependent adaptation coefficient controlling the

contribution of the enrollment data and the background models (Eq. 1) on the
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Fig. 2: Method A. Relationship (based on real data) between the background,
unadapted, and adapted AFCPMs in classical MAP (q1=/jh/, q2=/uw/). The
linear combination in Eq. 3 suggests that the adapted model will lie along the
straight line passing through the unadapted model and the background model.

MAP-adapted model. It is obtained by

βq
s =

#((∗, ∗, q) in the enrollment utterances of speaker s)
#((∗, ∗, q) in the enrollment utterances of speaker s) + r

(4)

where r is a fixed relevance factor common to all phonetic classes and speak-
ers. The relationship between the adapted, unadapted and background models
is illustrated in Fig. 2. When enrollment data is sufficient, MAP adaptation
can create client models that capture the phoneme-dependent characteristics of
speakers. However, when the amount of enrollment data is limited, this speaker-
model creation method may have three fundamental problems:

Problem 1: The method will make the client models of the same phoneme too
close to the background model of the corresponding phoneme, even
though the clients may have very different pronunciation character-
istics. This will cause the client models fail to discriminate the true
speakers from the imposters.

Problem 2: The method does not fully utilize the information available in the
training data.

Problem 3: The method imposes too much constraint on the adaptation.

Problem 1 is exemplified in Fig. 3, where the adapted models of two speakers
are very similar because they are very close to the background model. Com-
parison between Figs. 3(d) and 3(e) reveals that the model of speaker 1018 are
very similar to that of speaker 1042. This will make the speaker models fail
to discriminate the true speakers from impostors. For Problem 2, the method
only uses two out of four possible models for adaptation. Fig. 1 shows the pos-
sible models from which the target models can be adapted. Method A uses
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Fig. 3: Phoneme-dependent AFCPMs correspond to phoneme /ch/ of (a) speaker
1018 from NIST00, (b) background speakers from NIST99, and (c) speaker 1042
from NIST00. (d) and (e): Phoneme-dependent speaker models of the two speak-
ers adapted from (b) using the traditional MAP adaptation (see Method A in
section 3). d and r represent the Euclidean distance and the correlation coef-
ficient between the models pointed to by arrows. The 60 discrete probabilities
corresponding to the combinations of the 6 manner and 10 place classes are non-
linearly quantized to 256 gray levels using log-scale, where white represents 0
and black represents 1.

the phoneme-dependent models only and ignores the fact that the phoneme-
independent models (Pb(m, p|∗) and Ps(m, p|∗)) can also be used to create target
speaker models. For Problem 3, the method uses all of the background speak-
ers’ data to train phoneme-dependent background models from which phoneme-
dependent target speaker models are created by MAP adaptation. Creating a
phoneme-dependent speaker model from the corresponding phoneme-dependent
background model means that the resulting speaker model is constrained by the
articulatory properties of a single phoneme. In other words, the method does
not allow cross-phoneme adaptation. Note that the classical MAP adaptation for
acoustic GMMs does not have such a hard constraint. Instead, a soft constraint
is implicitly imposed by the posterior probabilities of the mixture components.

Method B: Instead of adapting from the phoneme-dependent UBM, we can cre-
ate the speaker model P̂s(m, p|q) by adapting the speaker-dependent, phoneme-
independent speaker model Ps(m, p|∗), i.e.,

P̂s(m, p|q) = βq
sPs(m, p|q) + (1− βq

s )Ps(m, p|∗). (5)

While this method can help solve Problems 1 and 3 mentioned in Method A,
it does have its own problem. The problem is that for a particular client, all
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Fig. 4: Method B. Relationship between the phoneme-independent speaker
model, unadapted speaker models, and adapted speaker models for speakers
1018 and 1042 (q1=/jh/, q2=/uw/).

of his/her phoneme-dependent models are adapted from the same phoneme-
independent model, causing loss of phoneme-dependence in the client model. In
fact, the method uses enrollment data only, as illustrated in Fig. 1. This loss of
phoneme-dependence, however, violates the requirement of the scoring procedure
(see Section 4) where the speaker and background models are assumed to be
phoneme-dependent. Fortunately, the phoneme-dependence in the client models
can be easily retained by introducing a phoneme-dependent scaling factor in the
adaption equation. This is to be discussed next.

Method C: In this method, a phoneme-dependent scaling factor is added to
the adaptation formula in Eq. 5:

P̂s(m, p|q) = βq
sPs(m, p|q) + (1− βq

s ) ·
[
Pb(m, p|q)
Pb(m, p|∗) · Ps(m, p|∗)

]
(6)

where Pb(m, p|∗) represents the phoneme-independent background model and
Pb(m,p|q)
Pb(m,p|∗) is the scaling factor. With this factor, the model to be adapted be-

comes Pb(m,p|q)
Pb(m,p|∗)Ps(m, p|∗). Therefore, the resulting target model P̂s(m, p|q) is

now adapted from a model with certain degree of phoneme-dependence instead
of adapting from a purely phoneme-independent model (Ps(m, p|∗)).

Note that Pb(m,p|q)
Pb(m,p|∗)Ps(m, p|∗) in Eq. 6 can also be written as Ps(m,p|∗)

Pb(m,p|∗)Pb(m, p|q).
In that case, we can interpret Ps(m,p|∗)

Pb(m,p|∗) as a phoneme-independent scaling fac-
tor for the classical MAP adaptation in Eq. 3. This factor can help alleviates
Problems 2 and 3 in classical MAP mentioned earlier, because it implicitly in-
corporates the speaker-dependent articulatory properties of other phonemes into
the adaptation equation.
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Fig. 5: Method C. Relationship be-
tween the phoneme-independent
speaker model, unadapted speaker
models, and adapted speaker models
for speaker 1018 (q1=/jh/, q2=/uw/).

Fig. 6: Method D. Relationship between
the phoneme-independent speaker
model, unadapted speaker models, and
adapted speaker models for speaker
1018. (q1=/jh/, q2=/uw/ and the
marker ‘H’ represents the term inside
the square brackets in Eq. 7.)

Method D: It becomes clear that Method A is likely to impose too much con-
straint on the adaptation. Method B aims to relax such constraint by introducing
a phoneme-independent model in its adaptation equation. However, the relax-
ation may be too far so that the phoneme-dependent scaling factor in Method
C is necessary to limit the loss of phoneme-dependence. Nevertheless, the tar-
get models created by Method C depend implicitly on the phoneme-dependent
background models Pb(m, p|q) through the scaling factor. To strengthen the de-
pendence of these background models while allowing certain degree of phoneme-
independence, we may combine Methods A and C. We refer to the resulting
adaptation as Method D whose adaptation equation is written as:

P̂s(m, p|q) = βq
sPs(m, p|q)+(1−βq

s )
[
αq

bPb(m, p|q) + (1− αq
b)

Pb(m, p|q)
Pb(m, p|∗)Ps(m, p|∗)

]

(7)

where, αq
b ∈ [0, 1] is a phoneme-dependent adaptation coefficient. It is obtained

by

αq
b =

#((∗, ∗, q) in the utterances of all background speakers)
#((∗, ∗, q) in the utterances of all background speakers) + rα

(8)

where rα is also a fixed relevance factor.
Fig. 6 illustrates the relationship between different models in Method C, and

Fig. 7 explains why this method is better than Method A via an illustrative
example.

Comparing Figs. 3 and 7 reveals that the Euclidean distance and dissimi-
larity between the AFCPM models of speakers 1018 and 1042 become larger
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Fig. 7: Phoneme-dependent AFCPMs ((g) and (h)) of speakers 1018 and 1042
created by Method D. (a) and (c): Unadapted speaker models. (b) Phoneme-
dependent background model. (d) and (f): Phoneme-independent speaker mod-
els. (e) Phoneme-independent background model. d and r represent the Eu-
clidean distance and the correlation coefficient between the adapted models
pointed to by arrows.

(the distance increases from 4.39 to 14.17 and the correlation coefficient reduces
from 0.9966 to 0.8013). Therefore Method D makes the speaker models easier to
discriminate speakers.

