
OASiS: A Service-Oriented Architecture for
Ambient-Aware Sensor Networks�

Xenofon Koutsoukos, Manish Kushwaha, Isaac Amundson,
Sandeep Neema, and Janos Sztipanovits

Institute for Software Integrated Systems
Department of Electrical Engineering and Computer Science

Vanderbilt University
Nashville, Tennessee 37235, USA

{xenofon.koutsoukos,manish.kushwaha,isaac.amundson
sandeep.neema,janos.sztipanovits}@vanderbilt.edu

Abstract. Heterogeneous sensor networks are comprised of ensembles
of small, smart, and cheap sensing and computing devices that permeate
the environment, as well as resource intensive sensors such as satellite
imaging systems, meteorological stations, and security cameras. Emer-
gency response, homeland security, and many other applications have
a very real need to interconnect these diverse networks and access in-
formation in real-time. Web service technologies provide well-developed
mechanisms for exchanging data between heterogeneous computing de-
vices, but they cannot be used in resource-constrained wireless sensor
networks. This paper presents OASiS, a lightweight service-oriented ar-
chitecture for sensor networks, which provides dynamic service discov-
ery and can be used to develop ambient-aware applications that adapt
to changes in the network and the environment. An important advan-
tage of OASiS is that it allows seamless integration with Web services.
We have developed a middleware implementation that supports OASiS,
and a simple tracking application to illustrate the approach. Our results
demonstrate the feasibility of a service-oriented architecture for wireless
sensor networks.

1 Introduction

Wireless sensor networks (WSNs) consist of small, inexpensive computing de-
vices which interact with the environment and communicate with each other
to identify spatial and temporal patterns of physical phenomena [1]. A sen-
sor web is a heterogeneous collection of such networks, and can also include
resource-intensive sensing platforms such as satellite imaging systems, meteo-
rological stations, and security cameras. Such heterogeneous sensor networks
can greatly benefit applications ranging from emergency response to homeland
security [2], [3], [4].
� This work is partially supported by ARO MURI W911NF-06-1-0076, Microsoft Ex-

ternal Research, and by NSF Grant CCR-0225610.

F. Kordon and O. Sokolsky (Eds.): Monterey Workshop 2006, LNCS 4888, pp. 125–149, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

126 X. Koutsoukos et al.

At present, users wishing to deploy WSN applications must be adept at
low-level sensor network programming, as well as implementing the necessary
domain-specific functionality. These applications must be able to run on large
networks with nodes that have varying capabilities, are manufactured and oper-
ated by different vendors, and are accessed by multiple clients exercising different
functionalities. A service-oriented architecture (SOA) offers flexibility in the de-
sign of WSN applications since it provides accepted standards for representing
and packaging data, describing the functionality of services, and facilitating the
search for available services which can be invoked to meet application require-
ments [5]. SOA deployment has already proved successful on the World Wide
Web, however Web service technologies have been developed assuming standard
Internet protocols and are not realizable in resource-constrained sensor networks.

This paper presents OASiS, an Object-centric, Ambient-aware, Service-ori-
ented Sensornet programming model and middleware implementation for WSN
applications. In the object-centric paradigm, the application programmer is pre-
sented with a layer of abstraction in which the phenomenon monitored by the
sensor network is represented by a unique logical object which drives the appli-
cation [6]. The model is ambient-aware, which enables the application to adapt
to network failures and environmental changes by employing a dynamic service
discovery protocol. OASiS is a lightweight framework which avoids the use of
bulky XML-based messages found in Web service standards, however, it still
provides a simple mechanism for Web service integration.

We have implemented a suite of middleware services for the Mica2 mote hard-
ware platform [17] running TinyOS [18] to support OASiS. Key characteristics
of our approach that can benefit the design of sensor network applications are:

– Dynamic service discovery and configuration for reacting to changes in the
network due to failures and unreliable communication links.

– Application reconfiguration for reacting to changes in the behavior of the
monitored phenomenon.

– Service deployment onto heterogeneous platforms using well-defined inter-
faces enabling a seamless integration.

– Real-world integration by incorporating spatial service constraints that are
necessary to monitor physical phenomena.

– Data aggregation by using services which accept input from multiple sensor
nodes.

The OASiS programming model can be used to build a wide variety of dataflow
applications such as target tracking, fire detection and monitoring, and dis-
tributed gesture recognition. To demonstrate the feasibility and utility of OA-
SiS, we have developed a simplified indoor tracking experiment, which monitors
a heat source as it travels through the sensor network region. The application is
comprised of services provided by several resource-constrained sensor nodes, but
it also invokes a Web service provided by a remote server. By providing access
to the Web service, we incorporate functionality into our WSN application that
would otherwise be unattainable.

OASiS 127

This paper is organized as follows. Section 2 overviews our programming
model and Section 3 describes dynamic service configuration. Our middleware
implementation is presented in Section 4. Section 5 presents a case study followed
by a scalability analysis in Section 6. In Section 7, we compare our research to
similar work that has recently appeared in the literature. Section 8 concludes.

2 The OASiS Programming Model

This section presents the OASiS programming model. To illustrate the model, we
use an environmental monitoring example in which a network of chemical sensor
nodes is deployed for detecting and tracking chemical clouds. Upon detection,
the sensor network begins estimating the speed and heading of the cloud, and
continues to do so until the cloud leaves the sensing region. This tracking data is
forwarded to a base station, which alerts local emergency management officials.

2.1 The Object-Centric Paradigm

The entity that drives an object-centric application is the physical phenomenon
under observation. In OASiS, the physical phenomenon is represented by a logi-
cal object, which is comprised of a finite state machine (FSM), a service graph for
each FSM mode, and a set of state variables. Figure 1 illustrates this representa-
tion in the context of the chemical cloud example. The estimated position of the
chemical cloud is maintained by the logical object using the state variables (e.g.
the mean and variance of the center of the chemical cloud). Each FSM mode
represents a specific behavior of the chemical cloud, (e.g. stationary or moving),
and contains a service graph that represents a dataflow algorithm. The algorithm
is executed periodically, and its output is used to update the state. When the
behavior of the physical phenomenon changes, the logical object transitions to
a new mode containing a different service graph.

