Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4840))

Included in the following conference series:

  • 1622 Accesses

Abstract

This paper describes a robotic architecture that uses visual attention mechanisms for autonomous navigation in unknown indoor environments. A foveation mechanism based on a bottom-up attention system allows the robot to autonomously select landmarks, defined as salient points in the camera images. Landmarks are memorized in a behavioral fashion by coupling sensing and acting to achieve a representation that is view and scale independent. Selected landmarks are stored in a topological map. During the navigation a top-down mechanism controls the attention system to achieve robot localization. Experiments and results show that our system is robust to noise and odometric errors, being at the same time able to deal with a wide range of different environments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Thrun, S.: Learning metric-topological for indoor mobile robot navigation. Artificial Intelligence 99(1), 21–71 (1999)

    Article  MATH  Google Scholar 

  2. Moravec, H., Elfes, A.: High resolution maps from wide angular sensors. In: Proceedings of the IEEE International Conference On Robotics and Automation (ICRA-85), pp. 116–121. IEEE Computer Society Press, Los Alamitos (1985)

    Google Scholar 

  3. Matumoto, Y., Sakai, K., Inaba, M., Inoue, H.: View-based approach to robot navigation. In: Proceedings of the 2000 IEEE/RSJ International Intelligent Robots and Systems, pp. 1702–1708. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  4. Meyer, J., Filliat, D.: Map-based navigation in mobile robots: I. a review of map learning and path-planning strategies. Elsevier Science, Amsterdam (2003)

    Google Scholar 

  5. Meyer, J.A., Filliat, D.: Map-based navigation in mobile robots: Ii. a review of map learning and path-planning strategies. Cognitive Systems Research 4, 283–317 (2003)

    Article  Google Scholar 

  6. Vasquez-Martn, R., del Toro, J., Bandera, A., Sandoval, F.: Data and model-driven attention mechanism for autonomous visual landmark acquisition. In: Proceedings of the IEEE International Conference on Robotisc and Automation, Barcelona, Spain, pp. 3372–3377 (2005)

    Google Scholar 

  7. Itti, L., Koch, C., Niebur, E.: A model of saliency-based visual attention for rapid scene analysis. IEEE Transaction on Pattern analysis and Machine Inteligence 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  8. Ouerhani, N., Hgli, H.: Robot self-localization usuing visual attention. In: Proceedings of the IEEE International Symposium on Computational Intelligence in Robotics and Automation, Espoo, Finland, pp. 309–314 (2005)

    Google Scholar 

  9. Rybak, I.A., Gusakova, V.I., Golovan, A.V., Podladchikova, L.N., Shevtsova, N.A.: A model of attention-guided visual perception and recognition. Vision Research 38, 2387–2400 (1998)

    Article  Google Scholar 

  10. Burns, J.B., Weiss, R.S, Riseman, E.M.: The non-existence of general-case view-invariants. In: Zisserman, A., Mundy, J. (eds.) Geometric Invariance in Computer Vision, MIT Press, Cambridge (1992)

    Google Scholar 

  11. Treisman, A.M., Gelade, G.: A feature-integration theory of attention. Cognitive Psychology 12, 97–136 (1980)

    Article  Google Scholar 

  12. Braun, J., Sagi, D.: Vision outside the focus of attention. Perception Psychophys 48, 45–58 (1990)

    Article  Google Scholar 

  13. Desimone, R., Duncan, J.: Neural mechanisms of selective visual attention. Annual Review in Neuroscience 18, 193–222 (1995)

    Article  Google Scholar 

  14. Itti, L., Koch, C.: Computational modelling of visual attention. Nature reviews in neurscience 2 (2001)

    Google Scholar 

  15. Reynolds, J.H., Desimone, R.: The role of neural mechanisms of attention in solving the binding problem. Neuron 24, 19–29 (1999)

    Article  Google Scholar 

  16. Koch, C., Ullman, S.: Shift in selective visual attention: towards the undelying neural circuitry. Human Neurobiology 4, 219–227 (1985)

    Google Scholar 

  17. Klein, R.M.: Inhibition of return. Trends in Cognitive Science 4, 138–147 (2000)

    Article  Google Scholar 

  18. Felleman, D.J., Essen, D.C.V.: Distributed hierarchical processing in the primate cerebral cortex. Cerebral cortex 1, 1–47 (1991)

    Article  Google Scholar 

  19. Driver, J., Frith, C.D.: Shifting baselines in attention research. Nature reviews in neurscience 1, 147–148 (2000)

    Article  Google Scholar 

  20. Nehmzow, U., Owen, C.: Robot navigation in the real world: experiments with manchester’s fortytwo in unmodified, large environments. Robotics and Autonomous Systems 33(4), 223–242 (2000)

    Article  Google Scholar 

  21. Engelson, S.P., McDermott, D.V.: Error correction in mobile robot map-learning. In: ICRA 1992. Proceedings of the international conference on robotics and automation, pp. 2555–2560. IEEE Computer Society Press, Los Alamitos (1992)

    Google Scholar 

  22. Yamauchi, B., Beer, R.: Spatial learning for navigation in dynamic environments (Special Issue on Learning Autonomous Robots). IEEE Transactions on Systems, Man and Cybernetics-Part B. 26(3), 496–505 (1996)

    Article  Google Scholar 

  23. Arleo, A., Millan, J.d.R., Floreano, D.: Efficient learning of variable-resolution cognitive maps for autonomous indoor navigation. IEEE Transactions on Robotics and Automation 15(6), 990–1000 (1999)

    Article  Google Scholar 

  24. Wichert, G.V.: Mobile robot localization using a self-organized visual environment representation. Robotics and Autonomous Systems 25, 185–194 (1998)

    Article  Google Scholar 

  25. Yamauchi, B., Schultz, A., Adams, W.: Integrating exploration and localization for mobile robots. Adaptive Behavior 7(2), 217–230 (1999)

    Article  Google Scholar 

  26. Jain, J., Jain, A.: Displacement Measurement and Its Application in Interframe Image Coding. IEEE Transactions on Communications 29(12), 1799–1808 (1981)

    Article  Google Scholar 

  27. Ducket, G., Nehmzow, U.: Experiments in evidence based localization for a mobile robot. In: Proceedings of the AISB 97 workshop on spatial reasoning in animals and robots, Springer, Heidelberg (1997)

    Google Scholar 

  28. Ducket, T., Marsland, S., Shapiro, J.: Learning globally consistent maps by relaxation. In: Proceedings of the international conference on robotics and automation (ICRA-2000), pp. 3841–3846. IEEE Computer Society Press, Los Alamitos (2000)

    Google Scholar 

  29. Juslez, B.: A brief outline of the texton theory of human vision. Trends in Neuroscience 7, 41–45 (1984)

    Article  Google Scholar 

  30. Posner, M.I., Presti, D.E.: Selective attention and cognitive control. Trends in Neuroscience 10, 13–17 (1987)

    Article  Google Scholar 

  31. O’Regan, J.K., Noe, A.: A sensorimotor account for vision and visual consciousness. Behavioral and Brain Sciences 24, 939–1031 (2001)

    Article  Google Scholar 

  32. Burt, P.J.: Smart sensing within a pyramid vision machine. In: Proceedings of the IEEE, vol. 76 (1988)

    Google Scholar 

  33. Grossberg, S., Mingolla, E., Todorovic, D.: A neural network architecture for preattentive vision. IEEE Transactions on Biomedical Engeneering 36, 65–84 (1989)

    Article  Google Scholar 

  34. Maybeck, P.S.: Stochastic models estimation and control, vol. 1. Academic Press, New York (1979)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Chella, A., Macaluso, I., Riano, L. (2007). Attention-Based Landmark Selection in Autonomous Robotics. In: Paletta, L., Rome, E. (eds) Attention in Cognitive Systems. Theories and Systems from an Interdisciplinary Viewpoint. WAPCV 2007. Lecture Notes in Computer Science(), vol 4840. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77343-6_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77343-6_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77342-9

  • Online ISBN: 978-3-540-77343-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics