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We address the following problem: on certain days of the school year parents
can meet teachers to discuss about their children. Each parent tries to meet a
selected subset of teachers and the meetings are individual. Since in most schools
there is no advance planning, parents wait in lines for a long time (one line for
each teacher), not only wasting time but also preventing the possibility to meet
several teachers.

In this paper we propose a planning method in order to guarantee that each
parent meets all required teachers and the wasted time is minimized. A prereq-
uisite for the method to work is that all meetings must last a fixed amount of
time, we call time slot. Practically, this constraint can be relaxed if a meeting is
shorter.

We first consider the problem of minimizing the total time needed for the
meetings. This problem can be modeled as a minimum makespan open-shop
problem: there is a set I of teachers (machines), a set J of parents (jobs) and
each parent j wants to meet a specified subset I; of teachers (each meeting is an
operation). The processing times are a;; = 1 if parent j wants to meet teacher ¢
and a;; = 0 otherwise.

This particular instance of the open shop problem is polynomial and can
be easily solved by means of the algorithm by Gonzalez and Sahni [2] for the
open-shop problem with preemption. The minimum makespan can be computed
as follows. For each i € I, denote by b; := [{j € J : a;; = 1}| the number
of parents that want to meet teacher ¢. Similarly, for each j € J, let ¢; :=
|I;| be the number of meetings required by parent j. It turns out that a :=
max{max;es b;, max;ecy¢;} is the minimum makespan, and the optimal schedule
is computed by solving a sequence of « bipartite matching problems, one for
each time slot.

Each matching problem assigns parents to teachers. Some teachers and/or
some parents may not be assigned in a particular time slot, which, in this case,
is called an idle time for the teacher and/or the parent. Although the concept
of idleness refers in general to both teachers and parents, we consider only idle
times of parents as a measure of wasted time. Furthermore, idle times of one
particular parent occurring either before or after his/her meetings do not really
count as a wasted time. Therefore, from now on we will use the term idle times
only for the parent idle times in between meetings.

More in detail, the algorithm by Gonzalez and Sahni uses the quantities
slack(i) = a — b; and slack(j) = a — ¢;, which are dynamically updated at each
iteration. Elements with zero slack are called critical and must be assigned. So
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an assignment of parents to teachers is computed under the only requirement
that critical teachers and critical parents must be assigned.

The structure of the above algorithm leaves some room to take into account
the lexicographically second objective function of the meeting problem, that
is minimizing the total number of idle times. The problem of minimizing the
number of idle times within a fixed makespan is NP-hard, as can be seen by
transforming the no-wait open shop problem O¢|no-wait, p;; € {0,1}|Cmax [1].
Being the problem NP-hard, we can approach its solution heuristically.

Our first strategy consists in solving, at each step, a max weight matching
problem instead of a feasible matching problem. To this aim let s;(j) € {0, 1,2}
be the state of parent j at time k, where the meaning is that si(j) = 0 if no
meeting has been assigned to parent j up to time slot (k—1) (included), sx(j) =1
if some, but not all, meetings have been assigned, and sx(j) = 2 if all meetings
have been assigned. Let Wy (j) be the number of idle times assigned to parent
j during time slots {1,...,k — 1} by the first (k — 1) matching problems. Then
each pair (4, 7) receives the weight

_fo it s1(j) = 0
Wiy '_{(uwk(j))2 i 5, (j) — 1 W

in the k-th matching problem (note that if s;(j) = 2 parent j is not considered
in the matching problem). Hence, until a parent has not been assigned, his/her
meetings receive a zero weight. As soon as a meeting for the parent is assigned,
the weight rises to one and then increases quadratically with the number of
assigned idle times.

With the cost function (1) the procedure tends to schedule the major part of
the meetings in the last slots, when all parents and teachers become critic. This
introduces inevitable idle times. In order to overcome this behaviour, we have
observed that it is useful to modify the cost function by randomly generating
the meeting costs so that parents still to be assigned might be encouraged to be
assigned a meeting. So we redefine (1) as

-1 with probability p;
0 with probability ps if sr(7) =0

Wyj = 1 with probability 1 —p; — pa ?
¢ (14 Wi(4))? ifsx(d) =1

where the probabilities p; and ps and the coefficient ¢ must be properly tuned.
A multirun use of this random algorithm has led to remarkable improvements.
However, the solution found this way may have some idle times. In order to
improve it we adopt the following local search procedures that modify the sched-
ule of a single teacher and a single parent, respectively. The first one considers
only exchanges between meetings of a same teacher. Given teacher 4, define the
weighted directed graph G(¢) having « nodes and, for each 1 < t1,t2 < «, an
arc (t1,t2). This arc is assigned a negative (positive) weight equal to the number
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of idle times deleted (introduced) by moving the meeting of ¢ currently sched-
uled at ¢; to time t5. Nodes corresponding to idle times of teacher i are called
sink nodes. Apparently, if there exists a directed cycle in G(i) of negative cost,
the corresponding sequence of switches in the meetings of ¢ decreases the global
wasted time by the cost of the cycle. Detecting a negative cycle is easy. If there
are no negative cycles in G(7) and there are negative paths ending in a sink node,
then we switch the meetings of ¢ according to the corresponding path. The search
for such cycles and paths can be repeated, after the necessary updating, until
no one exists.

With a symmetric approach, the second procedure tries to eliminate idle
times of parent j by performing local exchanges only in the meetings of j. To
this aim, define the graph H(j) having « nodes and an arc (¢1,ts) whenever the
teacher ¢ met by j at ¢; is idle at time ¢5. In this case, the meeting (i, j) can be
moved from t; to to. As a consequence, if there exists a directed path in H(j)
from either the first or the last active time of j to one of her/his idle times, the
corresponding sequence of exchanges decreases the wasted time of j by 1.

Finally we may also consider to resequence the meetings in order to decrease
the number of idle times. This procedure works effectively mainly for solutions
with many idle times. We build a complete graph with nodes corresponding to
matchings. Any Hamiltonian path corresponds to a sequence of matchings. If we
assign to each pair of matchings a cost given by the number of adjacent time
slots for the parents, the cost of an Hamiltonian path is equal to the number
of all meetings minus the number of all parents minus the number of idle time
blocks. An idle time block is a maximal set of adjacent idle times. Since the first
two quantities are invariant, a maximum Hamiltonian path provides a matching
sequence with the minimum number of idle time blocks. This is however different
from minimizing the number of idle times.
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