Skip to main content

Linear Linkage Encoding in Grouping Problems: Applications on Graph Coloring and Timetabling

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 3867))

Abstract

Linear Linkage Encoding (LLE) is a recently proposed representation scheme for evolutionary algorithms. This representation has been used only in data clustering. However, it is also suitable for grouping problems. In this paper, we investigate LLE on two grouping problems; graph coloring and exam timetabling. Two crossover operators suitable for LLE are proposed and compared to the existing ones. Initial results show that LLE is a viable candidate for grouping problems whenever appropriate genetic operators are used.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avanthay, C., Hertz, A., Zufferey, N.: Variable neighborhood search for graph coloring. European Journal of Operational Research 151, 379–388 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Brelaz, D.: New methods to color vertices of a graph. Communications of the ACM 22, 251–256 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  3. Burke, E.K., Newall, J., Weare, R.F.: A memetic algorithm for university exam timetabling. In: Burke, E.K., Ross, P. (eds.) Practice and Theory of Automated Timetabling. LNCS, vol. 1153, pp. 241–250. Springer, Heidelberg (1996)

    Google Scholar 

  4. Caramia, M., Dell’Olmo, P., Italiano, G.F.: New algorithms for examination timetabling. In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  5. Carter, M.W., Laporte, G., Lee, S.T.: Examination timetabling: algorithmic strategies and applications. Journal of the Operational Research Society 47, 373–383 (1996)

    Article  Google Scholar 

  6. Du, J., Korkmaz, E., Alhajj, R., Barker, K.: Novel clustering approach that employs genetic algorithm with new representation scheme and multiple objectives. In: Kambayashi, Y., Mohania, M.K., Wöß, W. (eds.) DaWaK 2004. LNCS, vol. 3181, pp. 219–233. Springer, Heidelberg (2004)

    Google Scholar 

  7. Even, S., Itai, A., Shamir, A.: On the complexity of timetable and multicommodity flow problems. SIAM Journal of Computing 5, 691–703 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  8. Falkenauer, E.: Genetic Algorithms and Grouping Problems. Wiley, New York (1998)

    Google Scholar 

  9. Fleurent, C., Ferland, J.A.: Genetic and hybrid algorithms for graph coloring. Annals of Operations Research 63, 437–461 (1996)

    Article  MATH  Google Scholar 

  10. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. Journal of Combinatorial Optimization 3, 379–397 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  12. Goldberg, D.E.: Genetic Algorithms in Search, Optimization, and Machine Learning. Addison-Wesley, Reading, MA (1989)

    MATH  Google Scholar 

  13. Holland, J.: Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor (1975)

    Google Scholar 

  14. Hertz, A., De Werra, D.: Using tabu search techniques for graph coloring. Computing 39, 345–351 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  15. Horn, J., Nafpliotis, N., Goldberg, D.E.: A niched Pareto genetic algorithm for multiobjective optimization. In: Proceedings of the First IEEE Conference on Evolutionary Computation. IEEE World Congress on Computational Intelligence, vol. 1, pp. 82–87. IEEE, Piscataway, NJ (1994)

    Chapter  Google Scholar 

  16. Johnson, D.S., Aragon, C.R, McGeoch, L.A, Schevon, C.: Optimization by simulated annealing: an experimental evaluation: Part II, graph coloring and number partitioning. Operations Research 39, 378–406 (1991)

    Article  MATH  Google Scholar 

  17. Johnson, D.S., Trick, M.A.: Cliques, Coloring and Satisfiability, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 26. American Mathematical Society, Providence, RI (1996)

    Google Scholar 

  18. Kirovski, D., Potkonjak, M.: Efficient coloring of a large spectrum of graphs. In: 35th Design Automation Conference Proceedings, pp. 427–432 (1998)

    Google Scholar 

  19. Leighton, F.T.: A graph coloring algorithm for large scheduling problems. Journal of Research of the National Bureau of Standards 84, 79–100 (1979)

    MathSciNet  Google Scholar 

  20. Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J.: A hybrid algorithm for the examination timetabling problem. In: Proceedings of the 4th International Conference on the Practice and Theory of Automated Timetabling, Gent, pp. 348–371 (August 2002)

    Google Scholar 

  21. Ozcan, E., Ersoy, E.: Final exam scheduler – FES. In: Proceedings of the 2005 IEEE Congress on Evolutionary Computation, vol. 2, pp. 1356–1363 (2005)

    Google Scholar 

  22. Paquete, L.F., Fonseca, C.M.: A study of examination timetabling with multiobjective evolutionary algorithms. In: Proceedings of the 4th Metaheuristics International Conference, MIC, Porto, pp. 149–154 (2001)

    Google Scholar 

  23. Radcliffe, N.J.: Formal analysis and random respectful recombination. In: Proceedings of the 4th International Conference on Genetic Algorithms, pp. 222–229 (1991)

    Google Scholar 

  24. Ramani, A., Aloul, F.A., Markov, I., Sakallah, K.A.: Breaking instance-independent symmetries in exact graph coloring. In: Design Automation and Test Conference in Europe, pp. 324–329 (2004)

    Google Scholar 

  25. Terashima-Marín, H., Ross, P., Valenzuela-Rendón, M.: Clique-based crossover for solving the timetabling problem with gas. In: Proceedings of the Congress on Evolutionary Computation, pp. 1200–1206 (1999)

    Google Scholar 

  26. Wong, T., Cote, P., Gely, P.: Final exam timetabling: a practical approach. In: Canadian Conference on Electrical and Computer Engineering, Winnipeg, vol. 2, pp. 726–731 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edmund K. Burke Hana Rudová

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ülker, Ö., Özcan, E., Korkmaz, E.E. (2007). Linear Linkage Encoding in Grouping Problems: Applications on Graph Coloring and Timetabling. In: Burke, E.K., Rudová, H. (eds) Practice and Theory of Automated Timetabling VI. PATAT 2006. Lecture Notes in Computer Science, vol 3867. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77345-0_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77345-0_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77344-3

  • Online ISBN: 978-3-540-77345-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics