Lecture Notes in Artificial Intelligence4840Edited by J. G. Carbonell and J. Siekmann

Subseries of Lecture Notes in Computer Science

Lucas Paletta Erich Rome (Eds.)

Attention in Cognitive Systems

Theories and Systems from an Interdisciplinary Viewpoint

4th International Workshop on Attention in Cognitive Systems, WAPCV 2007 Hyderabad, India, January 8, 2007 Revised Selected Papers

Series Editors

Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA Jörg Siekmann, University of Saarland, Saarbrücken, Germany

Volume Editors

Lucas Paletta Joanneum Research Institute of Digital Image Processing Computational Perception Group Wastiangasse 6, 8010 Graz, Austria E-mail: lucas.paletta@joanneum.at

Erich Rome Fraunhofer-Institut für Intelligente Analyse- und Informationssysteme Adaptive Reflective Teams (IAIS.ART) Schloss Birlinghoven, 53754 Sankt Augustin, Germany E-mail: erich.rome@iais.fraunhofer.de

Library of Congress Control Number: 2007941804

CR Subject Classification (1998): I.2, I.4, I.5, I.3

LNCS Sublibrary: SL 7 - Artificial Intelligence

ISSN	0302-9743
ISBN-10	3-540-77342-8 Springer Berlin Heidelberg New York
ISBN-13	978-3-540-77342-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2007 Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 12205806 06/3180 5 4 3 2 1 0

Preface

Attention has been representing a core scientific topic in the design of AI-enabled systems within the last decades. Today, in the ongoing debate, design, and computational modeling of artificial cognitive systems, attention has gained a central position as a focus of research. For instance, attentional methods are considered in investigating the interfacing of sensory and cognitive information processing, for the organization of behaviors, and for the understanding of individual and social cognition in reflection of infant development.

While visual cognition plays a central role in human perception, findings from neuroscience and experimental psychology have provided strong evidence about the perception-action nature of cognition. The embodied nature of sensory-motor intelligence requires a continuous and focused interplay between the control of motor activities and the interpretation of feedback from perceptual modalities. Decision making about the selection of information from the incoming sensory stream – in tune with contextual processing on a current task and an agent's global objectives – becomes a further challenging issue in attentional control. Attention must operate at interfaces between bottom-up driven world interpretation and top-down driven information selection, thus acting at the core of artificial cognitive systems. These insights have already induced changes in AI-related disciplines, such as the design of behavior-based robot control and the computational modeling of animats.

Today, the development of enabling technologies such as autonomous robotic systems, miniaturized mobile – even wearable – sensors, and ambient intelligence systems involves the real-time analysis of enormous quantities of data. These data have to be processed in an intelligent way to provide "on time delivery" of the required relevant information. Knowledge has to be applied about what needs to be attended to, and when, and what to do in a meaningful sequence, in correspondence with visual feedback.

The individual contributions of this book deal with these scientific and technological challenges on the design of attention and present the latest state of the art in related fields. This book evolved out of the 4th International Workshop on Attention in Cognitive Systems (WAPCV 2007) that was held in Hyderabad, India, as an associated workshop of the 20th International Joint Conference on Artificial Intelligence (IJCAI 2007). The goal of this workshop was to provide an interdisciplinary forum to communicate computational models of attention in cognitive systems from an interdisciplinary viewpoint, including computer vision, psychology, robotics and neuroscience. The workshop was held as a single-day, single-track event, consisting of high-quality podium and poster presentations. Revised selected papers from WAPCV 2007 together with contributions from invited speakers – Tom Ziemke on embodied dynamics of emotion and attention, and Jochen Triesch on learning of attention – add to this collection. To enable a broad overview of the state of the art, the editors decided to add some revised papers from WAPCV 2005 and to invite additional contributions about current relevant research themes.

WAPCV 2007 and the editing of this collection was supported in part by The European Network for the Advancement of Artificial Cognitive Systems (euCognition), and the EC-funded projects MOBVIS (FP6-511051) and MACS (FP6-004328). We are very thankful to David Vernon (co-ordinator of euCognition) and Colette Maloney of the European Commission's ICT Program on Cognition for their financial and moral support. Finally, we wish to thank Katrin Amlacher for her efforts in assembling these proceedings.

October 2007

Lucas Paletta Erich Rome

Organization

Chairing Committee

Lucas Paletta	Joanneum Research (Austria)
Erich Rome	Fraunhofer IAIS (Germany)

Advisory Committee

John K. Tsotsos	York University (Canada)
Laurent Itti	University of Southern California, CA (USA)
Jan-Olof Eklundh	KTH (Sweden)

Program Committee

Joanna J. Bryson	Konrad Lorenz Institute (Austria)
James J. Clark	McGill University (Canada)
Gustavo Deco	University of Pompeu Fabra (Spain)
Horst-Michael Gross	Technical University Ilmenau (Germany)
Fred Hamker	University of Münster (Germany)
Mary Hayhoe	University of Rochester (USA)
Dietmar Heinke	University of Birmingham (UK)
Giacomo Indiveri	University of Zurich (Switzerland)
Christof Koch	California Institute of Technology, CA (USA)
Michael Lindenbaum	Technion Israel Institute of Technology (Israel)
Giorgio Metta	University of Genoa (Italy)
Vidhya Navalpakkam	University of Southern California, CA (USA)
Aude Oliva	MIT, MA (USA)
Ronald A. Rensink	University of British Columbia, BC (Canada)
Mototaka Suzuki	EPFL (Switzerland)
John G. Taylor	Kings College London (UK)
Nuno Vasconcelos	University of California, San Diego, CA (USA)
Hezy Yeshurun	Tel Aviv University (Israel)
Tom Ziemke	University of Skovde (Sweden)

Sponsoring Institutions

euCognition -The European Network for the Advancement of Artificial Cognitive Systems Joanneum Research, Austria

Table of Contents

Embodiment of Attention

The Embodied Dynamics of Emotion, Appraisal and Attention Robert Lowe, Carlos Herrera, Anthony Morse, and Tom Ziemke	1
The Role of Attention in Creating a Cognitive System John G. Taylor	21
The Influence of the Body and Action on Spatial Attention Catherine L. Reed, John P. Garza, and Ralph J. Roberts Jr.	42
Abstraction Level Regulation of Cognitive Processing Through Emotion-Based Attention Mechanisms Luís Morgado and Graça Gaspar	59
Embodied Active Vision in Language Learning and Grounding Chen Yu	75
Language Label Learning for Visual Concepts Discovered from Video Sequences Prithwijit Guha and Amitabha Mukerjee	91

Cognitive Control of Attention

Learning to Attend—From Bottom-Up to Top-Down Hector Jasso and Jochen Triesch	106
An Attentional System Combining Top-Down and Bottom-Up Influences	123
The Selective Attention for Identification Model (SAIM): Simulating Visual Search in Natural Colour Images Dietmar Heinke, Andreas Backhaus, Yarou Sun, and Glyn W. Humphreys	141
A Bayesian Approach to Attention Control and Concept Abstraction Saied Haidarian Shahri and Majid Nili Ahmadabadi	155

Modeling of Saliency and Visual Search

An Information Theoretic Model of Saliency and Visual Search	. 171
Neil D.B. Bruce and John K. Tsotsos	

An Experimental Comparison of Three Guiding Principles for the	
Detection of Salient Image Locations: Stability, Complexity, and	
Discrimination	184
Dashan Gao and Nuno Vasconcelos	
A Proto-object Based Visual Attention Model	198
Francesco Orabona, Giorgio Metta, and Giulio Sandini	
Context Driven Focus of Attention for Object Detection	216
Roland Perko and Aleš Leonardis	
Color Saliency and Inhibition Using Static and Dynamic Scenes in	
Region Based Visual Attention	234
Muhammad Zaheer Aziz and Bärbel Mertsching	
I See What You See: Eye Movements in Real-World Scenes Are Affected	
by Perceived Direction of Gaze	251
Monica S. Castelhano, Mareike Wieth, and John M. Henderson	

Sequential Attention

Selective Attention in the Learning of Viewpoint and Position Invariance Muhua Li and James J. Clark	263
Generating Sequence of Eye Fixations Using Decision-Theoretic Attention Model Erdan Gu, Jingbin Wang, and Norman I. Badler	277
Reinforcement Learning for Decision Making in Sequential Visual Attention Lucas Paletta and Gerald Fritz	293
Biologically Inspired Framework for Learning and Abstract Representation of Attention Control	307

Biological Aspects of Attention

Modeling the Dynamics of Feature Binding During Object-Selective	
Attention	325
Albert L. Rothenstein and John K. Tsotsos	
The Spiking Search over Time and Space Model (sSoTS): Simulating Dual Task Experiments and the Temporal Dynamics of Preview	
Search	338
Eirini Mavritsaki, Dietmar Heinke, Glyn Humphreys, and	
Gustavo Deco	

On the Role of Dopamine in Cognitive Vision Julien Vitay and Fred H. Hamker	352
Differences and Interactions Between Cerebral Hemispheres When Processing Ambiguous Words Orna Peleg, Zohar Eviatar, Hananel Hazan, and Larry Manevitz	367
Attention in Early Vision: Some Psychophysical Insights Kuntal Ghosh and Sankar K. Pal	381
Auditory Gist Perception: An Alternative to Attentional Selection of Auditory Streams? Sue Harding, Martin Cooke, and Peter König	399

Applications of Attentive Vision

Simultaneous Robot Localization and Mapping Based on a Visual Attention System Simone Frintrop, Patric Jensfelt, and Henrik Christensen	417
Simone Princip, Patric Schsjen, and Petrick On iscensen	
Autonomous Attentive Exploration in Search and Rescue Scenarios Andrea Carbone, Daniele Ciacelli, Alberto Finzi, and Fiora Pirri	431
Attention-Based Landmark Selection in Autonomous Robotics Antonio Chella, Irene Macaluso, and Lorenzo Riano	447
Simulation and Formal Analysis of Visual Attention in Cognitive Systems	463
Tibor Bosse, Peter-Paul van Maanen, and Jan Treur	
Region-Oriented Visual Attention Framework for Activity Detection Thomas Geerinck and Hichem Sahli	481
Author Index	497