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Summary. A model of P systems with symport / antiport rules is given in terms of
hypernets, a generalization of a class of hierarchical Petri nets introduced for modeling
mobility inside the nets-within-nets paradigm. The hierarchical structure of a P system
is reflected by the associated hypernet, where molecules are modeled by unstructured
agents (simple tokens) and membranes by agents. Each agent is modeled by a net which
may contain in its places unstructured agents or other agents. Agents can exchange tokens
with their sub- or super-agents and thus the hierarchy may change. The main result of
the paper shows a correspondence between reachable configurations of the P system and
reachable hypermarkings of the related hypernet, in such a way that if the P system
can evolve from one configuration to another one then in the hypernet there exists a
corresponding transformation of hypermarkings.

1 Introduction

In recent years the notion of system of mobile agents has gained importance in
computer science and engineering. These systems are formed by agents which
move around a space, interacting with each other. Often, these agents are pieces
of software traveling across a network of hosts, where they can be executed in
a local environment. Such a development has led to envisage formal models in
which one can represent mobile agents, their environment, and their interactions.
Since agents move and run in parallel with others, concurrency theory is a natural
framework in which to look for adequate models.

In 1986, Valk proposed a kind of Petri nets in which tokens can be nets, which
can be moved across the places of a hosting net, possibly interacting with it (see
[15]). Building on this idea, hypernets were defined in [1]. A hypernet is formed by
agents, each modeled by a Petri net. In a given configuration, each agent, except
one, is also a token residing in a place of another agent (the exception consists in
the highest level agent, which acts as an environment for all others). The relation
? Partially supported by MIUR and CNR - IPI PAN.
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of containment can dynamically change as an effect of firing transitions; agents
can exchange their sub-agents by forming so called consortia.

The hierarchy of agents in a hypernet resembles the hierarchy of membranes
in a P system, and the mechanism of consortia can be seen as a way to exchange
molecules across a membrane. This idea is the subject of the present paper, where
we define a translation from P systems with symport/antiport rules to a class of
hypernets. Such class is a generalization of the class defined in [1]. The main idea
of this translation is quite simple: each membrane and each individual molecule
in the P system is represented by an agent in the hypernet. Molecule agents are
unstructured, that is, they are simple tokens, like in usual nets, and can only
be passively moved by the active components. Membrane agents, viceversa, are
nets, with places that can contain molecule agents, and places that can contain
other membrane agents. Consortia correspond to rules of the P system, whereby
molecules can be exchanged across a membrane.

It should be noted that hypernets would allow, in themselves, movement of
membrane agents, so that the hierarchical structure of membranes could change.
This capability is not exploited here, since we deal with P systems where only
molecules move around, but might be useful in modeling more general kinds of
systems.

In this paper, we are not interested in the computational aspects of the theory
of P systems, but rather focus on modeling aspects. Consequently, we compare the
two models on the basis of their reachable configurations.

After recalling the basic definitions related to the class of P systems with
symport/antiport rules (Section 2), we define hypernets in Section 3. Section 4
shows how to build a hypernet from a P system, and states in which sense the
two models can be considered as equivalent. Finally, in Section 5, we draw some
considerations, and suggest possible developments.

2 P Systems with Symport/Antiport Rules

Many kinds of membrane systems have been investigated during the last years.
One of the most studied variant of the general model of P systems was introduced
in [10] under the name of systems with symport/antiport rules. Those terms came
from two membrane transport mechanisms. Whereas the term symport stands for
the biological process by which two molecules pass together across a membrane,
when the two molecules pass simultaneously, but in the opposite direction, the
process is called antiport.

The class of membrane systems with symport/antiport rules is a class of purely
communicating P systems, where the objects involved in the computation only
pass through membranes. This means that the objects involved never change and
a sort of conservation law for objects is observed during the entire evolution of the
system.
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Many results on this kind of P systems, especially about their computational
power, can be found in [11],[7],[8],[4]. Here we provide a simplified version of the
definition of P system with symport/antiport rules supplied by Păun [12].

2.1 Formal definition

Formally, we define a P system with symport/antiport rules (of degree m), as a
construct of the form

Π = (O, µ,w1, w2, . . . , wm, R1, R2, . . . , Rm),

where:

• O is the (finite and non empty) alphabet of objects
• the membrane structure µ = (N, E, i) is a rooted tree underlying Π, where

N = {1, 2, . . . , m} is the set of nodes and each node in N defines a membrane
of Π. The set E ⊆ N×N defines the edges. For each node j ∈ N , the membrane
associated to the node j contains all the membranes associated to the children
of j. i is the root of the tree and hence the skin membrane (the outermost
membrane of the system)

• w1, w2, . . . , wm are multisets over O representing the objects present in the
regions 1, 2, . . . , m of the membrane structure µ in the initial configuration of
the system (in the following, multisets will be described either by strings, with
exponents denoting the multiplicity of elements, or by the usual characteristic
function of multisets) where the

• R1, R2, . . . , Rm are finite sets of evolution rules associated with the membranes
of µ. Moreover we impose Ri = ∅, where i is the skin of the membrane structure.
This clause ensures that the external membrane is impermeable and hence the
total number of objects involved in the computation is finite (and constant);
this is required if we want to build hypernets with a finite number of agents

In the following we often use the term molecule when referring to an object in
a membrane of the P system.

As said above, each rule governs the communication through a specific mem-
brane and can be of two kinds, symport rule or antiport rule. A symport rule is
of the form (u, in) or (u, out), where u is a multiset over O, stating that all the
objects of u pass together through a membrane, entering in the former case and
exiting in the latter. For example, in a membrane i, after the application of the
symport rule (u, in), the multiset associated to this membrane will contain all the
objects previously present, plus the objects present in u. The multiset associated
to the membrane that contains i, will contain all the objects previously present,
minus those in u. Similarly, an antiport rule is of the form (u, out; v, in), where u
and v are multisets over O, stating that when u exits, at the same time, a multiset
v must enter the membrane.

The P system described above evolves from configuration to configuration by
the application of a multiset of rules in each membrane. Formally, a configuration
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is a tuple C = (v1, v2, . . . , vm) and C
R̂⇒ C ′ denotes that C evolves into C ′ due to

the application of R̂, where R̂ = (R̄1, R̄2, . . . , R̄m) is a multi-rules vector applicable
to C and R̄j is a multiset over Rj .

The evolution of the system is non-deterministic and maximally parallel: at
each step, the configuration changes by applying a maximal multiset of rules,
chosen in a non deterministic way; the rules must be all applicable without mutual
interferences in the current configuration.
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Fig. 1. Fragment of a symport/antiport P system

2.2 Example

Fig. 1 shows a fragment of a P system with symport rules. The system depicted here
consists of two nested membranes: j, the inner membrane, and i, the outer one,
which we assume to be a membrane contained in a larger membrane structure.
The set of rules of i is Ri = {(b, out), (a2, out)}, and the set of rules of j is
Rj = {(ab2, in), (a, out)}. In the same way we define the initial multisets of objects
wi = ab3 and wj = a2.

In this configuration the rules r1, r3, r4 are enabled and a multi-rules vector can
be built with this rules in a maximally parallel manner, i.e.: the multi-rules vector
R̂ = ({r1}, {r3, r4, r4}) is applicable to the initial configuration. Note that other
multi-rules vectors can be applied to the same configuration. The application of R̂
leads to a new state where the objects in the membrane i are a2 and the objects
in the membrane j are ab2.

3 Hypernets

In this section we introduce a generalization of Petri hypernets [1] that for simplic-
ity we call also here hypernets. A hypernet is defined by a fixed set of agents, each
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agent is modeled by a net and can manipulate other agents as tokens, while being
manipulated as token by another agent at the same time. This yields a hierarchy
of agents. The highest level agent acts as an environment for all other agents, these
latter are located each one in some place of another agent. Agents can exchange
tokens with their sub- or super-agents and thus the hierarchy may change.

In what follows we first define the structure of hypernets giving the definition
of agent and of hypernet, then we define the behavior of hypernets, and at the end
of the section we illustrate hypernets on an example modeling the P system given
in Subsection 2.2 as it will be discussed in Section 4.

3.1 Structure of hypernets

An agent is modeled by a Petri net, a bipartite oriented graph, whose nodes are
of two types: places and transitions. Places are partitioned into two disjoint sets:
the set of local places, which are locations in which other agents can stay, and
the set of virtual places, which represent communication channels along which
agents exchange tokens each others. Places and transitions are interconnected by
weighted oriented arcs, which define how many tokens are taken away from an
input place and how many are put into an output place, when a transition fires.
For each transition the sum of the weights of the input arcs must be equal to the
sum of the weights of the output arcs. In this way the amount of tokens will not
change while transitions fire. Moreover, to each triple of interconnected elements
place-transition-place it is assigned, by a function φA, a value which defines, in a
way compatible with the arc weights, the number of tokens which flow along the
path identified by the triple. In other words, φA defines how the tokens taken away
from an input place of a transition will be distributed into the output places, when
the transition will fire; and this distribution will be the same for each occurrence
of the same transition. For basic definitions and notions on Petri nets, see, for
example, [14].

Definition 1. An agent is a tuple A = (PA ∪ VA, TA, FA, φA), where (PA ∪
VA, TA, FA) is a, possibly empty, finite Petri net in which :

• PA is the set of local places and VA is the set of virtual places, (or communi-
cation places), with PA ∩ VA = ∅;

• TA is the set of transitions;
• the function FA : ((VA ∪ PA)× TA)∪ (TA × (VA ∪ PA)) −→ N defines the flow,

assigning a weight to each arc identified by the pair of elements x, y such that:
FA(x, y) > 0, in such a way that : ∀t ∈ TA,

∑
p∈•t FA(p, t) =

∑
p∈t• FA(t, p),

where p ∈ •t iff FA(p, t) > 0 and p ∈ t• iff FA(t, p) > 0;

and the function φA : (VA ∪ PA)× TA × (VA ∪ PA) −→ N defines the paths , i.e.:
the triples (p, t, q) such that: φA(p, t, q) > 0, by assigning a weight to them in such
a way that:

∀p ∈ •t, FA(p, t) =
∑

q∈t• φA(p, t, q)
∀q ∈ t•, FA(t, q) =

∑
p∈•t φA(p, t, q)
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In the following (p, t, q) ∈ φA iff φA(p, t, q) > 0, moreover, given a subset of
agents X ⊆ N , we use the following notation: PX =

⋃
A∈X PA, VX =

⋃
A∈X VA,

TX =
⋃

A∈X TA, φX =
⋃

A∈X φA.
A hypernet is defined by a set of agents and by a relation ∆. Agents have

disjoint sets of places. A transition may belong to different agents, modeling syn-
chronous interaction among them. Transitions connected to virtual places model
interchanges of tokens among sub-/super-agents. Said output paths the path end-
ing with a virtual place and input paths the ones starting with a virtual place, the
relation ∆ identifies communication channels by defining, for a given transition
belonging to different agents, a correspondence (output path - input path) in a
way compatible with path weights.

Definition 2. Let N = {A1, A2, . . . , An} be a family of agents, and let So =
{(p, t, v) ∈ φA|A ∈ N and v ∈ VA} and Si = {(v, t, q) ∈ φA|A ∈ N and v ∈ VA}
be the sets of output paths and input paths, respectively. (Note that a path can
be both an output and an input path.)

A hypernet is a pair H = (N ,∆), where

• The agents in N have disjoint sets of places:

∀Ai, Aj ∈ N , (PAi ∪ VAi) ∩ (PAj ∪ VAj ) = ∅;
• and ∆ ⊆ So × Si is a relation which associates, for a given transition, output

paths to input paths with the same weight and belonging to different agents,
i.e.:
∀t ∈ TN , ∀(p, t, q) ∈ φAi and ∀(p′, t, q′) ∈ φAj such that Ai, Aj ∈ N :
((p, t, q), (p′, t, q′)) ∈ ∆ ⇒ Ai 6= Aj and φAi(p, t, q) = φAj (p

′, t, q′).

Definition 3. Let N = {A1, A2, . . . , An} be a family of agents. A map M :
{A2, . . . , An} −→ PN , assigning to each agent different from A1 the local place in
which is located, is a hypermarking of N iff, considering the relation ↑M⊆ N ×N
defined by : Ai ↑M Aj ⇔ M(Ai) ∈ PAj , then the graph 〈N , ↑M〉 is a tree with
root A1.

Definition 4. A marked hypernet is a pair (H,M) where H is a hypernet and
M is a hypermarking defining the initial configuration.

In a configuration the system results hierarchically structured. The highest
level agent A1, the root of the tree describing the hierarchy, plays the role of the
environment containing all the other agents. The relation of containment between
agents, and then the hierarchical structure, can change as an effect of firing tran-
sitions as formalized in the following subsection.

3.2 Behaviour of hypernets

Let H = (N ,∆), with N = {A1, A2, . . . , An}, be a hypernet.
A consortium is a set of interconnected active agents, cooperating in performing

a transition t, moving other passive agents along the paths containing t.
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Definition 5. A consortium is a tuple Γ = (t, τ, δ, γ) where:

• t ∈ TN is the name of the consortium,
• τ ⊆ {A ∈ N|t ∈ TA}, τ 6= ∅, is the non empty set of active agents. To this set

we can associate φτt
= {(p, t, q) ∈ φτ | p, q ∈ Pτ ∪ Vτ}, the set of paths of the

agents τ containing the transition t.
• δ defines a bijective correspondence between output paths containing t and input

paths containing t of active agents, without contradicting the relation ∆. Let
φo,τt = φτt ∩ So and φi,τt = φτt ∩ Si. If φo,τt 6= ∅, δ : φo,τt −→ φi,τt is a
bijection such that: ∀s ∈ φo,τt

, δ(s) = s′ ⇒ (s, s′) ∈ ∆, while if φo,τt
= ∅, then

δ is the empty map. Note that δ relates paths belonging to different agents.
• The passive agents which are moved when the consortium occurs are selected

through the map γ. Let C ⊆ N\A1 be a chosen set of passive agents , then
γ : C −→ φτt\Si is surjective and associates as many passive agents to each
path containing t and belonging to an active agent as the weight of the path
itself, i.e.: ∀s ∈ φτt

\Si, |γ−1(s)| = φN (s). Note that an agent can be active
and passive at the same time.

Moreover the following conditions must be satisfied:

• the set of active agents τ is a minimal one, in the sense that the agents in τ
must be each other interconnected through the interaction t, i.e.:
the undirected graph G1 = (τ, E1) is connected,
where E1 = {(Ai, Aj) | Ai, Aj ∈ τ and ∃ si ∈ φAi , ∃ sj ∈ φAj : δ(si) = sj}
and

• the undirected graph G2 = (τ ∪ C, E2) is acyclic,
where E2 connects Ai to Aj if Ai will be put inside Aj through t, i.e.: considered
the recursively defined map δ∗ : φτt −→ φτt such that

δ∗(s) =
{

s if s /∈ φo,τt

δ∗(δ(s)) otherwise

E2 = {(Ai, Aj)|δ∗(γ(Ai)) ∈ φAj , Ai ∈ C, Aj ∈ τ}.

The intuition behind the last condition of the previous definition is the follow-
ing. By subsequent applications of the map δ it is possible to construct chains of
paths interrelated through paths with only virtual places. However, the meaningful
chains are the one which starts with a path with a real input place, the one from
which an agent will be taken out, and ends with a path with a real output place,
the one in which the agent will be put into. The last condition requires that these
chains are not closed.

In [2] it is proven that chains containing a real place can be prolonged to finite
chains containing at most two real places, one in an input path and one in an
output path.



130 L. Bernardinello et al.

Definition 6. Let H = (N ,∆) be a generalized hypernet and M be a hypermark-
ing.

A consortium Γ = (t, τ, δ, γ) is enabled in M , denoted M[Γ 〉, iff the following
two conditions hold

• ∀A ∈ C, γ(A) = (p, t, q) ⇒M(A) = p
• ∀Ai, Aj ∈ τ , ∀s ∈ So ∩ φAi

, δ(s) ∈ φAj
⇒ Ai ↑M Aj ∨Aj ↑M Ai

If M[Γ 〉, then the occurrence of Γ leads to the new hypermarking M′, denoted
M[Γ 〉M′, such that ∀A ∈ N :

M′(A) =
{M(A) if A /∈ C;

q if A ∈ C and δ∗(γ(A)) = (p, t, q).

It is possible to prove [2] that M′ is a hypermarking, i.e.: that the class of
hypermarkings of a hypernet is closed under the occurrence of a consortium.

Two consortia Γ1 = (t1, τ1, δ1, γ1) and Γ2 = (t2, τ2, δ2, γ2) are independent iff
the maps γ1 and γ2 select two different sets of passive agents, i.e.: iff C1 ∩C2 = ∅

If two independent consortia are both enabled in a hypermarking M then they
can concurrently occur in M.

Let ΓH be the set of possible consortia in H. A set of consortia U ⊆ ΓH is a
step enabled in a hypermarking M, denoted M[U〉 , iff

• ∀Γi, Γj ∈ U , Γi and Γj are independent,
• ∀Γi ∈ U , M[Γi〉

If M[U〉, then the occurrence of the step U leads to the new hypermarking
M′, denoted M[U〉M′, such that ∀A ∈ N :

M′(A) =
{M(A) if ∀Γi ∈ U , A /∈ Ci;

q if ∃Γi ∈ U : (A ∈ Ci and δ∗i (γi(A)) = (p, ti, q)).

U is a maximal step enabled in M, and its occurrence yields M′, iff M[U〉M′

and ∀U ′ ⊃ U : not(M[U ′〉).
In [2] it is shown how it is possible to associate to each hypernet a 1-safe net

in such a way that there is a strict correspondence between their behaviors, i.e.,
in terms of Petri net theory, in such a way that the case graph of the 1-safe net is
isomorphic to the transition system generated by the reachable hypermarkings of
the hypernet.

Since 1-safe nets are a basic class model in Petri net theory, this translation
shows that hypernets are well rooted inside the theory of Petri nets.

3.3 Example

The Fig. 2 shows the structure of two hypernet’s agents. The unfilled circles are
local places while the filled ones are virtual places. The agent Aj is nested in the
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agent Ai, in fact M(Aj) = ai
j , so Aj ↑M Ai. Moreover we assume u1, u2, u3, u4 to

be unstructured agents such thatM(u1) = M(u2) = M(u3) = bi andM(u4) = ai.
Now consider the consortium Γ = (r3, τ, δ, γ) where

• the set of active agents is τ = {Ai, Aj},
• the bijection δ builds two communication channels between Ai and Aj gluing

two pair of paths: δ(ai, r3, ā
i) = (āj , r3, a

j) and δ(bi, r3, b̄
i) = (b̄j , r3, b

j),
• the set of passive agents is C = {u1, u2, u4} and γ(u1) = γ(u2) = (bi, r3, b̄

i)
and γ(u4) = (ai, r3, ā

i).

The consortium Γ is valid and enabled in the initial hypermarking. When Γ occurs
the system reaches a new hypermarking M′ where M′(u1) = M′(u2) = bj and
M′(u4) = aj . Note that the agents u1, u2, u4 pass through the communication
channels established by δ from the agent Ai to the agent Aj .

4 Membrane Systems as Hypernets

Our goal in this section is to show how a P system with symport/antiport rules
and with an impermeable external membrane can be modeled as a hypernet.

In the following, we write i / j to mean that membrane i is directly contained
in membrane j.

Let Π = (O, µ, w1, . . . , wm, R1, . . . , Rm) be a P system of degree m, with sym-
port/antiport rules. We assume that 1 is the outer membrane, with no rules, so
that R1 = ∅.

The hypernet associated to Π will be denoted by H = (N ,∆). The hypernet H
contains one agent for each membrane, and one agent for each individual molecule
in Π. Notice that, in the P-systems we handle, molecules are neither created nor
deleted.

Let W =
∑m

i=1 wi. W is a multiset giving the total number of objects for each
type in the system. Define

MOL = {(x, i)|x ∈ O ∧ 1 ≤ i ≤ W (x)}
For each (x, i) in MOL, we define an unstructured agent in the hypernet H.

N = {A1, A2, . . . , Am} ∪MOL

Agent Ai corresponds to membrane i of the P system. It has one place for each
membrane directly contained in i, and one for each type of molecule; moreover, it
has one virtual place for each type of molecule, to be used in exchanging tokens.

Pi = {ai
j |j / i} ∪ {xi|x ∈ O}

Vi = {x̄i|x ∈ O}
The set of transitions of agent Ai has one transition for each rule in membrane i,
and one for each rule in membranes directly contained in i.



Modeling Symport/Antiport P Systems with Petri Nets 133

Ti = {r|r ∈ Ri} ∪ {r|r ∈ Rj ∧ j / i}

We now turn to define the flow function and the paths for agent Ai.

• For each rule r = (u, in) ∈ Ri, and for each rule r = (u, in; v, out) ∈ Ri:

F (x̄i, r) = F (r, xi) = φ((x̄i, r, xi)) = u(x)

• For each rule r = (v, out) ∈ Ri, and for each rule r = (u, in; v, out) ∈ Ri:

F (xi, r) = F (r, x̄i) = φi((xi, r, x̄i)) = v(x)

Let j / i. Then,

• For each rule r = (u, in) ∈ Rj , and for each rule r = (u, in; v, out) ∈ Rj :

F (xi, r) = F (r, x̄i) = φi((xi, r, x̄
i)) = u(x)

• For each rule r = (v, out) ∈ Rj , and for each rule r = (u, in; v, out) ∈ Rj :

F (x̄i, r) = F (r, xi) = φi((x̄i, r, xi)) = v(x)

Define now the ∆ relation. For all i, j such that i / j:

∀r = (u, in) ∈ Ri, ∀x ∈ O : u(x) > 0, (xj , r, x̄j)∆(x̄i, r, xi)
∀r = (u, out) ∈ Ri, ∀x ∈ O : u(x) > 0, (xi, r, x̄i)∆(x̄j , r, xj)

∀r = (u, in; v, out) ∈ Ri, ∀x ∈ O : u(x) > 0, (xj , r, x̄j)∆(x̄i, r, xi)
∀r = (u, in; v, out) ∈ Ri,∀x ∈ O : v(x) > 0, (xj , r, x̄j)∆(x̄i, r, xi)

The initial hypermarking M reflects the initial configuration of Π. Membrane
agents are placed according to the hierarchical structure of Π:

∀i ∈ {2, . . . ,m} : M(Ai) = aj
i iff i / j

All agents (x, k) corresponding to molecules are initially distributed in the corre-
sponding places xi in membrane agents so that a place xi contains wi(x) unstruc-
tured agents of type (x, k).

In order to state the exact relation between the dynamics of a P system Π and
the dynamics of the corresponding hypernet H, we need to define two relations.
The first defines a correspondence between configurations of Π and hypermarkings
of H. The other defines a correspondence between steps of Π and maximal steps
of H. Define

Conf = {(v1, . . . , vm)|
m∑
1

vi =
m∑
1

wi}

as the set of all potential configurations of Π with the same number and type of
molecules as the initial configuration. Define HM as the set of all hypermarkings
of H.
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Let M : {A1, . . . , Am} ∪ MOL → P be an element of HM, where P is the
set of all local places of H, and C = (v1, . . . vm) ∈ Conf , where vi : O → N.
We also need some auxiliary definition. By I(x, i,M) we denote the set of agents
representing molecules of type x hosted in the corresponding place of agent Ai in
M.

I(x, i,M) = {(x, i)|(x, i) ∈ MOL ∧M((x, i)) = xi}
Definition 7. The hypermarking M simulates configuration C (denoted by M∼
C) iff

1. M(Ai) ∈ Pj iff i / j, for i ∈ {2, . . . ,m}
2. |I(x, i,M)| = vi(x)

Notice that ∼ is a partial surjective function: each configuration of Π has at
least one corresponding hypermarking. The hypermarkings corresponding to one
given configuration differ only for the distribution of molecules of the same kind
in membrane agents. These molecules are identical in the P system, while their
corresponding agents are distinguished.

We now define a correspondence between maximal steps in the P system and
maximal steps of consortia in the hypernet. This correspondence is based on an-
other one, associating single rules and consortia.

Let r be a rule of membrane i in Π. By construction, the associated hypernet
has two transitions labeled by r, one in the agent corresponding to i, and one in the
agent corresponding to the membrane containing i; assume it is j. A consortium
simulating the execution of r involves i and j as active agents, and a number of
passive agents taken from MOL.

We consider here an antiport rule r = (u, in; v, out), where u and v are multiset
on O. Symport rules can be seen as special cases where either u or v is the empty
multiset.

Definition 8. Let Γ = (r, τ, δ, γ) be a consortium. Then Γ ∼ r iff the following
conditions hold.

1. τ = {Ai, Aj}
2. The output paths involved in Γ are either of the form (yi, r, ȳi) if v(y) > 0, or

of the form (xj , r, x̄j) if u(x) > 0.
3. The function δ is defined by

δ((yi, r, ȳi)) = (ȳj , r, yj)

δ((xj , r, x̄j)) = (x̄i, r, xi)

4. Let Z = {z ∈ MOL|z = (x, k)∧ γ(z) = (xj , r, x̄j)}; then |Z| = u(x)
5. Let Z = {z ∈ MOL|z = (y, k)∧ γ(z) = (yi, r, ȳi)}; then |Z| = v(y)

A transition in a P system is a multiset of independently executable rules. Let
R =

⋃m
i=1 Ri be the set of all rules of Π, and ρ : R → N be a multiset of rules.

A set U of consortia in H simulates ρ (denoted by U ∼ ρ) if, for each r ∈ R,
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U contains ρ(r) consortia which simulate r, and the consortia in U are pairwise
independent.

We are now ready to state the main result of this section. The following lemma
states that any change of configuration in Π can be simulated by a set of mutually
independent consortia in H. Let Π be a P-system with symport and antiport rules,
such that 1 is the outer membrane with R1 = ∅, and H = (N ,∆) be the associated
hypernet, with initial hypermarking M.

Lemma 1. Let C be a configuration of Π, and ρ be a multiset of rules, enabled at
C, with C

ρ⇒ C ′. Then, for all M∈ HM,

M∼ C ⇒ ∃U ⊆ ΓH : U ∼ ρ, M[U〉M′, M′ ∼ C ′

Notice that the consortia forming U can always be chosen to be pairwise indepen-
dent. From this lemma, one can prove, by induction from the initial configuration,
that the evolution of the P system can be simulated by the hypernet.

4.1 Example

Fig. 2, already discussed above (Section 3) as a generic hypernet, shows the frag-
ment of the hypernet corresponding to the P system of Fig. 1. The two membranes
i and j are modeled by the agents Ai (Fig. 2(a)) and Aj (Fig. 2(b)). The local
place ai

j ∈ Pi, which contains (as token) the agent Aj , reflects the fact that the
membrane j is nested inside i, while the local places ai, bi represent the presence
of molecules a and b respectively, inside the agent Ai (this is also true for aj , bj

and the membrane j). Then {r1, r2, r3, r4} ⊆ TN are transitions built from the
evolution rules of the membrane system. The initial hypermarking matches the
initial configuration of the P system.

5 Conclusions

In this paper we have considered P systems with symport/antiport rules and we
have shown how they can be modeled by a class of hierarchical Petri net systems,
a generalization of hypernets [1].

The hierarchical structure of the P system is reflected by the agents’s hierarchy
of the hypernet, where molecules are modeled by unstructured agents (hence empty
nets or simple tokens) and membranes by agents, nets which may contain in their
places unstructured agents or other agents.

The exchange of molecules through a membrane of a P system, as defined
by a symport or an antiport rule, corresponds to a consortium involving two ac-
tive agents, that represent the two nested membranes which exchange each other
passive unstructured tokens (molecules).

The main result, as given in Section 4, states a correspondence between reach-
able configurations of the P system and reachable hypermarkings of the related
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hypernet. If the P system can evolves from a configuration to another one as the
result of the application of a multi-rules vector, then in the hypernet exists an as-
sociated set of consortia transforming a hypermarking, corresponding to the first
configuration, and another corresponding to the second one.

A translation, that takes a hypernet and returns a 1-safe Petri net (one of
the basic models in Petri net theory) such that the case graphs of the latter is
isomorphic to the transition system generated by the execution of consortia of the
former, has been shown in [2]. This transformation proves that hypernets are well
rooted in net theory. In [9] a definition of non sequential processes for hypernets
was given. This can be used to derive an alternative semantics for P systems based
on a purely causal dependency notion.

In the literature other works have investigated the relation between P system
and Petri nets [6], [13], [5]. It is a matter of future work a deeper comparison with
these approaches and with other computational models, inspired by biological
membranes and derived from calculi of concurrency and mobility, as for example
those proposed by Cardelli [3].

Hypernets allow movement of structured agents from one level to another one,
so that the hierarchy of agents may change. In terms of P systems, this means
to consider movements of membrane agents. This capability is not exploited here,
however it would be interesting in future to study the modeling of P systems with
active membranes [12].
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