Skip to main content

A Hierarchical Concept Oriented Representation for Spatial Cognition in Mobile Robots

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4850))

Abstract

Robots are rapidly evolving from factory work-horses to robot-companions. The future of robots, as our companions, is highly dependent on their abilities to understand, interpret and represent the environment in an efficient and consistent fashion, in a way that is compatible to humans. The work presented here is oriented in this direction. It suggests a hierarchical, concept oriented, probabilistic representation of space for mobile robots. A salient aspect of the proposed approach is that it is holistic - it attempts to create a consistent link from the sensory information the robot acquires to the human-compatible spatial concepts that the robot subsequently forms, while taking into account both uncertainty and incompleteness of perceived information. The approach is aimed at increasing spatial awareness in robots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Brooks, R.A.: Intelligence without representation. Artificial Intelligence 47, 139–159 (1991)

    Article  Google Scholar 

  2. Steels, L.: Intelligence with representation. Philosophical Transactions of the Royal Society A 361(1811), 2381–2395 (2003)

    Article  MathSciNet  Google Scholar 

  3. Thrun, S.: Robotic Mapping: A Survey. In: Exploring Artificial Intelligence in the New Millenium, Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  4. Chatila, R., Laumond, J.P.: Position referencing and consistent world modeling for mobile robots. In: IEEE Int. Conf. on Robotics and Automation (ICRA), IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  5. Arras, K.O.: Feature-Based Robot Navigation in Known and Unknown Environments. PhD thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Thesis number 2765 (2003)

    Google Scholar 

  6. Martinelli, A., Svensson, A., Tomatis, N., Siegwart, R.: SLAM based on quantities invariant of the robot’s configuration. In: IFAC Symposium on Intelligent Autonomous Vehicles (IAV) (2004)

    Google Scholar 

  7. Choset, H., Nagatani, K.: Topological Simultaneous Localization and Mapping (SLAM): Toward Exact Localization Without Explicit Localization. IEEE Transactions on Robotics and Automation 17, 125–137 (2001)

    Article  Google Scholar 

  8. Tapus, A.: Topological SLAM - Simultaneous Localization And Mapping with fingerprints of places. PhD thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Thesis Number 3357 (2005)

    Google Scholar 

  9. Thrun, S.: Learning Metric-Topological Maps for Indoor Mobile Robot Navigation. Artificial Intelligence 99 (1), 21–71 (1998)

    Article  MATH  Google Scholar 

  10. Tomatis, N., Nourbakhsh, I., Siegwart, R.: Hybrid Simultaneous Localization And Map building: A natural integration of Topological and Metric. Robotics and Autonomous Systems 44, 3–14 (2003)

    Article  Google Scholar 

  11. Vasudevan, S., Gächter, S., Siegwart, R.: Cognitive Spatial Representations for Mobile Robots - Perspectives from a user study. In: IEEE Int. Conf. on Robotics and Automation (ICRA) Workshop on Semantic Information in Robotics, Rome, Italy (April 2007)

    Google Scholar 

  12. Martinelli, A., Tapus, A., Arras, K.O., Siegwart, R.: Multi-resolution SLAM for Real World Navigation. In: International Symposium of Robotics Research (ISRR), Siena, Italy (2003)

    Google Scholar 

  13. Kuipers, B.: The Spatial Semantic Hierarchy. Artificial Intelligence 119, 191–233 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Tolman, E.C.: Cognitive Maps in Rats and Men. Psychological Review 55, 189–208 (1948)

    Article  Google Scholar 

  15. Kuipers, B.J.: The cognitive map: Could it have been any other way? In: Spatial Orientation: Theory, Research, and Application, pp. 345–359. Plenum Press, New York (1983)

    Google Scholar 

  16. Yeap, W.K., Jefferies, M.E.: On early cognitive mapping. Spatial Cognition and Computation 2(2), 85–116 (2001)

    Article  Google Scholar 

  17. Keselman, Y., Dickinson, S.J.: Generic Model Abstraction from Examples. In: Sensor Based Intelligent Robots, pp. 1–24 (2000)

    Google Scholar 

  18. Gibson, J.J.: The Ecological Approach To Visual Perception, 1st edn. Lawrence Erlbaum, Mahwah (1986)

    Google Scholar 

  19. Bicici, E., Amant, R.S.: Reasoning about the functionality of tools and physical artifacts. Technical Report TR-2003-22, Department of Computer Science, North Carolina State University (NCSU) (2003)

    Google Scholar 

  20. Stark, L., Bowyer, K.W.: Generic Object Recognition using Form and Function. World Scientific Publishing, Singapore (1996)

    MATH  Google Scholar 

  21. Pechuk, M., Soldea, O., Rivlin, E.: Function-Based Classification from 3D Data via Generic and Symbolic Models. In: Twentieth National Conference on Artificial Intelligence (AAAI), Pittsburgh, Pennsylvania, USA (July 2005)

    Google Scholar 

  22. Aycinena, M.A.: Probabilistic Geometric Grammars for Object Recognition. Master’s thesis, Department of Electrical Engineering and Computer Science (EECS), Massachusetts Institute of Technology (MIT) (September 2005)

    Google Scholar 

  23. Kortenkamp, D., Baker, L.D., Weymouth, T.: Using Gateways to Build a Route Map. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (1992)

    Google Scholar 

  24. Anguelov, D., Koller, D., Parker, E., Thrun, S.: Detecting and modeling doors with mobile robots. In: IEEE International Conference on Robotics and Automation (ICRA), New Orleans, Louisiana, USA (April 2004)

    Google Scholar 

  25. Mozos, Ó.M., Stachniss, C., Burgard, W.: Supervised Learning of Places from Range Data using AdaBoost. In: IEEE International Conference on Robotics & Automation (ICRA), Barcelona, Spain, pp. 1742–1747. IEEE Computer Society Press, Los Alamitos (2005)

    Google Scholar 

  26. Nüchter, A., Surmann, H., Lingemann, K., Hertzberg, J.: Semantic Scene Analysis of Scanned 3D Indoor Environments. In: Vision, Modeling and Visualization (VMV) (2003)

    Google Scholar 

  27. Grau, O.: A Scene Analysis System for the Generation of 3-D Models. In: International Conference on Recent Advances in 3-D Digital Imaging and Modeling, Ottawa, Canada, pp. 221–228 (1997)

    Google Scholar 

  28. Nüchter, A., Wulf, O., Lingemann, K., Hertzberg, J., Wagner, B., Surmann, H.: 3D Mapping with Semantic Knowledge. In: RoboCup International Symposium, Osaka, Japan (July 2005)

    Google Scholar 

  29. Fong, T., Nourbakhsh, I., Dautenhahn, K.: A survey of socially interactive robots. Robotics and Autonomous Systems 42, 143–166 (2003)

    Article  MATH  Google Scholar 

  30. Arras, K.O., Cerqui, D.: Do we want to share our lives and bodies with robots? A 2000-people survey. Technical Report 0605-001, Swiss Federal Institute of Technology Lausanne (EPFL) (June 2005)

    Google Scholar 

  31. Siegwart, R., Arras, K.O., Bouabdallah, S., Burnier, D., Froidevaux, G., Greppin, X., Jensen, B., Lorotte, A., Mayor, L., Meisser, M., Philippsen, R., Piguet, R., Ramel, G., Terrien, G., Tomatis, N.: Robox at Expo.02: A large-scale installation of personal robots. Robotics and Autonomous Systems 42, 203–222 (2003)

    Article  MATH  Google Scholar 

  32. Vasudevan, S., Gächter, S., Nguyen, V.T., Siegwart, R.: Cognitive Maps for Mobile Robots - An object based approach. Robotics and Autonomous Systems 55(5), 359–371 (2007)

    Article  Google Scholar 

  33. Lowe, D.G.: Distinctive image features from scale-invariant key-points. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  34. Ulrich, I., Nourbakhsh, I.: Appearance-Based Place Recognition for Topological Localization. In: IEEE International Conference on Robotics and Automation (ICRA), San Francisco, CA, USA, pp. 1023–1029. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  35. Gächter, S., Siegwart, R.: Incremental Object Part Detection with a Range Camera. Technical Report ETHZ-ASL-2006-12- Version 2.0.1, Swiss Federal Institute of Technology Zürich (ETHZ) (2006)

    Google Scholar 

  36. Harati, A., Gächter, S., Siegwart, R.: Fast Range Image Segmentation for Indoor 3D-SLAM. In: 6th IFAC Symposium on Intelligent Autonomous Vehicles, Toulouse, France (September 2006)

    Google Scholar 

  37. Veloso, M., von Hundelshausen, F., Rybski, P.E.: Learning visual object definitions by observing human activities. In: The proceedings of IEEE-RAS International Conference on Humanoid Robots (HUMANOIDS), Japan (December 2005)

    Google Scholar 

  38. Ramel, G.: Context Analysis with Probabilistic Methods for Human Robot Interaction (In French). PhD thesis, Swiss Federal Institute of Technology Lausanne (EPFL), Thesis number 3477 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max Lungarella Fumiya Iida Josh Bongard Rolf Pfeifer

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vasudevan, S., Gächter, S., Harati, A., Siegwart, R. (2007). A Hierarchical Concept Oriented Representation for Spatial Cognition in Mobile Robots. In: Lungarella, M., Iida, F., Bongard, J., Pfeifer, R. (eds) 50 Years of Artificial Intelligence. Lecture Notes in Computer Science(), vol 4850. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77296-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77296-5_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77295-8

  • Online ISBN: 978-3-540-77296-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics