
Statistical Runtime Checking of
Probabilistic Properties

Usa Sammapun1, Insup Lee1, Oleg Sokolsky1, and John Regehr2

1 University of Pennsylvania, {usa,lee,sokolsky}@cis.upenn.edu
2 University of Utah, regehr@cs.utah.edu

Abstract. Probabilistic correctness is an important aspect of reliable
systems. A soft real-time system, for instance, may be designed to toler-
ate some degree of deadline misses under a threshold. Since probabilistic
systems may behave differently from their probabilistic models depend-
ing on their current environments, checking the systems at runtime can
provide another level of assurance for their probabilistic correctness. This
paper presents a statistical runtime verification for probabilistic properties
using statistical analysis. However, while this statistical analysis collects
a number of execution paths as samples to check probabilistic properties
within some certain error bounds, runtime verification can only produce
one single sample. This paper provides a technique to produce such a
number of samples and applies this methodology to check probabilistic
properties in wireless sensor network applications.

Key words: Runtime verification, statistical monitoring, probabilistic
properties

1 Introduction

Probabilistic correctness is an important aspect of reliable systems, which could
tolerate some undesirable behaviors such as deadline misses or data loss. For
example, unlike hard real-time systems that strictly require computation to
complete within its deadline, soft real-time systems can tolerate some degree
of deadline misses. We can characterize this degree in terms of the acceptable
probability of a deadline miss. Another example is a wireless sensor network
application with probabilistic constraints on its behaviors to tolerate some de-
gree of data loss. Since probabilistic systems may deviate from their probabilis-
tic requirements due to unexpected environments or incorrect implementation,
checking the systems at runtime in addition to a static probabilistic check can
provide additional level of assurance for their probabilistic correctness.

Runtime verification is a technique for checking correctness of a system at
runtime by observing a system execution and checking it against its property
specification. One runtime verification framework is called MaC or Monitoring
and Checking [9, 12]. MaC provides expressive specification languages based on
Linear Temporal Logic [11] to specify system properties. Once the properties
are specified, MaC observes the system by retrieving system information from

2 U. Sammapun, I. Lee, O. Sokolsky, J. Regehr

probes instrumented into the system prior to the execution. MaC then checks
the execution against the system properties and reports any violations.

To check probabilistic properties, runtime verification can adopt the statisti-
cal technique [16] used in model checking to verify probabilistic properties. The
statistical technique simulates, samples many execution paths, and estimates
probabilities by counting successful samples against all samples. After the prob-
abilities are estimated, statistical analysis such as hypothesis testing is used to
determine statistically whether a system satisfies a probabilistic property with
a given level of confidence.

One particular difficulty in using this technique in runtime verification, how-
ever, is that a runtime checker follows only one execution path and cannot easily
collect many different executione paths as in probabilistic model checking. There-
fore, this one execution path, usually in a form of a trace of states or events,
needs to be decomposed into different individual samples, which can be done
only if a probabilistic system being observed has repeated or periodic behaviors.
Such behaviors are typically exhibited by the systems in our target domain.
Soft real-time schedulers repeatedly schedule tasks; network protocols repeat-
edly transmit or receive messages. This paper describes how MaC can break
down one execution into different individual samples and how MaC adopts the
statistical technique to check probabilistic properties at runtime. This technique
has been applied to check probabilistic properties in wireless sensor network
applications.

Our contributions are: 1) we provide a general statistical technique for check-
ing probabilistic properties at runtime, 2) the technique is described to and im-
plemented in an existing runtime verification framework called MaC, and 3) a
case study is presented for checking probabilistic properties in wireless sensor
network application.

Related Work. Runtime verification frameworks based on Linear Temporal
Logic, such as Java PathExplorer [7], work by Kristoffersen et al. [10], and work
by Stolz and Bodden [13], typically cannot be used to check probabilistic prop-
erties. Those that provide probabilistic properties such as Eagle [1], Temporal
Rover [4], and a framework by Jayaputera et al. [8] do not prescribe statistical
analysis to support the estimated probabilities. Finkbeiner et al. [5] discussed
collection of statistics over execution traces, yet their work was not concerned
with probability estimation.

2 Background: MaC

Monitoring and Checking or MaC [9, 12] is an established runtime verification
framework that can be used to check whether that a program is executing cor-
rectly with respect to its formal requirement specification. Before execution,
specification is written, and a program is instrumented with probes to extract ob-
servation. During runtime, a program execution is observed and checked against
the formal specification. An event recognizer detects low-level observation spe-
cific to program implementation and transforms it into high-level information,

Statistical Runtime Checking of Probabilistic Properties 3

which is forwarded to a checker. A checker determines whether the high-level in-
formation satisfies the formal specification. If violations are detected, the checker
reports to the user.

The main aspect of MaC is the formal requirement specification. MaC pro-
vides two specification languages. The low-level monitoring specification or Prim-
itive Event Definition Language (PEDL), defines which low-level application-
dependent observation is extracted, and how the observation is transformed into
high-level information. The high-level requirement specification or Meta-Event
Definition Language (MEDL), based on Linear Temporal Logic (LTL) [11], al-
lows one to specify safety properties in terms of high-level information. PEDL
is tied to a particular implementation while MEDL is independent of any imple-
mentation. Only MEDL is presented in this paper. See MaC [9] for PEDL.

High-level information in MEDL can be distinguished into events or condi-
tions. Events occur instantaneously during execution, whereas conditions repre-
sent system states that hold for a duration of time and can be true, false, or
undefined . For example, an event denoting a call to a method init occurs at
the instant the control is passed to the method, and a condition v < 5 holds as
long as the value v is less than 5. Events and conditions can be composed using
boolean operators such as negation !, conjunction &&, disjunction ||, and other
operators, as shown in Fig. 1.

E ::= e | E||E | E&&E | start(C) | end(C) | E when C
C ::= c | !C | C||C | C&&C | C → C | defined(C) | [E, E)

Fig. 1. Syntax of events and conditions

There are some natural events associated with conditions, namely, an instant
when a condition C becomes true and false, denoted as start(C) and end(C),
respectively. An event (E when C) is present if E occurs at a time when a
condition C is true. A condition defined(C) is true whenever a condition C has
a well-defined value, namely, true or false. Any pair of events define an interval
forming a condition [E1, E2) that is true from an event E1 until an event E2.

MEDL distinguishes special events and conditions that denote system spec-
ification. Safety properties are conditions that must always be true during an
execution. Alarms, on the other hand, are events that must never be raised. From
the viewpoint of expressiveness, both safety properties and alarms correspond
to the safety properties [11].

3 Probabilistic Properties

MaC offers additional syntax and semantics for specifying probabilistic prop-
erties. To check these probabilistic properties, MaC adopts a statistical tech-
nique used in model checking [16]. The statistical technique simulates, samples

4 U. Sammapun, I. Lee, O. Sokolsky, J. Regehr

many execution paths, and estimates probabilities by counting successful sam-
ples against all samples. MaC and other runtime verification frameworks operate
on the current execution path and are not typically designed to accumulate data
from many different execution paths. Because of this, the current execution path,
usually in a form of a trace of states or events, needs to be decomposed into non-
overlapping individual samples, which can be done only if a probabilistic system
being observed has repeated or periodic behaviors such as soft real-time sched-
ulers or network protocols.

To decompose an execution, MaC distinguishes one repetitive behavior from
another by using conditional probabilities. Written in terms of probabilistic prop-
erties, one can specify as given a condition A, does the probability that an out-
come B occurs fall within a given range? In terms of MaC events, one can specify
as given that an event e0 occurs, does the probability that an event e will occur
fall within a given threshold? This way, a sample space is reduced from events of
the entire system to only those events relevant to a given probabilistic property.
A set of e0 and e can be collected as one individual sample, and a sequence of
these sets can be collected as many different individual samples.

The probability observed from the system can be estimated by counting the
outcome event e that occurs in response to the given event e0 against all the
outcome event e. After probabilities are estimated, MaC uses statistical analysis
to determine statistically whether a system satisfies a probabilistic property us-
ing hypothesis testing. Hypothesis testing provides a systematic procedure with
an adequate level of confidence to determine the satisfiability of probabilistic
properties.

3.1 Syntax

To specify probabilistic constraints, we extend MaC with a probabilistic event
operator. The operator expresses the property that an event e occurs within
a certain probability threshold given that an event e0 occurs. The syntax for
the new operator is e pr(�p0, e0) where � ∈ {<,>} and p0 is a probability
constant. The event e pr(�p0, e0) can be used in any context where ordinary MaC
event operators (listed in Fig. 1) can. This event is raised when the checker has
accumulated enough confidence to reject the hypothesis that the above property
does not hold.

3.2 Semantics

To give semantics for the probabilistic properties, we describe how samples can
be collected from an execution and then show how to use hypothesis testing
over this set of samples to determine statistically the satisfaction of probabilistic
properties.

Recall that we have to answer the following question: given that an event
e0 occurs, does the probability that an event e will occur fall within a given
threshold? Such probabilistic properties can be defined directly using conditional
probabilities as

Statistical Runtime Checking of Probabilistic Properties 5

Pr(e|e0) =
Pr(e and e0)

Pr(e0)

To estimate Pr(e and e0), let m be the number of occurrences of all MaC
events in the trace. Let’s call these MaC events experiments. Let X = X1 +
X2 + ... + Xm be the random variable representing the number of successful
experiments. Here, Xi is the random variable representing the result of the ith

experiment. Then, Xi = 1 when the ith experiment is successful, and Xi = 0
otherwise. The experiment is successful when e occurs in response to e0. By this
we mean that either e occurs at the same time as e0, or e follows an occurrence
of e0, without a prior occurrence of e in between. Formally, Xi = 1 when the
event e′ = e && (e0 || end([e0, e))) occurs at time ti, and Xi = 0 otherwise.
Note that our notion of “occurs in response” does not necessarily imply a causal
dependency between the most recent occurrence of e0 and the current occurrence
of e, but reflects the fact that there is an occurrence of e0 that has not been
matched to an earlier occurrence of e.

Therefore, each Xi has a Bernoulli distribution with an unknown parameter
q ∈ [0, 1] where Pr(Xi = 1) = q, meaning that the probability that e′ will occur
is equal to q. X, therefore, has a Binomial distribution with parameters m and
q. Finally, let q̄ be an observed probability obtained from the samples we collect
where q̄ = X

m = ΣXi

m
Using similar reasoning, let Y = Y1 + Y2 + ... + Ym be a random variable

representing the number of e0 occurrences, where m is the number of all MaC
events or experiments. Yi = 1 when e0 occurs at in the ith experiment, and
Yi = 0 otherwise. Each Yi has a Bernoulli distribution with an unknown pa-
rameter q′ ∈ [0, 1] where Pr(Yi = 1) = q′. Thus, Y has a Binomial distribution
with parameters m and q′. Let q̄′ be an observed probability obtained from the
samples where q̄′ = Y

m = ΣYi

m .
Let p = Pr(e|e0), and let p̄ be an observed probability of p. Since

p = Pr(e|e0) =
Pr(e and e0)

Pr(e0)
=

Pr(Xi = 1)
Pr(Yi = 1)

,

then,

p̄ =
q̄

q̄′ =
ΣXi

m
ΣYi

m

=
ΣXi

ΣYi
.

Hence, the observed probability p̄ is a ratio of the number of occurrences of the
event e′ over the number of e0 occurrences:

p̄ =
|occurrences of e′|
|occurrences of e0|

e′ also ensures that the number of occurrences of e0 is always greater or equal
to the number of occurrences of e && (e0 || end([e0, e))), and thus p̄ will always
be less than or equal to 1. For the rest of this paper, let n be the number of
occurrences of e0.

6 U. Sammapun, I. Lee, O. Sokolsky, J. Regehr

Hypothesis Testing. Assume one needs to check a probabilistic property
e pr(�p0, e0) where � ∈ {<,>}, and p0 is a probability bound. It means given
that an event e0 occurs, does the probability that an event e will occur fall
within p0? The observed probability p̄ needs to be tested against p0. This is
done by using p̄ to approximate the true Binomial probability p based on a
statistical procedure of hypothesis testing. The first step, done before running
experiments, is to set up two hypotheses H0 and HA. H0, called null hypothesis,
is what we have previously believed and what we want to use the hypothesis
testing to disprove. HA, called alternative hypothesis, is an alternative to H0;
we will believe HA only if the data supports it strongly. In our case, we previ-
ously believe that the probabilistic event does not occur, and we would trigger
the probabilistic event only when we have strong evidence. For example, if the
probabilistic event is e pr(< p0, e0), then H0 is p ≥ p0 and HA is p < p0. Hence,
the acceptance of H0 means M, t 6|= e pr(< p0, e0), and the acceptance of HA

means M, t |= e pr(< p0, e0).
To perform hypothesis testing, we first define our test procedure. A test pro-

cedure is the rule for making a decision on whether to accept or reject hypothesis.
It has two components: a test statistic and a rejection region. A test statistic
is a function of the sample data that is used to decide hypothesis acceptance
or rejection. A rejection region is a set of values in which a null hypothesis H0

would be rejected. Our test statistic is based on the z-score, which represents
how far a normally distributed sample data is from the population mean. The
z-score allows us to tell whether the difference is statistically significant.

From the Central Limit Theorem, a large number of samples from any dis-
tribution approximates Normal distribution. For the Binomial distribution, the
sample is considered large enough when it satisfies both np ≥ 10 and n(1− p) ≥
10 [3]. Our implementation ensures that these constraints are satisfied before a
decision on the property satisfaction is made. Once the necessary sample size is
reached, the z-score can be used as our test statistic. The following equation is
used to calculate the z-score for p̄ [3]:

Z =
p̄− p0√

p0(1− p0)/n
(1)

Since p̄ = X
Y where X and Y are random variables with Binomial distribution,

then Z is a random variable with an approximately standard normal distribution.
z is defined as the expected value of Z. Positive values of z mean that p̄ is greater
than p0, while negative values mean that it is less than p0. When z is close to
zero, p̄ is close to p0. These simple observation will help us define the rejection
region.

To find the rejection region, we utilize the notion of error bounds. There are
two kinds of error bounds, known as Type I (α) and Type II (β). Type I error
is the probability of incorrectly verifying a property satisfaction and Type II
error is the probability of incorrectly verifying a property violation. Formally,
α = Pr{reject H0|H0 is true} and β = Pr{accept H0|HA is true}. We bound
the acceptable Type I error by the significance level zα, and use this bound as

Statistical Runtime Checking of Probabilistic Properties 7

the rejection region. For example, if H0 : p ≤ p0 and HA : p > p0, then

α = Pr{Z ≥ zα when Z has approximately a standard Normal distribution}

Rejection Region for e pr(> p0 , e0)

p zα
(a) Upper-tailed Test

Rejection Region for e pr(< p0 , e0)

p-zα
(b) Lower-tailed Test

Fig. 2. Upper- and Lower-tailed Tests

Since the value of the test statistic can be calculated using (1), hypotheses
and rejection regions can be set up, and a decision can be made. Consider e pr(<
p0, e0) and e pr(> p0, e0).

(a) Upper-tailed test: e pr(> p0, e0). A hypothesis is set up as H0 :
p ≤ p0 and HA : p > p0. The rejection region is z ≥ zα, shown in Fig. 2 (a).
Thus, reject H0 if z ≥ zα, meaning there is strong evidence supporting that p̄ is
greater than p0. Accept H0 otherwise. Hence, an event e pr(> p0, e0) is raised
or M, t |= e pr(> p0, e0) when H0 is rejected because of the strong evidence
supporting that the probability of e occurring given e0 is greater than p0.

(b) Lower-tailed test: e pr(< p0, e0). A hypothesis is set up as H0 : p ≥
p0 and HA : p < p0. The rejection region is z ≤ −zα, shown in Fig. 2 (b). Thus,
reject H0 if z ≤ −zα, meaning there is strong evidence supporting that p̄ is
less than p0. Accept H0 otherwise. Hence, an event e pr(< p0, e0) is triggered
or M, t |= e pr(< p0, e0) when H0 is rejected because of the strong evidence
supporting that the probability of e occurring given e0 is less than p0.

The two error types have an inverse effect on each other: decreasing the value
of α will increase the value of β. The value of β depends on the true value of a
system’s probability p. Assuming that p = p′, for the upper-tailed test β is the
following function of p′: β(p′) = Pr{Z < zαwhen p = p′}, and can be estimated
as

β(p′) = Φ

(
p0 − p′ + zα

√
p0(1− p0)/n√

p′(1− p′)/n
.

)
Similarly, for the lower-tailed test, β(p′) is Pr{Z > −zαwhen p = p′}. Thus,

8 U. Sammapun, I. Lee, O. Sokolsky, J. Regehr

β(p′) = 1− Φ

(
p0 − p′ + zα

√
p0(1− p0)/n√

p′(1− p′)/n
.

)

3.3 Discussion

The implemention for checking probabilistic properties is done through a sliding
window technique. When the number of experiments is small, both Type I and
Type II errors can be large. When Type I error or α is fixed and as the number
of experiments increase, Type II error or β decreases providing more reliable
results. Thus, more samples or more experiments can increase the confidence in
the results. However, in our first implementation of hypothesis testing [12], we
noticed that considering too many experiments leads to false alarms.

Recall from the semantics that the z value depends directly on the number of
experiments n. When p0 and the observed probability p̄ are fixed, if n increases,
z also increases and can become very sensitive to p0. It means that when p̄ only
differs slightly from p0, an alarm can be triggered. In practice, the observed
probability that is only slightly different from p0 has little practical significance
while the observed probability that differs from p0 by a large magnitude would
be worth being detected. Thus, our goal is to detect only those behaviors that
greatly differ from the desired probabilistic behaviors.

Consider the miss deadline example specified as missDeadline pr(> 0.2,
startT). If |missDeadline && (startT || end([startT, missDeadline) | is 21
and | startT | events is 100, then the observed p̄ = 21

100 = 0.21 and its z-
score is z = 0.25. With α = 97.5% and zα = 1.96, then z < zα, which
provides no strong evidence that the observed probability p̄ = 0.21 is greater
than p0 = 0.2. Therefore, an alarm is not raised. However, with the same ob-
served probability p̄ = 0.21 where n = 10000 and | missDeadline && (startT ||
end([startT, missDeadline) | = 2100, its z-score is z = 2.50. Assuming the same
α = 97.5% and zα = 1.96, then z ≥ zα, meaning that there is strong evidence
that the observed probability p̄ = 0.21 is greater than p0 = 0.2, and thus, an
alarm is raised. This example shows that the same observed probability and
error bounds can produce different hypothesis testing decisions depending on
the number of experiments considered. It follows that although a higher num-
ber of experiments can provide higher confidence of detecting violations, it also
generates false alarms.

This effect is studied in the area of statistics known as sequential analysis [15].
The proposed solution is to adjust zα when more samples become available. Here,
we provide an alternative solution that keeps the significance level constant but
instead removed older samples from the set. We maintain the sliding window
of samples that keeps the number of experiments used in checking constant.
When the number of observed experiments exceeds the window size, we discard
the earliest experiments. In MaC, the default window size is chosen to satisfy
the constraints np ≥ 10 and n(1 − p) ≥ 10. This way, we can ensure that the
sample size is large enough to approximate Normal distribution and reduce Type

Statistical Runtime Checking of Probabilistic Properties 9

II errors but still not too large to affect the sensitivity of the z-score to large
sample size. We believe that the size of the window should also depend on the
chosen significance level. This relation is the subject of our on-going research.

Sliding windows also help deal with unobservable mode switches in the sys-
tem. For example, a soft real-time task may miss its deadline more often in an
emergency situation, when a machine is more heavily loaded with extra tasks
to handle the emergency, than in the nominal case, when the machine is more
lightly loaded. Without the sliding window, experiments that occurred before
the mode switch would affect the statistics long after the mode switch happens
and delay — or even prevent — the detection of the probabilistic property viola-
tion in the new mode. The underlying assumption here, of course, is that mode
changes are infrequent relative to the experiments. Precise characterization of
the relationship between mode switching behavior and window size also requires
further research.

4 Case Study: Checking Wireless Sensor Network
Applications

A wireless sensor network (WSN) usually comprises of a collection of tiny devices
with built-in processors that gather physical information such as temperature,
light, or sound, and communicate with one another over radio. WSN applica-
tions sit on top of an operating system called TinyOS [2]. TinyOS provides
component-based architecture with tasks and event-based concurrency allow-
ing applications to connect different components that coordinate concurrency
via tasks and events. TinyOS has a small scheduler and many reusable system
components such as timers, LEDs, and sensors. These components are either
software modules or thin wrappers around hardware components.

TinyOS itself and WSN applications are written in nesC [6], an extension of
C that provides a component-based programming paradigm. Before applications
can be run on hardware, TinyOS itself and applications are compiled into C pro-
grams, which are then compiled again into specific hardware instructions. These
hardward instructions can be downloaded directly onto the physical devices or
a simulator. Most WSN applications are developed and tested on a simulator
before they are deployed in the environment because on-chip testing and debug-
ging are very difficult since it cannot tell a developer what causes the perceived
errors. A simulator usually produces detailed execution steps taken in a program
and allows a developer to examine his or her program to find bugs or errors.

However, the data returned by a simulator may be too detailed and over-
whelming making the process of finding errors difficult. This case study takes a
higher level approach by using MaC to aggregate the simulator data and allows
developers to formally specify specific patterns of bugs or properties that an ap-
plication must hold in an aggregate fashion. Properties of WSN applications may
be specified to examine periodic behaviors, identify a faulty node, and analyze
send and forward behaviors. MaC then monitors the application’s data produced
by a simulator and checks the data against the application’s specification. In this

10 U. Sammapun, I. Lee, O. Sokolsky, J. Regehr

case study, we use Avrora [14], a widely used simulator for WSN applications.
Avrora provides an instrumentation capability for MaC to retrieve information
about each sensor node running on the network environment within Avrora. It
allows MaC to use this information to monitor and check applications run on
Avrora against their specification requirements.

The result of the monitoring and checking allows us to gain some under-
standing of relevant behaviors of wireless sensor devices and can narrow the gap
between the high-level requirement and the implementation of an application.

0

1

63

852

74

Base
Station

Fig. 3. Possible routes discovered by Surge

For the case study, we chose Surge application [6]. Surge periodically samples
a sensor to obtain environment information such as light or temperature and
reports its readings to a base station. Before sampling, each node discovers a
multi-hop route to a base station in terms of a spanning tree by sending messages
to its neighbor and then establishing an appropriate node as its parent. After the
route is discovered, each node samples environment and sends data to its parent,
which then forwards to its parent until the data arrives at the base station. When
Surge is run on Avrora, node locations must be supplied to the simulator. In this
paper, nine nodes are formed in a 3×3 grid. Figure 3 presents possible multi-
hop routes that can be discovered by Surge. Surge consists of different TinyOS
components such as a timer, a multi-hop router, and a sensor, among others.
Surge wires these TinyOS components appropriately and implements operations
such as a task SendData that reads a sensor and sends data. Tasks from Surge and
TinyOS are logged and sent to MaC to be checked against Surge’s specification.

4.1 Identifying a faulty node.

One property in the Surge application is to identify a faulty node using proba-
bilistic properties. A node can be identified as faulty if it often fails to send data
periodically or stops sending data where often means with probability of 0.15.
It can be written in terms of a MaC alarm as failSend pr(> 0.15, sendData).
It states an alarm should be raised when a task misses its deadline with a prob-
ability > 0.15 given that an event sendData has occurred. Thus, the observed
probability p̄ can be calculated as follows.

p̄ =
| failSend && (sendData || end([sendData, failSend))) |

| sendData |

Statistical Runtime Checking of Probabilistic Properties 11

Once the properties are specified, MaC can check Surge via Avrora against
these properties. The faulty node error is a physical error rather than a software
error. Because the environment simulated by Avrora is perfect, it is impossible to
detect this error on Avrora unless an artificial bug is introduced into Avrora to
simulate the unpredictable environment of sensor nodes. In this paper, using the
java class Random, an artificial bug is introduced into nodes 1, 4, and 8, shown
in Figure 3. The faulty nodes would fail to send a message with probabilities
indicated in Table 1. Given the window size of 80 and a 97.5% significance level
(which yields zα = 1.96), an alarm is raised only for Node 4. Note that the
alarm is not raised for Node 8, which barely exceeds the threshold. The absence
of an alarm means that the difference is not statistically significant for the given
confidence level.

Node Number of Sends Number of Failss p̄ z Alarm

0,2,3,5,6,7 80 0 0.0 -3.757 No
1 80 5 0.0625 -2.192 No
4 80 19 0.2375 2.192 Yes
8 80 13 0.1625 0.313 No

Table 1. Probabilistic send in nodes 1, 4, and 8

5 Conclusions

Probabilistic property specifications for runtime verification are needed because
system behaviors are often unpredictable due to ever-changing environments and
cannot be checked statically. Unlike model checking, which can sample multi-
ple execution paths, runtime verification operates on a single execution path,
which needs to be decomposed into non-overlapping samples. We present a tech-
nique to decompose a trace into several samples based on specification of two
kinds of events: one that starts an experiment and the other that denotes its
successful completion. Once samples are collected, the probability of success is
estimated, and the probabilistic property is checked using hypothesis testing.
This paper extends our earlier work [12] by presenting a cleaner semantics based
on conditional probabilities and discusses a new implementation approach that
is based on a sliding window of samples considered in the hypothesis testing. We
present case study, in which we monitor executions of wireless sensor network
applications via a simulator. Future work includes a more thorough analysis
of the sliding window technique and a more complete case study of the WSN
application, directly via their physical devices instead of a simulator.

12 U. Sammapun, I. Lee, O. Sokolsky, J. Regehr

References

1. H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime ver-
ification. In Proceedings of 5th International Conference on Verification, Model
Checking and Abstract Interpretation, pages 44–57, Vanice, Italy, 2004.

2. D. E. Culler, J. Hill, P. Buonadonna, R. Szewczyk, and A. Woo. A network-
centric approach to embedded software for tiny devices. In Proceedings of the ACM
Conference on Embedded Systems Software (EMSOFT), Tahoe City, California,
October 2001.

3. J. L. Devore. Probability and Statistics for Engineering and the Sciences. Duxbury
Thomson Learning, 2000.

4. D. Drusinsky. Monitoring temporal rules combined with Time Series. In Proceed-
ings of the 2003 Computer Aided Verification Conference (CAV), July 2003.

5. B. Finkbeiner, S. Sankaranarayanan, and H. B. Sipma. Collecting statistics about
runtime executions. Formal Methods in System Design, 27(3):253–274, 2005.

6. D. Gay, P. Levis, R. von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In Proceedings of
the ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation, 2003.

7. K. Havelund and G. Roşu. Java PathExplorer – A runtime verification tool. In
Proceedings of the 6th International Symposium on Artificial Intelligence, Robotics
and Automation in Space, 2001.

8. J. Jayaputera, I. Poernomo, and H. Schmidt. Runtime verification of timing and
probabilistic properties using WMI and .NET. In Proceedings of the 30th EU-
ROMICRO Conference, 2004.

9. M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-MaC: a
runtime assurance approach for Java programs. Formal Methods in Systems Design,
24(2):129–155, March 2004.

10. K. J. Kristoffersen, C. Pedersen, and H. R. Anderson. Runtime verification of
Timed LTL using using disjunctive normalized equation systems. In Proceedings
of the 3rd International Workshop on Runtime Verification, 2003.

11. Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, 1992.

12. U. Sammapun, I. Lee, and O. Sokolsky. RT-MaC: Runtime monitoring and check-
ing of quantitative and probabilistic properties. In Proceedings of the 11th IEEE
International Conference of Embedded and Real-Time Computing Systems and Ap-
plications, 2005.

13. V. Stolz and E. Bodden. Temporal assertions using AspectJ. In Proceedings of the
5th International Workshop on Runtime Verification, July 2005.

14. B. L. Titzer. Avrora: The AVR simulation and analysis framework. Master’s thesis,
University of California, Los Angeles, June 2004.

15. A. Wald. Sequential Analysis. Dover Phoenix Editions, 2004.
16. H. L. S. Younes, M. Kwiatkowska, G. Norman, and D. Parker. Numerical vs.

statistical probabilistic model checking: An empirical study. In Proceedings of the
10th International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, 2004.

