Skip to main content

Modeling the Dynamics of Feature Binding During Object-Selective Attention

  • Conference paper
  • 1622 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4840))

Abstract

We present a biologically plausible computational model for solving the visual feature binding problem. The binding problem appears to be due to the distributed nature of visual processing in the primate brain, and the gradual loss of spatial information along the processing hierarchy. The model relies on the reentrant connections so ubiquitous in the primate brain to recover spatial information, and thus allows features represented in different parts of the brain to be integrated in a unitary conscious percept. We demonstrate the ability of the Selective Tuning model of visual attention [1] to recover spatial information, and based on this we propose a general solution to the feature binding problem. The solution is used to simulate the results of a recent neurophysiology study on the binding of motion and color. The example demonstrates how the method is able to handle the difficult case of transparency.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y.H., Davis, N., Nuflo, F.: Modeling visual-attention via selective tuning. Artif. Intell. 78(1-2), 507–545 (1995)

    Article  Google Scholar 

  2. Goodale, M.A., Milner, D.A.: Separate visual pathways for perception and action. Trends in Neuroscience 15(1), 20–25 (1992)

    Article  Google Scholar 

  3. Roskies, A.L.: The binding problem. Neuron 24(1), 7–9 (1999)

    Article  Google Scholar 

  4. Rosenblatt, F.: Principles of Neurodynamics: Perceptions and the Theory of Brain Mechanisms. Spartan Books (1961)

    Google Scholar 

  5. Treisman, A.M., Schmidt, H.: Illusory conjunctions in the perception of objects. Cognit Psychol. 14(1), 107–141 (1982)

    Article  Google Scholar 

  6. Wolfe, J.M., Cave, K.R.: The psychophysical evidence review for a binding problem in human vision. Neuron 24(1), 11–17 (1999)

    Article  Google Scholar 

  7. Schoenfeld, M.A., Tempelmann, C., Martinez, A., Hopf, J.M., Sattler, C., Heinze, H.J., Hillyard, S.A.: Dynamics of feature binding during object-selective attention. Proceedings of the National Academy of Sciences of the United States of America 100(20), 11806–11811 (2003)

    Article  Google Scholar 

  8. Karayanidis, F., Michie, P.T.: Evidence of visual processing negativity with attention to orientation and color in central space. Electroencephalography and Clinical Neurophysiology 103(2), 282–297 (1997)

    Article  Google Scholar 

  9. Cortese, F., Bernstein, L.J., Alain, C.: Binding visual features during high-rate serial presentation. Neuroreport 10(7), 1565–1570 (1999)

    Article  Google Scholar 

  10. Smid, H.G.O.M., Jakob, A., Heinze, H.J.: An event-related brain potential study of visual selective attention to conjunctions of color and shape. Psychophysiology 36(2), 264–279 (1999)

    Article  Google Scholar 

  11. Schoenfeld, M.A., Woldorff, M., Duzel, E., Scheich, H., Heinze, H.J., Mangun, G.R.: Form-from-motion: MEG evidence for time course and processing sequence meg evidence for time course and processing sequence. Journal of Cognitive Neuroscience 15(2), 157–172 (2003)

    Article  Google Scholar 

  12. Tsotsos, J.K., Liu, Y., Martinez-Trujillo, J.C., Pomplun, M., Simine, E., Zhou, K.: Attending to visual motion. Comput. Vis. Image Und. 100(1-2), 3–40 (2005)

    Article  Google Scholar 

  13. Cutzu, F., Tsotsos, J.K.: The selective tuning model of attention: psychophysical evidence for a suppressive annulus around an attended item. Vision Research 43(2), 205–219 (2003)

    Article  Google Scholar 

  14. Hopf, J.M., Boehler, C.N., Luck, S.J., Tsotsos, J.K., Heinze, H.J., Schoenfeld, M.A.: Direct neurophysiological evidence for spatial suppression surrounding the focus of attention in vision. Proceedings of the National Academy of Sciences of the United States of America 103(4), 1053–1058 (2006)

    Article  Google Scholar 

  15. Treisman, A.M., Gelade, G.: Feature-integration theory of attention. Cognitive Psychology 12(1), 97–136 (1980)

    Article  Google Scholar 

  16. Taraborelli, D.: Feature binding and object perception. Does object awareness require feature conjunction? In: ESPP 2002. 10th Annual Meeting of the European Society for Philosophy and Psychology, Lyon (2002)

    Google Scholar 

  17. Robertson, L.: Space, Objects, Brains and Minds. Essays in Cognitive Psychology. Psychology Press (2004)

    Google Scholar 

  18. Koch, C.: A theoretical analysis of the electrical properties of an x-cell in the cat’s LGN: does the spine-triad circuit subserve selective visual attention? Technical report, MIT, Artificial Intelligence Laboratory (1984)

    Google Scholar 

  19. Sherman, S.M., Koch, C.: The control of retinogeniculate transmission in the mammalian lateral geniculate nucleus. Experimental Brain Research 63, 1–20 (1986)

    Article  Google Scholar 

  20. Li, Z.: A saliency map in primary visual cortex. Trends in Cognitive Sciences 6(1), 9–16 (2002)

    Article  Google Scholar 

  21. Lee, T., Yang, C., Romero, R., Mumford, D.: Neural activity in early visual cortex reflects behavioral experience and higher order perceptual saliency. Nature Neuroscience 5(6), 589–597 (2002)

    Article  Google Scholar 

  22. Moran, J., Desimone, R.: Selective attention gates visual processing in the extrastriate cortex. Science 229(4715), 782–784 (1985)

    Google Scholar 

  23. Tsotsos, J.K.: Analyzing vision at the complexity level. Behavioral and Brain Sciences 13(3), 423–444 (1990)

    Article  Google Scholar 

  24. Schall, J.D.: Neural basis of saccade target selection. Reviews in Neuroscience 6(1), 63–85 (1995)

    Article  Google Scholar 

  25. Steinman, B.A., Steinman, S.B., Lehmkuhle, S.: Visual attention mechanisms show a center-surround organization. Vision Research 35(13), 1859–1869 (1995)

    Article  Google Scholar 

  26. Caputo, G., Guerra, S.: Attentional selection by distracter suppression. Vision Research 38(5), 669–689 (1998)

    Article  Google Scholar 

  27. Bahcall, D.O., Kowler, E.: Attentional interference at small spatial separations. Vision Research 39(1), 71–86 (1999)

    Article  Google Scholar 

  28. Mounts, J.R., Melara, R.D.: Attentional selection of objects or features: Evidence from a modified search task. Perception & Psychophysics 61(2), 322–341 (1999)

    Article  Google Scholar 

  29. Mounts, J.R.: Evidence for suppressive mechanisms in attentional selection: feature singletons produce inhibitory surrounds. Perception & Psychophysics 62(5), 969–983 (2000)

    Article  Google Scholar 

  30. Vanduffel, W., Tootell, R.B.H., Orban, G.A.: Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cerebral Cortex 10(2), 109–126 (2000)

    Article  Google Scholar 

  31. Kristjansson, A., Nakayama, K.: The attentional blink in space and time. Vision Res. 42(17), 2039–2050 (2002)

    Article  Google Scholar 

  32. Slotnick, S.D., Hopfinger, J.B., Klein, S.A., Sutter, E.E.: Darkness beyond the light: attentional inhibition surrounding the classic spotlight. Neuroreport 13(6), 773–778 (2002)

    Article  Google Scholar 

  33. Slotnick, S.D., Schwarzbach, J., Yantis, S.: Attentional inhibition of visual processing in human striate and extrastriate cortex. Neuroimage 19(4), 1602–1611 (2003)

    Article  Google Scholar 

  34. Müller, N.G., Kleinschmidt, A.: The attentional ‘spotlight’s’ penumbra: center-surround modulation in striate cortex. Neuroreport 15(6), 977–980 (2004)

    Article  Google Scholar 

  35. Schall, J.D.: On the role of frontal eye field in guiding attention and saccades. Vision Research 44(12), 1453–1467 (2004)

    Article  Google Scholar 

  36. Müller, N.G., Mollenhauer, M., Rösler, A., Kleinschmidt, A.: The attentional field has a Mexican hat distribution. Vision Research 45(9), 1129–1137 (2005)

    Article  Google Scholar 

  37. Rothenstein, A.L., Zaharescu, A., Tsotsos, J.K.: Second-order (non-Fourier) attention-based face detection. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 518–527. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  38. Bellhumer, P.N., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence 17(7), 711–720 (1997)

    Article  Google Scholar 

  39. Rothenstein, A.L., Tsotsos, J.K.: Selective Tuning: Feature Binding Through Selective Attention. In: Kollias, S., Stafylopatis, A., Duch, W., Oja, E. (eds.) ICANN 2006. LNCS, vol. 4132, pp. 548–557. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  40. Földiák, P., Young, M.: Sparse coding in the primate cortex. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 895–898. MIT Press, Cambridge (1995)

    Google Scholar 

  41. Mehta, A.D., Ulbert, I., Schroeder, C.E.: Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. Cerebral Cortex 10(4), 343–358 (2000)

    Article  Google Scholar 

  42. Bullier, J.: Integrated model of visual processing. Brain Research Reviews 36(2-3), 96–107 (2001)

    Article  Google Scholar 

  43. Barlow, H.B.: Single units and sensation: A neuron doctrine for perceptual psychology? Perception 1(4), 371–394 (1972)

    Article  Google Scholar 

  44. Milner, P.: A model for visual shape recognition. Psychol. Rev. 81, 521–535 (1974)

    Article  Google Scholar 

  45. von der Malsburg, C.: Nervous structures with dynamical links. Ber. Bunsenges. Phys. Chem. 89, 703–710 (1985)

    Article  Google Scholar 

  46. Singer, W.: Neuronal synchrony: a versatile code for the definition of relations? Neuron 24, 49–65 (1999)

    Article  Google Scholar 

  47. Shadlen, M.N., Movshon, J.A.: Synchrony unbound: a critical evaluation of the temporal binding hypothesis. Neuron 24, 67–77 (1999)

    Article  Google Scholar 

  48. Biederman, I.: Perceiving real-world scenes. Science 177(43), 77–80 (1972)

    Article  Google Scholar 

  49. Thorpe, S., Fize, D., Marlot, C.: Speed of processing in the human visual system. Nature 381(6582), 520–522 (1996)

    Article  Google Scholar 

  50. Evans, K.K., Treisman, A.M.: Perception of objects in natural scenes: Is it really attention free? Journal of Experimental Psychology: Human Perception and Performance 31(6), 1476–1492 (2005)

    Google Scholar 

  51. Haynes, J.D., Tregellas, J., Rees, G.: Attentional integration between anatomically distinct stimulus representations in early visual cortex. Proc. Natl. Acad. Sci. 102(41), 14925–14930 (2005)

    Article  Google Scholar 

  52. Pollen, D.A.: Explicit neural representations, recursive neural networks and conscious visual perception. Cerebral Cortex 13(8), 807–814 (2003)

    Article  Google Scholar 

  53. Rothenstein, A.L., Zaharescu, A., Tsotsos, J.K.: TarzaNN: A general purpose neural network simulator for visual attention modeling. In: Paletta, L., Tsotsos, J.K., Rome, E., Humphreys, G.W. (eds.) WAPCV 2004. LNCS, vol. 3368, pp. 159–167. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Rothenstein, A.L., Tsotsos, J.K. (2007). Modeling the Dynamics of Feature Binding During Object-Selective Attention. In: Paletta, L., Rome, E. (eds) Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint. WAPCV 2007. Lecture Notes in Computer Science(), vol 4840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77343-6_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77343-6_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77342-9

  • Online ISBN: 978-3-540-77343-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics