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Abstract. This paper describes a case study for constructing the yearly
schedule of a secondary school in the Netherlands. This construction is
divided in three steps. In the first step we create cluster schemes contain-
ing the optional subjects. A cluster scheme consists of cluster lines, and
a cluster line contains classes which will be taught simultaneously. Part
of the problem is that the students are not yet assigned to the classes.
Once the cluster schemes are fixed, it remains to schedule the lessons to
time slots and rooms. We first schedule the lessons to day-parts, and once
this is completed we schedule the lessons to time slots within the day-
parts. Thanks to consistency checks in the day-part phase, going from
day-parts to time slots is possible. Finally, in the third step, we improve
the previously found schedule by a tabu search using ejection chains.
Compared to hand-made schedules, the results are very promising.

1 Introduction

In the past 25 years a lot of research has been done on automated High School
Timetabling. This research can be divided in two groups:

1. Theoretical oriented research and surveys, see for example, in chronological
order [5,7,9,18,21,23,24]. These papers either define some concepts and/or
methods, but do not describe real-life implementations.

2. Research based on several cases (usually high schools from the region). These
papers (hopefully) define the problem they study, and explain that their
methods perform quite well on the real-life cases considered. Examples of
these papers are found below.

What is apparent from the studies in the second class, is that the problems
differ widely among the countries. Of course, there are certain aspects that they
all have in common. This could be named the basic high school timetabling
feasibility problem replacing ‘lesson’ by ‘event’, this is the basic timetabling
problem):
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Given a set of lessons with needed resources, and time slots,

Assign resources and a time slot to each lesson, such that the resources
are not over-used.

We assume the situation that we need to construct a schedule for a week, which
is repeated for a certain period like a year or semester. A lesson has usually the
following resources with restrictions:

1. Class: the (virtual) group; can be used once per time slot. There are two
principally different situations:
– The classes are mutually disjoint: every student is in exactly one class.

This is called the ‘Class–Teacher model’.
– The classes are not disjoint: the class depends on the subject (students

have optional subjects). This occurs for example in Germany [4,11,25],
the Netherlands [12,26], and New Zealand [27].

In the first case, some intermediate cases can exist, where several classes are
combined and reshuffled based on level (easy math vs. difficult math), or
religion, or sex (physical education lessons).

2. Subject: the subject of the lesson; the (subject, class) combination can be
used once per day.

3. Students: the students that constitute the class of the lesson; a student can
be used once per time slot. In most countries the students are preassigned
to the class. However in case of optional subjects, these students might have
to be divided over different classes (the Netherlands: [12,20,26]).

4. Teacher(s): the teachers of the lesson; a teacher can be used once per time-
slot, if the teacher is available at that time. Usually a lesson has just one
teacher, which in most countries seems to be preassigned, while in some it
has to be assigned, for example in Australia [1], Greece [6], and the UK [28].

5. Room(s): the rooms needed for the lesson; a room can be used once per
time slot. Usually the lesson needs only one room, and this room has to be
assigned; some papers mention that a class has its own room (Greece [22],
Italy [19]). (Another possibility is that only room types – like music-room,
gymnasium, etc. – are assigned.)

From this we see that already the basic feasibility problem has several variants:
assign students or not, assign teachers or not, assign rooms or not.

As far as the objective function is concerned, the variants are even more
diverse. Here we mention two cases, which sometimes appear as hard constraints:

1. Compact schedules for classes, which means schedules for classes without
idle times. Here an idle time (for a class or teacher) is defined as a free
time slot between the first and last lesson of the day. In several cases this
is automatic, as a class has as many lessons as timeslots available, as in
Brazil [16,17], Italy [8,19], Spain [3], Switzerland [10], and the UK [28]. In
cases with optional subjects it is usual impossible to have compact sched-
ules. These schedules, on the student level now, are not often considered for
quality.



A Case Study for Timetabling in a Dutch Secondary School 269

2. Compact schedules for teachers. This is mentioned in most of the papers
above. Sometimes, as with classes, this is almost automatic (this assumes
that all, or at least almost all, teachers work full-time).

Considering all cases above, it is difficult to judge which problems are harder
than others. Probably most cases have aspects that are difficult to handle; either
feasibility is hard to attain, or it can be hard to obtain high quality schedules.
Similarly it is difficult to judge the capabilities of different methods; how well
would a method do on cases outside the studied ones? The lack of exchangeable
benchmarks is obvious here.

As for the Netherlands, we think that the high school timetabling problem
is quite difficult; we will try to explain that in the next section. Since De Gans
[12] in 1981 no study seems to be published internationally on real-life data from
the Netherlands. (Willemen [26] focuses on complexity issues.) Clearly a lot has
changed since 1981, and it is worth studying the situation as it stands now. The
process is still very dynamic, see Section 6.

2 Problem Description

The impetus for this research was a request in 2003 from the Kottenpark (a
location of ‘Het Stedelijk Lyceum’ in Enschede) to assist with creating the year
schedule. In the Kottenpark the timetable is still mainly made by hand, and
checked by computer. The reason for not using the commercial engine is mainly
quality: the engine is not able to generate any complete solution, and the part
that is generated is of poor quality.

In 2004, the Kottenpark had around 1000 students, 36 school classes, 71 teach-
ers, and 40 rooms. There were 1049 lessons to be scheduled. As such it is a school
of average size in the Netherlands. There are 38 time slots available for lessons.
The occupation of time slots by the students ranges from 76% (29 lessons per
week) up to 92% (35 lessons per week). In timetabling this school the following
difficulties are encountered.

– In the upper years, up to two-thirds of the lessons of the students are in
optional subjects. To handle these subjects, a cluster scheme (see below) is
constructed, which requires a certain number of time slots (the length of the
cluster scheme). It is sometimes difficult to reduce this length to get an a
priori schedulable situation.

– Around 75% of the teachers work part-time at the Kottenpark. Consequently
(by collective labor agreement) they are entitled to have 1, 2 or 3 days
without lessons; usually teachers have preferences for these days.

– Teachers have up to 26 lessons, most of them less. Hence avoiding idle time is
not automatic. The hand-made schedule contains 128 idle times for teachers,
an average of 1.9 per teacher.

– The lower years (without optional subjects) should have no idle times.
– The two gymnasiums are used for 100% of the time, often as a block (two

consecutive time slots), and always two classes (of the same age) combined.
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All these circumstances are quite common in the Netherlands. It seems that
scheduling the students, and the high amount of part-time teachers are quite
exceptional compared to other countries. Our approach consists of three phases,
devised to handle these problems:

1. Construct cluster schemes: the students are assigned to classes for the op-
tional subjects, and the classes to cluster lines.

2. Create a feasible schedule: assign all lessons to time slots, such that there are
no clashes.

3. Improve the schedule: improve the feasible schedule.

In the next sections, we will describe the three phases of our algorithm in more
detail.

3 Constructing the Cluster Schemes

3.1 Motivation

As one can easily imagine, scheduling the optional subjects constitutes a major
bottleneck in constructing (good) timetables. To get this process under con-
trol, cluster schemes are constructed first. In the Netherlands it seems that all
schools first construct cluster schemes. This is a way to avoid using individ-
ual students, essential when the schedule is constructed by hand. The system
with optional subjects was introduced in 1968 (Mammoetwet), while the revi-
sion of 1995 (‘Second Phase’) made things even more complicated. The report
of Simons [20] concerns the construction of cluster schemes, while De Gans [12]
assumes that the cluster schemes are already created.

We have to construct a cluster scheme for years with optional subjects. Each
cluster scheme consists of cluster lines. Each cluster line contains a number of
classes with different optional subjects, that will be scheduled at the same time
slots. The arrangement of classes in the cluster lines, and the assignment of
students to classes of their optional subjects must be such that each student
can attend the optional subjects he has chosen. So for each student it should
be possible to make an assignment to classes of his optional subjects, such that
these classes are in different cluster lines. Unfortunately, not all optional subjects
have the same number of lessons, neither have all students the same number of
optional subjects. Homogeneous tiling structures, as in [14], seem difficult to
attain. (The high percentage of part-timers also breaks homogeneity.)

The classes in a cluster line have a number of lessons. The maximal number
of lessons in a cluster line is called the cluster line length. The cluster scheme
length is the sum of the lengths of the cluster lines it contains; it represents the
number of time slots we have to reserve for the cluster scheme.

The main goal is to minimize the cluster scheme lengths. (Commercial soft-
ware prescribes the maximal number of cluster lines, which is less informative.)
For this there are the following reasons.
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– If the cluster scheme length is too high, it might be that there are not
enough time slots left for the obligatory subjects. In some years this causes
a problem. It can even happen that the school management decides to add
an extra class to decrease the cluster scheme length.

– A lower cluster scheme length increases the freedom in scheduling the re-
maining obligatory subjects.

– A lower cluster scheme length decreases the number of potential idle times.
Here it is important to remember that not all students might be present in
a cluster line. For the time slots of this cluster line these students are free. If
these students have a lesson earlier and later on the day, it is an idle time.

The secondary goal in a cluster scheme is to balance the classes of a subject. If,
for instance, there are three classes for the subject mathematics, and 79 students,
then the best balance is that the classes contain 26, 26 and 27 students. The
combination 23, 23 and 33 is forbidden, as this violates the maximum size (32 in
our case) of a class, while the combination 32, 32, 15 is not desirable. Balancing
is done for educational reasons, and for fairness towards the teachers.

3.2 Branch and Bound

The sizes of problem instances (up to 20 or 25 classes) make it worthwhile to
attempt careful enumeration. If we have 20 classes and 8 cluster lines, then a
priori there are 820 possibilities for classes in lines, which is clearly out of range.
However there are several ways to reduce the number of possibilities considerably.
In the enumeration there are two possible approaches.

1. Decide per step in which classes a student takes his optional subjects. In
this case we have to put the classes in lines, such that classes in a line have
no students in common. This can be viewed as a graph coloring problem
(classes are vertices, with edges between non-disjoint classes, and cluster
lines are colors).

2. Decide per step in which lines the classes are put. In each step we have to
solve a matching problem for each student, namely to decide in which lines
a student takes his optional subjects.

Both approaches will try to extend partial assignments, and step to the next pos-
sibility in case the configuration gives no solution. We chose the second approach
for two reasons:

– It seems easier to solve at each step a matching problem than a graph coloring
one.

– It seems easier to estimate our objectives, the cluster scheme length and the
balance of classes.

Hence our approach takes the following steps. We store, for instance, the best
100 solutions:

1. Place one student in a group for his k subjects, and place these groups in
the first k cluster lines. These groups are fixed, and will never be moved.
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2. Take the first not yet placed group G.
3. For cluster line 1 to the last cluster line, place G, and estimate the cluster

scheme length. If too high skip the case, and move G to the next cluster line.
4. Assign all students to the placed groups (increment for G). If not all students

can be assigned, stop the case and move G to the next line.
5. If there are non-placed groups left, return to 2.
6. Balance the groups, and calculate the objectives, the cluster scheme length

and the penalty for not-balanced groups. We compare solutions lexicograph-
ically, first by cluster scheme length, and then by balance. If necessary store
the solution. Continue with placing G in the next cluster line.

We give an overview of the methods we applied to speed up the search process.
For more details we refer to the technical report [15].

3.3 Using Statistics

Calculating the matchings at each step is very time consuming. A first simpli-
fication is to group students that have the same optional subjects. Apart from
this, we accumulate some statistics at the start. We will call an optional subject
with k classes a ‘k-grouper’.

– For any two 1-groupers, check if they have a student in common. If this is
the case, the corresponding classes have to be placed in different lines.

– For any two 1-groupers, and a 2-grouper, check if there is a student with
this combination of subjects. If this is the case, the corresponding 4 classes
have to occupy at least 3 lines.

To use these statistics in an efficient way, we decided to order the classes ac-
cording to the number of classes of the subject; the 1-groupers first, then the
2-groupers, then the 3-groupers, and so on. Note that placing the 1-groupers is
a graph coloring problem: the classes are the vertices of the graph, while two
vertices are connected if the corresponding classes have a student in common
(this is part of the statistics above).

When placing a 2-grouper, we similarly use the statistics. At the moment we
try to place the second class of this subject, we collect all 1-groupers in the
two corresponding lines. If two 1-groupers with the 2-grouper is chosen by a
student (this is in the statistics), the combination is forbidden, and does not
need consideration.

3.4 Symmetry

All lines are equivalent. Hence in case of eight lines, we gain a factor 8! by
removing equivalent solutions. We remove symmetric solutions by:

– Fixing one (difficult) student to classes, and fixing these classes in different
lines.

– Only place a class in a cluster line, when all previous lines are non-empty.
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– For two classes of the same subject we assume that the line number of the
first class is lower than the line number of the second class. This holds if
these classes that are not fixed by the difficult student (as described above).

Even this does not remove all symmetry. The situation that can occur is that a
subject S3 with (say) two classes is fixed in line 1. The subjects S1 and S2 are
placed before the non-fixed class of S3 is. Then the following can happen:

line 1: S3 S1

line 2: S2 S3
and

line 1: S3 S2

line 2: S1 S3

If the fixed class of S3 is not there, the second solution is forbidden; line 1 would
still be empty at the moment we start to place subject S1. It seems hard to
avoid this kind of symmetry.

3.5 Bounding

The next part we have to take care of is bounding. In our problem we have
two things to bound on: first the length of the cluster scheme, and second the
balancing of the classes.

The length of the cluster scheme can be estimated by the classes that were
placed in lines. In the case that not all classes are placed yet, we have a lower
bound for the cluster scheme length, which can be used for bounding: as soon
as the partial cluster scheme has a length exceeding the best obtained cluster
scheme, we prune the search tree.

At the moment we start to place the classes of a new subject j, we place it
in line i, and calculate (by matching) the maximum number of students Mij

that can be assigned. In the partial cluster scheme this is an exact calculation;
this number however, can decrease when new subjects are placed. As soon as all
classes of a subject are placed in cluster lines, we can estimate how far the classes
necessarily will deviate from the average size; again we prune if the deviation is
higher than the best found.

3.6 Balancing Heuristic

Once a complete cluster scheme has been found, and all classes have been put
in cluster lines, the assignments of students to classes have to be reconsidered.
The assignment were made by the Hungarian method, and hence by first fit; no
attention was paid to the number of students in the classes. In particular we
prefer that classes of the same subject contain approximately the same number
of students. Our heuristic for balancing is a greedy algorithm; here Mij is as
above, and Aj denotes the average size for classes of subject j.

1. Find the line i and subject j where Mij − Aj is negative and minimal. We
assign as many as possible students to this class, and discard the combination
(i, j) in the sequel. We continue until all (i, j) with Mij < Aj are treated.
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2. If for remaining combinations (i, j) we have that Mij − Aj is non-negative,
we turn our attention to classes which are still below average, and proceed
in the same way, with Mij replaced by the number of currently assigned
students.

We could continue with balancing of the classes above average, but we do not
do so. In practice there seems to be no need for it.

3.7 Pruning Based on Computation Time

The program we developed contains an option to prune parts of the search tree,
based on the time spent in the subtree: one can prescribe that for search depth
d only s seconds are allowed. Here d is usually between 1 and 4, while s is taken
as a few seconds. In this way we can do a quick scan of the search space within
one or two minutes. Especially for the harder cases, it turns out that solutions
are found much quicker this way.

3.8 Results

The methods above have been used at the Kottenpark during the last three
years. When running the program an upper bound for the cluster scheme length
must be given. For most years good solutions are found within a few seconds,
if at least one feasible solution exists. If no solutions exist, the search can take
several minutes or hours, as the complete search tree has to be checked.

4 Creating a Feasible Schedule

4.1 Motivation

Schools consider the creation of the cluster schemes as a preliminary phase;
usually a different application is provided for it, without interaction with the
timetabling itself. Once the cluster schemes are found, the next phase starts to
assign the lessons to time slots. Instead of assigning the lessons directly to time
slots, we will first assign them to day-parts. For this the days at Kottenpark are
divided in two day-parts: mornings of five time slots, and afternoons with three
time slots, except for the Thursday afternoon, which consists of one time slot.
There are several reasons to do this intermediate step.

– Several constraints are on daily, or on day-part level. These are the con-
straints that lessons of a class must be on different days, teachers are not
available on certain days or day-parts, and the number of teaching days for
teachers should be limited for part-time teachers. Such constraints can be
handled very well in this phase.

– It is unclear to which time slot we should assign a certain lesson, if we do
not know about all lessons to be assigned. Hence we will do a lot of useless
reshuffling.
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– Assigning lessons to 40 time slots in a week is much harder than assigning
lessons to the 5 or 3 time slots in a day-part for 10 times.

Of course there are certain drawbacks. The most important one is that a
feasible day-part schedule does not imply a feasible time slot schedule. This
problem we address in Section 4.3. Moreover we restrict the search space; while
mentioned above as an advantage, it could prevent us from improving certain
aspects in the solution.

4.2 Direct Heuristic

We proceed to schedule the lessons to day-parts. To do this, the lessons are
grouped by the class, or for the optional subjects, by the cluster line. For uni-
formity we create an artificial cluster line (with one class) for the compulsory
subjects. Hence in a stage of the direct heuristic we consider a cluster line, and
try to assign the lessons of the cluster lines to day-parts.

The method we use is a dynamic priority rule. At each stage we estimate
the difficulty of the cluster lines to be scheduled. The difficulty is based on the
weight of the cluster line (originally all weights are 0), and the availabilities
of the resources of the cluster line. We will schedule the most difficult cluster
line first. If this scheduling process breaks down, because a particular cluster
line cannot be assigned any more, we raise the weight of this cluster line, and
restart.

4.3 Compatibility Checking

If we assign cluster lines to day-parts, some conditions have to be checked. The
obvious necessary conditions are that a resource is scheduled for at most the
number of time slots that it is available. This, however, is not enough to guar-
antee schedulability on time slot level. We can take certain measures which in
practice are sufficient. These measures consist of creating time slot schedules
for day-parts and resources that get tight. More specifically, if for a resource
the slack in time slots is 1 or 0, we decide to do this check. In that case, all
lessons of this resource are taken, as well as the neighbors, and the neighbors’
neighbor (the compatibility graph). Here a neighbor is defined to be a lesson
with a common teacher, class, or student. We try to color this graph where
the colors are the available time slots. If we do not succeed within a certain
time limit, we assume that no coloring exists, and reject the day-part for this
lesson.

Here some special attention has to be taken towards the resource ‘room type’.
(We do not really schedule the rooms, but only make sure that we have enough
rooms of the required room type available.) The lessons with the required room
types are not necessarily neighbors in the compatibility graph. Hence, when
constructing the subgraph, we take all lessons with the required room type, and
add all neighbors and neighbors’ neighbors.
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4.4 Assigning the Time Slots

Once all lessons have been assigned to day-parts, we try to assign them to time
slots. For this we use a graph coloring heuristic, which colors the nodes one by
one (first fit). To sort the nodes, we use the weight of the nodes, where the
weight is originally the degree of the node. Each time a node cannot be colored
any more, we increase the weight of this node, and backtrack.

4.5 Results

Thanks to the checks described in Section 4.3 all lessons are scheduled after a
few restarts (see Section 4.2), which takes a few minutes. The quite extensive
compatibility tests turn out to be beneficial on the running time. We tried to
influence the coloring with regard to idle times for teachers. For this we also
started off with random orderings of the nodes (see Section 4.4), instead of
ordering by degree. Allowing 30 seconds per day-part for this random search
reduced the total number of idle times for teachers from 142 to 114. Repeating
the random searches 20 times, the total number of idle times dropped to 95.
Hence on this aspect we beat the hand-made schedule. Unfortunately there are
still idle times for the classes of the lower years, which we did not take into
account.

5 Improving the Schedule

5.1 Motivation

The previous phase aimed at assigning all lessons to time slots. Not much at-
tention was paid to quality yet; the emphasis was on finding a feasible schedule.
In the current phase, we try to improve the feasible schedule we found. Ejection
chains [2] combined with tabu search [13] seem to be very appropriate for im-
proving schedules. The quality of a schedule is determined per resource by the
idle times, and the division of lessons over the days for the resource. Hence we
can find a resource, with a low quality schedule, improve this schedule by shift-
ing some lessons, and prevent shifting back by placing this shift on a tabu list.
An improvement for one resource (teacher/class) automatically implies that for
other resources (class/teacher) some repairs have to be done; the shifted lessons
can have clashes, due to other resources. Such lessons, ‘conflict-lessons’, again
have their own conflicts, etc. Hence we run quite naturally into an ejection chain
of improvements.

5.2 Selecting the Shifts

We perform a tabu search, in which each step by itself is a chain of shifts. Here
a shift means that a lesson is moved from one time slot to another. We explain
how we find the shifts that we execute.
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1. First we select the resource A (teacher or class) with the worst schedule,
which is not tabu.

2. For resource A we consider all lessons and all free time slots. For each com-
bination (lesson, free time slot) we calculate the cost change for resource A
for moving a lesson to a free time slot. With respect to other resources of the
lesson, we only make sure that there is not more than one conflict lesson.

3. We select the C = 20 best candidates. The selected shifts we call the first
shift candidates.

4. Executing the first shift candidates, two things can happen:

– The other resources have no clashes; in this case the chain of shifts is
ended.

– There is one conflict-lesson (we did not allow more than one!), due to
resource B. We shift the conflict-lesson to a free time slot of resource B,
and calculate what is the best for resource B. Again we only consider
time slots with at most one conflict-lesson; time slots without conflict-
lesson are preferred.

If in the second case no new conflict arises, then the chain of shifts is ended.
Otherwise we proceed until a maximum of D = 10 shifts.

5. The chain with the highest cost reduction is executed; the reverse move of
first shift is made tabu for L = 10 moves. If no chain is found at all, resource
A itself is made tabu also for L moves.

5.3 Results

We let the algorithm run for 2500 iterations. Usually the best schedule is found
within 1500 iterations. With the parameters as above the algorithm runs for less
than one minute. Experiments were executed with different sets of constraints.
In case of the default Kottenpark set, the cost is reduced by more than 70%. The
total number of idle times of the teachers reduced to 48, while the idle times of
the lower years disappeared. Moreover the spreading of lessons for the teachers
was improved considerably.

6 Conclusion

The presented study is performed with data from a specific Dutch school, but we
believe that these data are representative for many schools in the Netherlands.
Unfortunately not all constraints are incorporated yet, which makes comparison
to the real timetable not completely fair. Comparing what is included we see a
huge improvement in quality; for instance the number of free periods for teachers
drops from 128 (hand-made) to 48, maintaining compact schedules for the lower
years.

After constructing the cluster schemes, we used a two-phase approach to ob-
tain feasible schedules; the first phase (Section 4) was designed to handle several
constraints related to part-time teachers. Viewing the result in the second phase
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(Section 5), one can wonder at the effectiveness of this approach; many lessons
were moved from one day to another, improving the spreading of lessons for part-
time teachers. Nevertheless the two-phase method is quite effective in obtaining
a feasible schedule.

In 2005, the Kottenpark introduced a new educational system in the two lower
years. In this system classes of 60 students are constructed. Most subjects are
taught with two teachers: the first teacher belongs to the subject (preassigned
as before), while the second teacher is one of the two preassigned to the class.
The 24 lessons of one class have to be divided between these two teachers, where
there is some preference for subjects, but split assignments are allowed. Because
of this, the program as described here is used operationally only for constructing
the cluster schemes.
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