4 Scoring

We follow the scoring method in [1]. Specifically, we define the verification score
of a test utterance X = {X1, . . . , Xt, . . . , XT } as:

S(X) =
T∑

t=1

(log p̂s(Xt)− log pb(Xt)) (9)

where the speaker models P̂s(m, p|q) and background models Pb(m, p|q) created
by using different adaptation methods discussed in Section 3 are used to compute
the scores:

bps(Xt) = bPs(l
M
t , lPt |qt) = bPs(L

M = lMt , LP = lPt |Phoneme = qt, Speaker = s) (10)

pb(Xt) = Pb(l
M
t , lPt |qt) = Pb(L

M = lMt , LP = lPt |Phoneme = qt, Background), (11)

In Eqs. 10 and 11, qt is the phoneme of frame t in the test utterance recognized
by a null gram phoneme recognizer, and lMt and lPt are the AF labels determined
by the AF-MLPs [7].



5 Experiments and Results

5.1 Procedures

NIST99, NIST00, SPIDRE [9], and HTIMIT [10] were used in the experiments.
NIST99 was used for creating the background models, and the female part
of NIST00 was used for creating speaker models and for performance evalua-
tion. HTIMIT and SPIDRE were used for training the AF-MLPs and the null-
grammar phone recognizer, respectively.

The phone recognizer uses standard 39-D vectors comprising MFCCs, en-
ergy, and their derivatives. The training part of NIST99 was used for creating
phoneme-dependent AF-based UBMs. We followed the evaluation protocol of
NIST00. Specifically, for each female client speaker in NIST00, her phoneme-
dependent speaker models were created using Methods A to D.

5.2 Results and Discussion

Fig. 8 shows the relationship between the phoneme-dependent background and
adapted models (corresponding to 46 phonemes) of two speakers for Methods A
and D. Apparently, Problem 1 in Method A (left figure) mentioned in Section 3
does not appear in Method D (right figure).

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

 

 
Phoneme−Dependent Background Model
Adapted Speaker Model of 1018
Adapted Speaker Model of 1042

Method A

−0.4 −0.3 −0.2 −0.1 0 0.1 0.2

−0.2

−0.1

0

0.1

0.2

0.3

First Principal Component

S
ec

on
d 

P
rin

ci
pa

l C
om

po
ne

nt

 

 
Phoneme−Dependent Background Model
Phoneme−Independent Background Model
Adapted Speaker Model of 1018
Phoneme−Independent Speaker Model of 1018
Adapted Speaker Model of 1042
Phoneme−Independent Speaker Model of 1042

Method D

Fig. 8: The distribution of all adapted phoneme-dependent speaker models
and phoneme-dependent background models in principal component space for
speaker 1018 and 1042 based on Method A (left) and Method D (right).

Table 1 shows the equal error rate (EER) and p-values [11] (with respect to
Method A) achieved by different adaptation methods. It shows that Methods C
and D achieve a lower error rate as compare to the classical MAP adaption. This
confirms our earlier argument that better speaker models can be obtained by
adapting the phoneme-independent models in addition to the phoneme-dependent
models.The DET plots corresponding to Table 1 are shown in Fig. 9. Evidently,
Method D achieves the best performance across a wide range of decision thresh-
old. It was found that the proposed adaptation approaches can effectively solve
the data sparseness problem, resulting in a significantly lower error rate. Ap-
parently, Problem 2 and 3 in Method A have also been overcome by method D.
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Method A
EER=26.34%, DCF=0.2592
Method B 
EER=26.81%, DCF=0.2654
Method C
EER=25.68%, DCF=0.2562
Method D
EER=24.88%, DCF=0.2484

Table 1: EERs obtained
by phoneme-dependent
AFCPMs created by MAP-
based adaptation methods
described in Section 3.
The p-values between the
classical MAP and the new
adaptation methods are
listed in the last column.

Adaptation
Method

EER
(%)

p-
values

Method A 26.34 –

Method B 26.81 0.04560

Method C 25.68 0.00008

Method D 24.88 0.00000

Fig. 9: DET performance of AFCPM-based speaker ver-
ification systems using different adaptation methods.
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