The logical object is instantiated upon detection of a physical phenomenon of
interest. This is achieved by comparing sensor data with an object context, which
defines the detection conditions for the physical phenomenon. This comparison
is made periodically at a frequency specified by a refresh rate. Because multiple
nodes may detect the same physical phenomenon at roughly the same time, a
mechanism is required to ensure that only one logical object is instantiated.
To provide this guarantee, OASiS employs an object-owner election algorithm
similar to that of [6], which is executed by each candidate node.

After object instantiation completes, exactly one node, referred to as the ob-
ject node, is elected owner of the logical object. The logical object initiates in
the default mode of the FSM and starts the process of dynamic service con-
figuration (described below), after which the application begins execution. The
object maintenance protocol evaluates the mode transition conditions every time
the object state is updated. If a mode transition condition evaluates true, the
protocol makes the transition to the new mode. The mode transition involves
resetting any logical object state variables, if applicable, and configuring the new

128 X. Koutsoukos et al.

Fig. 1. OASiS: Programming Model

service graph corresponding to the new logical object mode. Because OASiS is
a programming model for resource constrained WSNs, the FSM is intended to
contain only a small number of modes representing a few broad behaviors of the
physical phenomenon. We also assume the frequency of mode transitions will be
much slower than the sampling rate required for tracking the phenomenon.

The logical object has a migration condition, which if evaluates true, invokes
the object migration protocol. The selection policy for the migration destination
is tied to the condition that triggers the migration protocol. In the above exam-
ple, an increase in the variance of the location estimate can serve as a migration
condition, and the owner selection policy will choose the node that is currently
closest to the chemical cloud. Another migration condition could be a low power
reading on the object-node, in which case the selection policy chooses a nearby
node with a sufficient power reserve. The migration process consists of running
the owner election algorithm to select the migration destination based on the
selection policy and transferring the object state to the new object node. In
this way the logical object follows the physical phenomenon through the sens-
ing region. When the sensor network is no longer able to detect the physical

OASiS 129

phenomenon, the logical object must be destroyed. This is a simple matter of
resetting the logical object state to null. After an object has been destroyed, the
sensor network begins searching for a new physical phenomenon.

The goal of an object-centric programming model is to provide abstractions
focusing on the physical phenomena being monitored, thus bypassing the com-
plex issues of network topology and distributed computation inherent to sensor
network application programming. This effectively transfers ownership of com-
mon tasks such as sensing, computation, and communication from the individual
nodes to the object itself. In addition, object-centric programming in OASiS fa-
cilitates dynamic service discovery and configuration by considering only a single
neighborhood in the network and solving a localized constraint satisfaction prob-
lem. Details are discussed in Section 3.

2.2 Services in Sensor Networks

In OASiS, each mode in the logical object FSM contains a service graph whose
constituent services provide the functionality necessary to update the state.
Specifically, a service graph contains a set of services, a set of bindings, and
a set of constraints, where a binding is a connection between two services, and a
constraint is a restrictive attribute relating one or more services. We assume that
the service graph is known a priori for each mode. Note that the service graph is
simply a specification of an application and not the actual implementation. The
implementation is provided by the services themselves, which may or may not be
provided by the object node. Services are resources capable of performing tasks
that form a coherent functionality from the point of view of provider entities
and requester entities [7]. They are the basic unit of functionality in OASiS, and
have well-defined interfaces which allow them to be described, published, discov-
ered, and invoked over the network. Each service can have zero or more input
ports and zero or one output port. Services are modular and autonomous, and
are accessible by any authorized client application. For these reasons, services
are typically stateless.

Figure 2 depicts the service graph for tracking a moving chemical cloud. Our
localization algorithm requires chemical concentration measurements from sen-
sor nodes surrounding the center of the cloud, and the current wind velocity in
the region. Therefore, the service graph consists of Chemical Sensor services and
one Wind Velocity service whose outputs are connected to the inputs of a Local-
ization service. The Localization service uses a Kalman filter [8], and therefore
requires current state variables obtained via an input port connected directly to
the object. Similarly, the Localization service passes the updated coordinates of
the chemical cloud back to the logical object. The Localization service is also
connected to a Notification service, which informs the emergency management
agency of the cloud’s current position.

Because services can be publicly accessible, an attempted invocation might
be blocked due to mutual exclusion if the service is currently executing some
shared resource. Our programming model accounts for this with a globally
asynchronous, locally synchronous (GALS) model of computation [9]. GALS

130 X. Koutsoukos et al.

Fig. 2. Service Graph for Chemical Cloud Tracking Application

guarantees that communication between services will occur asynchronously (i.e.
non-blocking), while intra-service communication such as method calls will ex-
hibit synchronous (blocking) behavior. In this manner, a service never has to
wait for its output to be consumed before processing data arriving on an input
port. As such, GALS is an important and desirable paradigm for service-oriented
applications for sensor networks.

Application services can run on the resource-constrained nodes of the sensor
network or they may be executed on more powerful sensor nodes in a high-
bandwidth network. In our work, these resource-intensive services are imple-
mented as Web services. We elect to use Web services due to their well-defined
and documented standards. By taking advantage of Web services, applications
have access to a wide range of functionality which would otherwise be unattain-
able. For example, our Localization service requires the wind velocity in the
region. One option for obtaining the wind velocity is to equip a subset of sensor
nodes with anemometers, however this approach can be cost-prohibitive and dif-
ficult to implement. Instead, we rely on an Internet-based Wind Velocity service,
for example, one provided by the U.S. National Weather Service. The service in-
terface definition is provided in a Web Service Definition Language (WSDL) file
available on the host server. This provides us with the information necessary to
access the Web service, including input and output parameters and their data
types.

The modular and autonomous properties of services facilitate application
programming and provide an efficient mechanism for application reconfigura-
tion during runtime. Because services provide an interface describing their func-
tionality in terms of inputs and outputs, the programmer does not have to be

OASiS 131

concerned with their physical placement, hardware platform, or implementation
language. Furthermore, services allow new functionality to be easily inserted into
the network without having to redeploy the underlying WSN application.

2.3 Service Constraints

It is often undesirable for multiple services in an application to be running con-
currently on the same node. Conversely, there arise situations in which two ser-
vices must be running on the same node. Many localization algorithms require
sensing services to be situated in a precise spatial configuration. Other sensor
node properties such as power level and physical position may also be impor-
tant when deciding where to run a service. The ability to specify these types of
constraints is a necessary aspect of composing service graphs at run-time.

Typical constraints associated with a service graph can be categorized as
either property or resource-allocation constraints. Property constraints specify
a relation between the properties of services (or the nodes providing the ser-
vices) and some constant value. The Enclose property constraint, for example,
specifies that nodes providing services a, b, and c must surround the physical
phenomenon of interest. The Enclose constraint is very important for track-
ing spatial phenomena and is discussed in more detail in Section 3. Resource-
allocation constraints define a relationship between the nodes that provide the
services. For example, a resource-allocation constraint can specify that services
a, b, and c must run on different nodes (or must all run on the same node).

Constraints can further be categorized as being either atomic or compositional
based on their cardinality, or arity. Hence, a constraint involving a single service
is an atomic (unary) constraint, while constraints involving two (binary) or more
(n-ary) services are compositional constraints.

In the following, we formally define the constraints considered in our frame-
work. A method for determining a service configuration which satisfies such
constraints is presented in Section 3.
(1) Atomic property constraint:

service.provider.p op K

where p is a property of the node providing service, op is a relational operator
(op ∈ {>, ≥, <, ≤, ==, �=}), and K is some constant value. For example, the
constraint that service a must be provided by a node at least one meter above
the ground is written as a.provider.z ≥ 1.
(2) Compositional property constraint:

F (provider.p) op K over S

where p and op are defined above, and F is a composition function on property
p for all services in the set S. For example, to specify that the average power
level of nodes providing services a, b, and c must be greater than or equal to
85% is written as average(provider.power) ≥ 85 over {a, b, c}.

132 X. Koutsoukos et al.

(3) Atomic resource-allocation constraint:

service.provider.type op type set

where op ∈ {==, �=, ∈, /∈}. For example, a.provider.id /∈ {NODE1, NODE2,
NODE3} is used to ensure that service a does not run on a set of nodes with
particular IDs.
(4) Compositional resource-allocation constraint:

F (provider.type) over S

where F ∈ {allSame,allDifferent}. For example, the constraint that services
a and b must run on the same node, and c must run on a different node can be
written as allSame(provider.id) over {a, b} && allDifferent(provider.id) over
{a, c}. Similarly, more complex compositional resource-allocation constraints can
be specified by using combinations of allSame and allDifferent.

2.4 Service Discovery and Composition

There are three types of events that will trigger service discovery and composi-
tion: object instantiation, mode transition, and migration. Object instantiation
and mode transition are similar in that the logical object enters a new (possi-
bly default) mode containing a service graph. For migration, the mode may not
change, but the logical object is transferred to a new provider, which must parse
the service graph in the current mode in order to execute it.

Before an object can start executing the service graph, a Service Discovery
Protocol (SDP) is invoked to determine which nodes in the network provide
which services. Our model employs passive service discovery, in which a provider
advertises a service only when a request for that service has been received [10].
The SDP is provided as a service by each node and maintains a local service
repository (SR) which catalogs application services running both locally and
remotely. Should an entry become stale due to communication failure or node
dropout, for example, or a new service request arrives for a service that is not
present in the SR, the SDP locates a new provider for that service. The service
discovery algorithm receives as input a service ID, which if not present in the
service repository, will prompt the SDP to broadcast a service request to other
nodes in the network, up to a specified number of hops. The outgoing service
discovery message contains the ID of the requested service and the node ID of the
sender. Nodes providing the requested service will send a service discovery reply
message, which includes information such as physical location and remaining
power level. The SDP caches the provider node information in the SR, and
forwards the message to the Composer.

The objective of the Composer is to instantiate the configuration that satisfies
the constraints specified in the service graph. These services are then bound
together and eventually invoked. The ID of each service in the service graph is
passed to the SDP. Because several instances of the same service could be residing
on multiple nodes across the network, the Composer can expect multiple replies.

OASiS 133

As replies arrive, the Composer checks to see that any atomic service graph
constraints are satisfied, and if so, the node information is stored. Compositional
constraint satisfaction commences after all replies have been received. Finally,
the connections between the services in the service graph are examined, and a
service binding message is created for each. The binding message contains the
service and node IDs of the connection source, as well as the service and node
IDs of the connection destination. The message is sent to the connection source
node so that it may properly direct the output of its service to the input of
the service specified by the connection destination. The Composer will not reuse
bindings in the event a mode had been entered previously, because service graph
constraints may no longer be valid.

Dynamic network behavior in WSNs can cause problems during application
execution such as service unavailability and violation of constraints. Querying a
centralized service repository each time a new service instance is needed can be
expensive, especially when the repository is located multiple transmission hops
away. The passive service discovery approach was found to be the most energy
efficient for mobile ad hoc networks with limited power resources [10]. Requests
are flooded a limited number of hops throughout the network, and all providers
of the requested service respond with a message that follows a direct path back
to the object node. The Composer is then provided with a list containing only
those services requested.

Service discovery over multiple hops is achieved using a protocol similar to
DSR [11]. There are three types of messages that require routing information: (i)
service discovery reply messages, (ii) service binding messages, and (iii) service
access messages. Service discovery request messages are flooded throughout the
network, and therefore do not require any routing information. Routing infor-
mation is maintained in a next-hop table, which stores the node ID of a known
service provider, along with the ID of the next node along the multi-hop path
to that provider. As a service discovery message travels from the object node to
the service provider nodes, each intermediate node along the path records the
ID of the preceding node. This gives the service provider a direct path back to
the object node for service discovery reply messages.

A service discovery request message will flood the network up to a maximum
number of hops, specified a priori by the domain-service or application devel-
oper. At each intermediate node, a hop-number counter in the message header
is incremented, and the message will not be forwarded once the counter reaches
the maximum number allowed. Note that this maximum is the largest number
of hops from the object node to a service provider. This implies that service-to-
service communication could possibly travel twice as many hops, if each service
provider were the maximum number of hops from the object node on opposite
sides. Rather than expending energy by sending out numerous path-probing mes-
sage transmissions, the shortest path between two service providers is estimated
by using the knowledge of the physical location of the service provider and the
maximum physical distance a message can be transmitted. This method does

134 X. Koutsoukos et al.

not guarantee that the shortest path selected will be a feasible one, in which
case another path should be selected.

3 Dynamic Service Configuration

This section describes dynamic service configuration that is required for reacting
to changes in the network or in the behavior of the physical phenomenon.

3.1 Constraint Satisfaction

Service graph instantiation can be modeled as a constraint satisfaction problem
[12], where services in the abstract service graph are the constraint variables,
and the nodes that provide a particular service constitute the domain.

A finite CSP P = (X, D, C) is defined as a set of n variables X = {x1, ..., xn},
a set of finite domains D = {D1, ..., Dn} where Di is the set of possible val-
ues for variable i, and a set of constraints between variables C = {C1, ..., Cm}.
A constraint Ci is defined on a set of variables (xi1 , ..., xij) by a subset of the
Cartesian product Di1 × ... × Dij . A solution is an assignment of values to all
variables which satisfy all the constraints. The design space for a constraint sat-
isfaction problem is the set of all possible tuples of constraint variables. Formally,
D = {(v1, v2, ..., vn)|v1 ∈ D1, v2 ∈ D2, ..., vn ∈ Dn}

Constraint satisfaction prunes the design space as much as possible for all dif-
ferent types of constraints until a feasible solution is found. The specific pruning
method depends on the constraint under consideration, specifically the constraint
property, constraint operator, and composition function.

1) Atomic Constraint Satisfaction: Atomic constraints are straightforward to
satisfy. Because each atomic constraint is defined on a single variable, pruning
the domain of that variable will leave the domain consistent, and hence satisfy
the constraint.
2) Compositional Constraint Satisfaction

a) Compositional Property Constraints: The compositional property con-
straints are defined in Section 2, and involve the use of a composition function.
OASiS includes several composition functions for aggregation, such as sum, av-

erage, and median. In addition, we have defined a composition function called
enclose for specifying the spatial configuration of sensor nodes. Many tracking
applications employ localization algorithms which require measurement data to
come from multiple sensors surrounding the physical phenomenon. The quality
of the localization estimate often depends on how well the spatial configura-
tion of these sensors is described. In the chemical cloud tracking example, three
chemical concentration sensors are required, and they must be positioned such
that they enclose the cloud. The constraint enclose(L) over S = {s1, s2, s3},
specifies that the location L must be enclosed by the sensor nodes which provide
services s1, s2, and s3. For example, enclose(s4.location) over S = {s1, s2, s3}
specifies that the location of the node providing service s4 must be enclosed by
sensor nodes that provide services s1, s2, and s3.

OASiS 135

In general, higher-level, complex constraints are more difficult and demanding
to satisfy. However, such constraints can be transformed into lower-level, simple
constraints that provide the desired result, while minimizing the power and re-
sources expended in satisfying it. We model the enclose constraint based on
the am i surrounded query described in [13]. The two-dimensional definition
of enclose is as follows: L is surrounded by {s1, s2, s3} if there is no line in
the plane that can separate L from all of {s1, s2, s3}. For this definition, the
constraint can be reduced to enclose(L) over {s1, s2, s3} ⇒ ccw(L, s1, s2) &
ccw(L, s2, s3) & ccw(L, s3, s1), where ccw(a, b, c) specifies that locations a, b,
and c form a counter-clockwise-oriented triangle in 2-D. The geometric constraint
ccw(L, s3, s1) is easy to check by simple computation [13].

The definition of enclose varies for different sensor domains. For example,
one domain can define an enclosed region to be the overlap of member sensing
ranges. Consider another example of camera sensors with orientation and limited
field-of-view. The enclosed region in this case is the intersection of fields of view
recorded by all member cameras. Figure 3 illustrates different enclosed regions.

Fig. 3. Various definitions of Enclose

b) Compositional Resource-Allocation Constraints: There are two types of
composition functions for compositional resource-allocation constraints, allSame
and allDifferent. Satisfying the allSame constraint is straightforward; the design
space is the intersection of domains of all the participating constraint variables.
To satisfy the allDifferent compositional constraint, a value is picked from the
domain for each constraint variable. If the current set of values satisfy the con-
straint, a valid solution has been found. Otherwise, a backtracking algorithm
[14] is used. The backtracking algorithm performs a depth-first search on the
design space. Each leaf vertex represents a possible solution, assigning all con-
straint variables to a value. Non-leaf vertices are decision-points for constraint
variables, where each path from the vertex assigns a value to the constraint vari-
able. At the end of the backtracking step, either a solution has been found or
the entire design space has been searched without finding any valid solution.

Algorithm 1 outlines the process of compositional constraint satisfaction.
Lines 1-3 solve for constraints such as allSame as described above. The resulting
pruned set is an exact set of solutions with respect to that constraint. In general,
the pruned design space is an over-approximation that needs to be searched for a

136 X. Koutsoukos et al.

valid solution. Lines 4-14 solve for other compositional constraints by exploring
the design space and backtracking. Although solving CSPs can be computa-
tionally expensive, by limiting the scope of the service discovery protocol in a
neighborhood of the object node and by keeping the constraint specification
syntax simple, the problem can be solved on resource-constrained sensor nodes.
The constraint specification syntax still permits the user to accurately specify
desired application behavior. OASiS implicitly assumes constraint satisfaction
will terminate with a valid configuration. This assumption holds when services
are redundantly distributed throughout the sensor network, and is reasonable
for WSNs because redundancy is one of their main characteristics. Note that
OASiS does not attempt to find an optimal configuration, because this can be
too computationally expensive. Instead, the first feasible configuration that sat-
isfies all the constraints is selected. If a better solution is desired, it must be
specified in the form of additional constraints on the service graph.

Algorithm 1. Compositional Constraint Satisfaction
1: for all Ci ∈ C do
2: D̃ = prune design space(Ci, D)
3: end for
4: okay = false

5: while !okay do
6: sol = {(vindex1 , vindex1 , ..., vindex1)|∀i vindexi ∈ D̃i}
7: okay = true

8: for all Cj ∈ C do
9: if !satisfy(Cj , sol) then

10: okay = false

11: backtrack()
12: end if
13: end for
14: end while

4 The OASiS Middleware

We have developed a suite of middleware services which support the features
of our programming model. The middleware provides a layer of network ab-
straction, shielding the application developer from the low-level complexities of
sensor network operation such as resource management and communication. It
gracefully handles the decomposition of desired application behavior to pro-
duce node-level executable code for an object-centric, service-oriented WSN
application.

4.1 Middleware Services

The middleware services include a Node Manager, Object Manager, and Dynamic
Service Configurator. Figure 4 illustrates the relationship between the middle-

OASiS 137

Fig. 4. Middleware

Fig. 5. Middleware architecture

ware and the sensor network, while Figure 5 illustrates the relationship between
the application and middleware services at the sensor node level.

The Node Manager is responsible for message routing between services, both
local and remote. This includes maintaining the multi-hop routing table and
forwarding messages appropriately. The first eight bytes of any message han-
dled by the Node Manager consist of a control structure which contains source
and destination node IDs (2 bytes each), source and destination service IDs
(1 byte each), message type (1 byte), and hop number (1 byte). The Node
Manager examines the control structure and determines the appropriate des-
tination for the message. For efficiency, it has short circuit functionality that
allows it to catch outgoing messages bound for local services and reroute them
directly.

Three key types of messages are handled by the Node Manager. Service dis-
covery messages come from neighboring nodes inquiring if a specific service is
available. The Node Manager passes these messages to the local Service Discov-
ery Protocol. An incoming service binding message indicates that a local service
has been registered for use by an object, and includes information on where to

138 X. Koutsoukos et al.

send its output data when complete. A service access message is a request to
run a local service, and may also contain input data. The Node Manager invokes
the specified service and passes in the data.

The Dynamic Service Configurator contains the SDP and Composer, and
functions as described in Section 2. Dynamic service configuration is a relatively
energy-intensive operation, due to the number of message transmissions involved
in service discovery and composition. A node performing these operations will
transmit 2S messages, where S is the number of services in the service graph.
Nodes responding to service discovery requests transmit at most S replies, one
for each service they provide. However, these transmissions only occur during
configuration, and not during service graph execution, thus power consumption
is kept to a minimum.

The Object Manager is responsible for 1) parsing the object-code byte string,
2) detecting the object context and evaluating the object creation condition at
each sample period, 3) invoking the object creation protocol and owner elec-
tion algorithm, and 4) maintaining the object state variables and evaluating the
migration and FSM mode transition conditions.

4.2 WWW Gateway

In order to take advantage of high-bandwidth Web services, the sensor network
must have access to at least one World Wide Web Gateway. The Gateway resides
on a sensor network base station and provides access to Web services by translat-
ing node-based byte sequence messages to the comparatively bulky XML-based
messages used in Web service standards. As such, it is the job of the Gateway to
speak the language of Web services. When a service discovery message arrives,
the Gateway must locate this service on the Internet. This is accomplished by
using the Universal Description, Discovery and Integration (UDDI) protocol, a
Web service standard used for locating and accessing services [15]. Given the
proper keys, a UDDI inquiry returns the access point for a specific service as an
URL string. Service access is achieved by means of XML-based SOAP messages
[16]. If the service returns a value, it is also enclosed in a SOAP message. The
Gateway composes and parses these XML messages and marshals the data ap-
propriately when translating between the sensor network and the World Wide
Web.

The role of the Gateway is transparent to the rest of the network. It appears
simply as another node, running identical middleware services and providing
a set of application services. That the available application services happen to
be remotely located is of no interest to the object node making the request.
Similarly, other application services inputting data from, or outputting data
to a Web service believe the Web service is being provided by the Gateway
node. Note also that communication between the sensornet and Internet is bi-
directional. Not only can OASiS WSN applications access Web services, but
OASiS services can be accessed from the World Wide Web. This permits users

OASiS 139

who have no experience with wireless sensor networks to retrieve sensor data
or run sensor network applications from a website with access to the OASiS
Gateway.

To return to our tracking example, while the application is running on the
sensor network, the Gateway receives a service discovery message for the Wind-
Velocity service. It receives this message because one of the nodes in the sensor
network is attempting to bind a service graph requiring this service. If the Gate-
way does not already have the WindVelocity service in its cache of recently
accessed services, it makes a UDDI inquiry to a registry at a known location,
which returns the WindVelocity accesspoint URL, if available. The Gateway
stores this information, then responds to the SDP of the requesting node that
the WindVelocity service is available.

The Gateway may then receive a service binding message, indicating that the
WindVelocity service may be accessed in the near future. The message contains
the IDs of the node and service to send the wind velocity data to. This infor-
mation is cached for rapid future access. When the Gateway receives a service
access message from the sensor network, it packages the input data into a SOAP
message and invokes the WindVelocity service. The reply is parsed using an
XML parser and forwarded to the next service specified in the service binding
repository.

4.3 Implementation

Our middleware1 is implemented on the Mica2 mote hardware platform [17]
running TinyOS [18]. Our main objective in developing the middleware was to
minimize resource requirements while maintaining a robust component-based ar-
chitecture. The code was developed using galsC [19], a GALS-enabled extension
of nesC [20], the de facto programming language for the motes. The Gateway
application was developed in Java. Our Web service implementation was realized
using a suite of Apache services [21], including the Tomcat 5.5 web server, Axis
1.4 SOAP implementation, and jUDDI 0.9rc4, a Java-based UDDI implementa-
tion. MySQL 5.0 was used for the UDDI repository.

Table 1 lists each middleware service, with its code size and memory require-
ments. These memory sizes are suitable for executing applications on the motes,
which have approximately 64 KB of programming memory and 4 KB of RAM.
It should be noted that these components can be optimized to further reduce
memory size, however there is a trade-off between an application’s compactness
and its robustness.

5 Case Study

We demonstrate the features of the OASiS programming model and middleware
by developing a simplified indoor experiment which tracks a heat source.
1 The source code for OASiS can be found on our project website at
http://www.isis.vanderbilt.edu/Projects/OASiS/.

http://www.isis.vanderbilt.edu/Projects/OASiS/

140 X. Koutsoukos et al.

Table 1. Implementation Memory Requirements

Service Program memory (bytes) Required RAM (bytes)
Node Manager 8500 367
Dynamic Service Configurator 11894 822
Object Manager 3560 151
TinyGALS queues & ports 702 1013
Total 24656 2353

5.1 Experimental Setup

Our experimental setup is shown in Figure 6. Five sensor nodes equipped with
thermistors are placed in a region, each providing a set of pre-loaded services,
and a heat source passes through the region. A sixth node is connected to a
Web server that provides a Velocity service. For this simple indoor experiment,
the velocity provided by the Web service is set to a constant 5 m/s which is
approximately the velocity of heat source. Table 2 summarizes the sensor node
attributes. The Localization service, implemented using an extended Kalman
filter, estimates the position of the heat source from the sensor data. This esti-
mate is then sent to the Notification service. The application is represented by
a service graph as in Figure 2 with three temperature services that must reside
on different nodes in a spatial configuration that encloses the heat source.

Table 2. Experimental Setup

Node id Position Preloaded Services
101 [400 800] Temperature, Notification

109 [700 400] Temperature, notification

113 [0 500] Temperature, notification, Localization

143 [200 0] Temperature, notification

169 [800 1000] Temperature, notification

base station N/A velocity estimation

5.2 Performance Evaluation

The feasibility and effectiveness of OASiS was evaluated by performing a set of
experiments using the simple tracking application.

Experiment 1: Object creation and application execution. The number of mes-
sage transmissions for object creation and application configuration is summa-
rized in Table 3. The delay for object creation and application configuration is
2000 and 3000 ms, respectively, and depends on pre-defined timeout values; an
owner-election timeout for object creation and a service-configuration timeout
for service graph configuration.

OASiS 141

Fig. 6. Experimental setup

Table 3. Experiment 1 results

number of messages description
object creation 5 owner-election
service graph configuration 15 service request (3)

service information (9)
service binding (3)

Experiment 2: Service disruption / Object migration. Once the physical object
goes beyond the enclosure of nodes 109, 113, and 143, the variance in the location
estimate starts to grow, which triggers object migration. As part of the migra-
tion protocol, node 143 begins a new owner election procedure by broadcasting
a migration message. Nodes reply with their most recently sampled tempera-
ture values. The current owner elects the node with the highest temperature
value as the migration destination, sends the object to it, and unbinds all pre-
viously bound services. In our experiment, node 143 sends the object to node
109. The number of messages communicated for object migration and service
graph unbinding are summarized in Table 4. The delay for object migration is
approximately 2000 ms. This experiment indicates that OASiS incurs an over-
head on the number of messages required and the time delay for object creation,
maintenance, migration and service graph maintenance. Table 4 indicates that
the number of messages communicated is reasonably small.

Experiment 3: Tracking. Tracking performance was evaluated by comparing
the actual heat source trajectory with the estimated trajectory. The tracking

142 X. Koutsoukos et al.

Table 4. Experiment 2 results

number of messages description
object migration 8 migration (5)

object-migration (1)
object-migration ack (1)
object-migration notification (1)

service graph unbinding 3 un-binding

Fig. 7. Tracking results

accuracies for cases with and without estimated velocity data (ux = uy = 0) was
also measured, and is summarized in Figure 7.

In all experiments, message transmissions were kept to a minimum due to
the passive service discovery protocol. The service message size for this applica-
tion requires only one transmission per message. Service discovery and binding
required a total of 14 transmissions, while a complete execution of the service
graph required only six transmissions.

Response times for various operations were also obtained, and are displayed
in Table 5. The service discovery response time is provided with and without the
Web service. Additionally, Web service access is not included in the service graph
execution time, but instead is provided separately to illustrate the overhead
imposed on the system by adding Web service capability. It should be noted
that our Web service implementation is not optimized for speed; however, the
current service discovery and constraint satisfaction latency is quite acceptable
for performing dynamic service configuration.

OASiS 143

Table 5. Operation Response Times

Operation Response Time (ms) Standard Deviation
Service discovery 4092 113
Service discovery w/o Web service 1400 0.01
Constraint satisfaction 15 0
Service graph execution w/o Web service 81 13
Web service access 502 65
Localization service access 11 0

6 Scalability

To measure the effectiveness of our multi-hop service discovery protocol, we
performed a scalability analysis using Prowler [22], a simulator for WSN appli-
cations. We simulated both grid and uniform random topologies. For each, we
measured the message overhead of the service discovery protocol by considering
(i) the number of message transmissions, (ii) the number of nodes discovered,
and (iii) the time required for completing the service discovery.

When queried, each sensor node replies with a list of the services it pro-
vides. For our analysis, we measured the number of unique replies, which is
an implicit measure of the number of services discovered. After service discov-
ery completed, the total number of messages sent by all the nodes was tallied,
along with the total number of discovered nodes and the total time required
for service discovery. Figure 8 shows the number of message transmissions for
n-hop service discovery, figure 9 shows the number of sensor nodes discovered,
and figure 10 shows the time taken for n-hop service discovery for each of the
network topologies. As expected, the number of message transmissions and dis-
covered nodes increases quadratically with the number of hops, while the time
taken for service discovery increases linearly. In addition, the number of mes-
sage transmissions and discovered nodes increases linearly with node density
in the network, while time taken for service discovery remains approximately
constant.

We define the discovery ratio as the ratio of service discovery messages to the
number of discovered nodes. Figure 11 shows the discovery ratio for different
network topologies. From the results above, we can make some general useful
observations. The discovery ratio increases linearly with the number of hops (i.e.
the protocol requires approximately n discovery messages per discovered node
for n-hop service discovery). Interestingly, the discovery ratio remains mostly
constant with respect to node density. These results indicate that the service
discovery protocol performs linearly for the number of discovery messages per
discovered node with respect to the number of hops. Hence, the optimal number
of hops for service discovery can be selected based on the distribution and number
of services in the network.

144 X. Koutsoukos et al.

Fig. 8. Number of message transmissions for (a) grid and (b) random topology

Fig. 9. Number of discovered nodes for (a) grid and (b) random topology

Fig. 10. Time taken for n-hop service discovery for (a) grid and (b) random topology

OASiS 145

Fig. 11. Discovery ratio with number of hops for all four network topologies

7 Related Work

Design principles for traditional distributed computing middleware are not di-
rectly applicable to WSNs because sensor nodes are small-scale devices with lim-
ited resources, properties which directly affect computation, sensing, and com-
munication. Recently, the WSN community has seen the emergence of a diverse
body of macroprogramming languages, frameworks, and middleware that pro-
vide solutions to overcome these limitations (see [23] and the references therein).
In the following, we focus on models and frameworks similar to OASiS.

SONGS [5] is a service-oriented programming model, similar to ours in many
respects. However, unlike our object-centric approach to driving application
behavior, SONGS dynamically composes a service graph in response to user-
generated queries. While this technique works well as an information retrieval
system, SONGS lacks the ability to alter its behavior based on a change in
environmental conditions.

The object-centric paradigm has been successfully used in the EnviroSuite
programming framework [6]. EnviroSuite and OASiS provide a similar level
of network abstraction to the application developer, however by employing a
service-oriented architecture, OASiS is able to incorporate aspects of modular
functionality, resource utilization, and ambient-awareness more efficiently.

The Abstract Task Graph (ATaG) [24] is a macroprogramming model which
allows the user to specify global application behavior as a series of abstract tasks
connected by data channels for passing information between them. Currently, the
ATaG is only a means for describing application behavior. A model interpreter
must be employed to decompose this behavior to node-level executable code.

146 X. Koutsoukos et al.

In addition, the ATaG provides no means for delegating tasks to sensor nodes
which satisfy specific property or resource constraints.

The Agilla framework [25] adopts a mobile agent-based paradigm. However,
unlike most other frameworks, Agilla does not require the sensor network appli-
cation to be deployed statically. Instead, autonomous agents, each with a specific
function, are injected into the network at run-time, a technique referred to as
in-network programming. This approach allows the underlying network applica-
tion to only be uploaded once onto the node hardware, after which applications
can be swapped out or reconfigured at any time. The primary disadvantage of
using an Agilla network, compared with our middleware, is that all nodes must
be executing the Agilla run-time application. This rules out access to a variety
of devices operating on different architectures.

Ambient-aware computing [26] is an emergent technology in which applica-
tions are given the ability to interact with their environment such that all de-
vices and services within a fixed geographical range are known at all times.
However, for sensor networks consisting of resource-constrained nodes, commu-
nication with neighboring devices is often costly. Hence a tradeoff exists between
the rate at which a node can update its understanding of the surrounding en-
vironment and the amount of time the node can run before depleting its power
supply.

Bridging a sensornet-based service-oriented architecture with the Internet has
been realized with the CodeBlue project [27] in which sensors used for healthcare
monitoring relay data to a Web service. This provides a convenient mechanism
for transferring a patient’s vital signs, obtained through an embedded sensor
device, to a medical records system or monitoring station. CodeBlue’s Gateway
application is similar to our own, with the exception that it translates sensor data
into the HL7v3 format, a standard used for communicating medical information.

Dynamic software reconfiguration in sensor networks has been achieved in
[28] by expressing system requirements as constraints on design space quality-
of-service parameters. A run-time search of the design space is made possible
by situating the reconfiguration controller on a powerful base station, a strategy
which cannot be realized in resource-constrained sensor nodes.

MiLAN [29] is a middleware for WSN application development that optimizes
the trade-off between application QoS and network resource utilization. Quality
of service constraints are specified in graphs, which MiLAN interprets and uses
to maintain a minimum set of active devices which provide the functionality
required by the application. Although MiLAN employs a dynamic service con-
figuration mechanism similar to that of OASiS, it only assists the application
developer in managing QoS, and is not a complete programming framework.

Spatial Programming [30] is a programming model for distributed embedded
systems that abstracts the network into a single virtual address space. Nodes
are referenced based on their location and provided functionality rather than
ID, providing the application programmer with greater design flexibility in the
presence of dynamic network topology. The authors implemented the spatial
programming model using the Smart Messages [31] architecture in Java, and

OASiS 147

deployed the application on Linux PDAs. It is unclear how such a model will
perform on sensor nodes with tighter resource constraints.

8 Conclusion

We have developed OASiS, an object-centric, service-oriented programming mo-
del and middleware for ambient-aware sensor network applications. Upon de-
tection of an external event, the sensor network instantiates a unique logical
object which then drives the application. Application functionality is bundled
in modular, autonomous services distributed across the network, and dynamic
service configuration is employed at run-time to locate and bind these services.
This process involves an efficient search of the design space to ensure all con-
straints have been satisfied. In addition, a Gateway application, deployed on a
base station, permits the sensor network to discover and access Web services.
This capability provides a substantial benefit to WSN applications, as they are
able to perform computations and access information using methods unavailable
to resource-constrained sensor nodes. The utility of our programming model was
demonstrated with a simple indoor heat-source tracking application. Our results
indicate service-oriented architectures are feasible and can benefit the design of
sensor network applications.

The ambient-aware behavior of our programming model can be further de-
veloped to react gracefully to communication failures and node dropout during
application execution. This will involve failure detection, isolation, and recovery
mechanisms that restore the network application to a stable configuration both
quickly and efficiently.

References

1. Akyildiz, I., Su, W., Sankarasubramaniam, Y., Cayirci, E.: Wireless Sensor Net-
works: A Survey. IEEE Computer 38(4), 393–422 (2002)

2. Yarvis, M., Kushalnagar, N., Singh, H., Rangarajan, A., Liu, Y., Singh, S.: Ex-
ploiting Heterogeneity in Sensor Networks. In: INFOCOM. Proceedings of the 24th
Annual IEEE International Conference on Computer Communiation (March 2005)

3. Duarte-Melo, E., Liu, M.: Analysis of Energy Consumption and Lifetime of Hetero-
geneous Wireless Sensor Networks. In: Globecom. Proceedings of the 45th Annual
IEEE Global Communications Conference (2002)

4. Lazos, L., Poovendran, R., Ritcey, J.A.: Probabilistic Detection of Mobile Targets
in Heterogeneous Sensor Networks. In: IPSN. Proceedings of the 6th International
Conference on Information Processing in Sensor Networks (2007)

5. Liu, J., Zhao, F.: Towards Semantic Services for Sensor-rich Information Systems.
In: BaseNets. Proceedings of the 2nd IEEE/CreateNet International Workshop on
Broadband Advanced Sensor Networks (2005)

6. Luo, L., Abdelzaher, T., He, T., Stankovic, J.: EnviroSuite: An Environmentally
Immersive Programming System for Sensor Networks. ACM Transactions on Em-
bedded Computing Systems 5(3), 543–576 (2006)

7. Booth, D., Haas, H., McCabe, F., Newcomer, E., Champion, M., Ferris, C., Or-
chard, D.: Web Services Architecture, http://www.w3.org/TR/ws-arch/

http://www.w3.org/TR/ws-arch/

148 X. Koutsoukos et al.

8. Welch, G., Bishop, G.: An Introduction to the Kalman Filter. Technical Report TR
95-041, Department of Computer Science, University of North Carolina at Chapel
Hill (2004)

9. Cheong, E., Liebman, J., Liu, J., Zhao, F.: TinyGALS: A Programming Model for
Event-driven Embedded Systems. In: SAC. Proceedings of the 18th Annual ACM
Symposium on Applied Computing (2003)

10. Engelstad, P., Zheng, Y.: Evaluation of Service Discovery Architectures for Mo-
bile Ad Hoc Networks. In: WONS. Proceedings of the 2nd Annual Conference on
Wireless On Demand Network Systems and Services (2005)

11. Johnson, D.B., Maltz, D.A.: Dynamic Source Routing in Ad Hoc Wireless Net-
works. In: Imielinski, T., Korth, H. (eds.) Mobile Computing, Kluwer Academic
Publishers, Dordrecht (1996)

12. Regin, J.C.: A Filtering Algorithm for Constraints of Difference in CSPs. In: Pro-
ceedings of the 12th National Conference on Artificial Intelligence, vol. 1 (1994)

13. Guibas, L.J.: Sensing, Tracking, and Reasoning with Relations. IEEE Signal Pro-
cessing Magazine (March 2002)

14. Baase, S., Gelder, A.V.: Computer Algorithms: Introduction to Design and Anal-
ysis, 3rd edn. Addison-Wesley, Reading (1999)

15. Universal Description, Discovery, and Integration, http://www.uddi.org
16. SOAP, http://www.w3.org/TR/soap/
17. Mica2, http://www.tinyos.net/scoop/special/hardware/#mica2
18. Levis, P., Madden, S., Gay, D., Polastre, J., Szewczyk, R., Woo, A., Brewer, E.,

Culler, D.: The Emergence of Networking Abstractions and Techniques in TinyOS.
In: NSDI. Proceedings of the 1st Symposium on Networked Systems Design and
Implementation (2004)

19. Cheong, E., Liu, J.: galsC: A Language for Event-driven Embedded Systems. In:
DATE. Proceedings of the Conference on Design, Automation and Test in Europe
(2005)

20. Gay, D., Levis, P., von Behren, R., Welsh, M., Brewer, E., Culler, D.: The nesC
Language: A Holistic Approach to Networked Embedded Systems. In: PLDI. Pro-
ceedings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation (2003)

21. Apache Web Services, http://ws.apache.org/
22. Simon, G., Volgyesi, P., Maroti, M., Ledeczi, A.: Simulation-based Optimization

of Communication Protocols for Large-scale Wireless Sensor Networks. In: IEEE
Aerospace Conference (2003)

23. Hadim, S., Mohamed, N.: Middleware: Middleware Challenges and Approaches for
Wireless Sensor Networks. IEEE Distributed Systems Online 7 (2006)

24. Bakshi, A., Prasanna, V., Reich, J., Larner, D.: The Abstract Task Graph: A
Methodology for Architecture-independent Programming of Networked Sensor Sys-
tems. In: EESR. Workshop on End-to-end, Sense-and-respond Systems, Applica-
tions, and Services (2005)

25. Fok, C.L., Roman, G.C., Lu, C.: Rapid Development and Flexible Deployment of
Adaptive Wireless Sensor Network Applications. In: ICDCS. Proceedings of the
25th International Conference on Distributed Computing Systems (2005)

26. Dedecker, J., Cutsem, T.V., Mostinckx, S., D’Hondt, T., Meuter, W.D.: Ambient-
oriented Programming. In: OOPSLA. Proceedings of the 20th Annual Conference
on Object-oriented Programming, Systems, Languages, and Applications (2005)

http://www.uddi.org
http://www.w3.org/TR/soap/
http://www.tinyos.net/scoop/special/hardware/#mica2
http://ws.apache.org/

OASiS 149

27. Baird, S., Dawson-Haggerty, S., Myung, D., Gaynor, M., Welsh, M., Moulton, S.:
Communicating Data from Wireless Sensor Networks Using the hl7v3 Standard. In:
BSN. International Workshop on Wearable and Implantable Body Sensor Networks
(2006)

28. Kogekar, S., Neema, S., Eames, B., Koutsoukos, X., Ledeczi, A., Maroti, M.:
Constraint-guided Dynamic Reconfiguration in Sensor Networks. In: IPSN. Pro-
ceedings of the 3rd International Symposium on Information Processing in Sensor
Networks (2004)

29. Heinzelman, W.B., Murphy, A.L., Carvalho, H.S., Perillo, M.A.: Middleware to
Support Sensor Network Applications. IEEE Network 18(1), 6–14 (2004)

30. Borcea, C., Iyer, D., Kang, P., Saxena, A., Iftode, L.: Spatial Programming Using
Smart Messages: Design and Implementation. In: ICDCS. Proceedings of the 24th
International Conference on Distributed Computing Systems (2004)

31. Borcea, C., Iyer, D., Kang, P., Saxena, A., Iftode, L.: Cooperative Computing for
Distributed Embedded Systems. In: ICDCS. Proceedings of the 22nd International
Conference on Distributed Computing Systems (2002)

	Introduction
	The OASiS Programming Model
	The Object-Centric Paradigm
	Services in Sensor Networks
	Service Constraints
	Service Discovery and Composition

	Dynamic Service Configuration
	Constraint Satisfaction

	The OASiS Middleware
	Middleware Services
	WWW Gateway
	Implementation

	Case Study
	Experimental Setup
	Performance Evaluation

	Scalability
	Related Work
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

