
Multi-level State Estimation in an Outdoor
Decentralised Sensor Network

B. Upcroft, M. Ridley, L.L. Ong, B. Douillard, T. Kaupp, S. Kumar, T.
Bailey, F. Ramos, A. Makarenko, A. Brooks, S. Sukkarieh, H.F.
Durrant-Whyte

Australian Centre for Field Robotics, The University of Sydney, Australia
b.upcroft@cas.edu.au

Summary. Decentralised estimation of heterogeneous sensors is performed on an
outdoor network. Attributes such as position, appearance, and identity represented
by non-Gaussian distributions are used in in the fusion process. It is shown here
that real-time decentralised data fusion of non-Gaussian estimates can be used to
build rich environmental maps. Human operators are also used as additional sensors
in the network to complement robotic information.

1 Introduction

This paper presents the development and demonstration of multi-level Bayesian state
estimation using an outdoor sensor network consisting of an autonomous air vehicle,
a manual ground vehicle, and two human operators (Fig. 1). Decentralised fusion of
position and identity information provided a common description (or map) of natu-
ral features in an unstructured environment. Unique aspects of this demonstration
were (1) integration of human operators as information sources, (2) use of colour
information from vision sensors to build rich world models, and (3) decentralised
operation enabling a practical system which was robust, modular, and scalable.

Applications that benefit from multi-sensor data fusion include environmental
sensing, surveillance, and search-and-rescue [1, 2, 3]. In each of these problems,
individual nodes of the network make local measurements or observations of the
common environment and attempt to combine the measurements to produce a global
estimate of the observed state. The fusion approach adopted here is motivated by the
need to survey and map large outdoor natural environments in which distributed
sensor networks are prone to node and/or communication failure. In contrast to
hierarchical and centralised distributed methods [4, 5], decentralised architectures
ensure robustness to these failures while allowing scalability and modularity [6].
These properties arise as there are no central nodes to which global knowledge is
communicated.

Previous approaches to robust decentralised data fusion have included tracking
position features provided by range devices such as radar or laser [2], tracking ar-
tificial visual features with known range [7], monitoring temperature [1] or people
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Fig. 1. The platforms used in the network: autonomous air vehicle, ground vehicle,
and human operator. Close-ups of the sensor payloads including cameras are shown
in the insets.

movement [8] in an office environment. Unlike these approaches, we concentrate on
modelling natural features at three levels: position, identity, and appearance [9]. The
resultant rich environment models are often required in real applications for both
autonomous operation and to support human decision-making.

When observing complex environments, the observations made by robotic sen-
sors and humans are likely to be complementary in terms of sensor modality, uncer-
tainty, and robustness. Robotic sensors perform well in low-level descriptions such
as geometric properties. In contrast, human operators can be valuable for higher-
level tasks such as object recognition. Presence of such complementary information
sources offers an opportunity for effective information fusion.

Probabilistic fusion of human and robotic information sources has been pre-
viously addressed only in theory or with non-probabilistic human observations
[10, 11, 12]. The model presented here offers multiple abstractions of the available
information to support analysis and decision-making, and permits the incorporation
of higher-level human observations. The model is represented probabilistically as a
Dynamic Bayesian Network (DBN) encoding statistical correlations between beliefs
on all levels and the dynamics of the model. The methodology is a first step towards
a more general framework for multi-level information fusion.

For this paper, position is considered to be independent of appearance and iden-
tity as far as the representation is concerned. At the geometric level, non-Gaussian
Bayesian estimation was used for fusing bearing-only position observations from
monocular vision sensors. Non-Gaussian distributed algorithms for sensor calibra-
tion have previously been developed by Ihler et al. [13], while Rosencrantz et al.
demonstrated non-Gaussian distributed state estimation in the context of robotic
laser tag [2]. In both cases, correlated estimation errors due to common information
communicated between nodes in the past (also known as data incest) [14, 15] were
not considered. Accounting for data incest in decentralised architectures is the key
problem in ensuring mathematically consistent and convergent solutions. We also
use an approximate node-node fusion algorithm [16] using Gaussian mixture models
(GMMs) and a variant of the Covariance Intersect algorithm [17]. This algorithm
provides consistent estimates in practice but like Ihler and Rosencrantz’s work, there
is no guarantee of a convergent solution.

The remainder of the paper describes the representation of the world that was
used and realisation of the decentralised system with experimental results and prac-
tical experiences.
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2 The Hierarchical World Representation

This section presents the representation used to describe features in the outdoor
environment. Three levels are used: position, appearance and identity.

2.1 Geometrical Features

Position observations zk were a sequence of azimuth (ψ) and elevation (θ) measure-
ments [18]

zk = [ψ θ]T =

[
tan−1(yk/xk)

tan−1(zk/
√
x2

k + y2
k

]
+ vk (1)

where vk is the measurement noise.
A Gaussian mixture model (GMM) was used to fit the observations and thus an

approximate transformation of the likelihood from the bearing-only measurement
space to a sensor-centric Cartesian coordinate space was required [16]. In our exper-
iments, the approximation for the GMM was learnt off-line using the Expectation-
Maximisation (EM) algorithm [19]. The initial parameters for EM were equally
weighted Gaussians spread evenly over a range of 200m on the x-axis. Approxi-
mately 50 iterations resulted in a good fit to the distribution. The learnt model was
then rotated and translated appropriately for specific observations.

Local filtering was achieved using Bayes Theorem for the update and the
Chapman-Kolmogorov equation for prediction [16, 20].

2.2 Appearance and Identity
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Fig. 2. LHS: The hierarchical appearance/identity model. Two time slices are shown
to represent the filtering process as a DBN. Shaded nodes are observed by human
operators or robotic cameras. RHS: The projection of the input points obtained by
Isomap as well as the low dimensional components of the learnt model. The axes
are the three eigenvectors of the low-dimensional space.

Fig. 2(LHS) shows a DBN representation of the identity/appearance states for
a single feature. Round nodes are continuous random variables, square nodes are
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discrete, and shaded nodes are observed. The joint space z, x, s, represents a mixture
of factor analysers [21, 22] and is learnt offline from training data. The s node is
multinomial and determines the number and the weight of the GMM components.

2.3 Offline Model Learning

All parameters of the DBN model shown in Fig. 2(LHS) need to be specified. The
transition model P (sk+1|sk) is not required since s is assumed to be stationary.

The joint model P (x, s, z) is learned on a typical set of labelled image patches
using a combination of a nonlinear dimensionality reduction called Isomap [23]
and Maximum Likelihood (ML) [21]. Isomap computes a low-dimensional output
(x space) by preserving similarities in the high-dimensional input (z space). The
purpose is to generate a fully supervised data set 〈z, x〉 which is then extended by
manually labeling s. Maximum Likelihood (ML) is then used to estimate all the
parameters.

Fig. 2(RHS) shows the learned model which was used for the experimental
demonstration. Each 729-dimensional image patch in z space is reduced to a 3-
dimensional representation in x space as suggested by the residual in Isomap. The
ellipsoids represent a set of Gaussians with s representing the associated weights.
Each Gaussian component represents a cluster containing data points whose cor-
responding image patches have similar colour appearance. The dimension of s is
chosen to be 27, i.e. 27 components (or identities) based on the visible number of
clusters. The number of samples used is 12388.

2.4 Human Observations

The correspondence of GMM components to feature identity leads to the interpreta-
tion of the s node as a higher-level abstraction of its appearance – an identity state.
This state can be observed by human operators specifying object names o. Object
names can represent a subset of all GMM components; e.g. a “tree” observation is
represented by 7 GMM components.

The remaining conditional probability distribution P (o|s) is the identity sensor
model relevant for human observations. The o node’s dimension No is chosen to be 4:
“tree”, “shed”, “white object” and “red car”. The sensor model is represented by a
table of size Ns×No (27×4). For each object name, the weights of its corresponding
components are distributed equally. The online computation of likelihoods is thus
a simple table lookup. It is assumed here that human operators almost perfectly
classify feature classes, which is reasonable for this application. For more complex
classification tasks, experiments would be required to find a model.

3 State Estimation

3.1 Local Estimation

The first step in the online implementation for a node connected to a robotic sensor
was to extract relevant features from raw observations using template matching [24]
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Fig. 3. Algorithmic framework for each node in the network.

(Fig 3). A node attached to a human operator also accepted identity likelihoods as
observations.

The feature extractor generated observations of two types: (1) azimuth and
elevation of the object in the extracted patch, (2) colour histograms formed from
binning the RGB information contained in the extracted patch. The observation
for position was then converted to a GMM in Cartesian space (see Sec. 2.1) and
estimation proceeded using a Bayesian filter [25, 20, 26].

For the appearance observations, each histogram was processed as an observation
of a track label. The fusion was performed through a Bayesian update

p(sk|Zk) =
p(zk|sk)p(sk|Zk−1)

p(zk|Zk−1)
(2)

where the observation model is given by

p(z|s) =

∫

x

p(z,x|s)dx =

∫

x

p(z|x, s)p(x|s)dx (3)

and the terms p(z|x, s) and p(x|s) arise from the expansion of the joint distribution
p(z,x, s) = p(z|x, s)p(x|s)p(s).

3.2 Decentralised Estimation

All local node information was then transmitted to neighbouring platforms. The
net result was that each platform locally maintained a complete map (or belief) of
all features observed by all nodes in the network. Multiple observations of the same
feature, possibly by different platforms, resulted in an increasingly accurate estimate
of the feature location, its appearance properties, and its identity for all nodes.

It can be shown that fusion of the raw correlated information between nodes i
and j is [14, 15]

p(x|Zi ∪ Zj) =
1

c

p(x|Zi)p(x|Zj)

p(x|Zi ∩ Zj)
(4)

where Zi(j) are all the observations available to node i(j), p(x|Zi∪Zj) is the posterior
probability over the unknown state given information from both nodes, p(x|Zi(j))
are the posteriors based only on locally available information, p(x|Zi ∩ Zj) is the
information the two nodes have in common, and c is a normalising constant.

Thus the problem of constructing the union Zi ∪ Zj , reduces to finding the
common information Zi ∩ Zj and is the key to the decentralised communication
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problem. The incorporation of redundant information in DDF systems may lead to
bias, over-confidence, and divergence in estimates.

The common information for the multinomial class labels could be calculated
anaytically according to Eq. 4. However, analytical solutions to the division for
GMMs are unknown. A non-optimal solution for node-to-node fusion of Gaussian
representations is the Covariance Intersect (CI) filter which conservatively combines
the information in two incoming channels assuming that the correlation is unknown
[17]. Here, we use Gaussian mixture models (GMMs) and a variant of the Covariance
Intersect algorithm [16]. However, as in the work of Ihler et al. [13] and Rosencrantz
et al. [2] divergent solutions are possible.

Covariance Intersect Filter

Consider two estimates µa and µb with covariances Σa and Σb respectively. The CI
algorithm computes an updated covariance matrix as a convex combination of the
two initial covariance matrices in the form

Σ−1
c = ωΣ−1

a + (1− ω)Σ−1
b (5)

Σ−1
c µc = ωΣ−1

a µa + (1− ω)Σ−1
b µb (6)

where 0 ≤ ω ≤ 1 with ω computed so as to minimise a chosen measure for the size
of the covariance matrix.

The resultant estimate is based on all possible correlations and thus removes the
need for the division in Eq. 4.

Pairwise Component Covariance Intersect

An extension to the CI algorithm involves a pairwise CI update between each of the
Gaussian components in the two mixtures that are to be fused. The weight update
for each component is given by

πc = απaπb (7)

where

α =
1

(2π)D/2 |Σω|1/2
e−1/2(µa−µb)T Σ−1

ω (µa−µb) (8)

is the scaling constant resulting from the multiplication of two Gaussians, D is the
dimension of the space, and Σω = Σa/ω +Σb/(1− ω).

We have found that this update remains non-divergent for all the practical sce-
narios we have encountered and is always better than a straight multiplication in
which the common information is not accounted for at all [16]. Although this conser-
vative behaviour is not guaranteed we hope that in future work convergence bounds
can be obtained.

4 Experimental Results

The algorithms were demonstrated using a four node network with three of the
platforms illustrated in Fig. 1. Both vehicles were equipped with Global Positioning
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Fig. 4. Surveyed differential GPS locations are marked as white crosses on the aerial
photograph. Ellipses of the same colour represent 2-D projections of a Gaussian
mixture representing the position estimate of a single feature. Labels represent the
component with the highest probability inferred from the visual model. The ellipses
and labels combine to make up the entire map. The red line represents the trajectory
taken by the vehicle.

System (GPS) and Inertial Measurement Unit (IMU) sensors in addition to a single
vision sensor. The two human operators were able to input and receive information
using tablet PCs with attached hand-held GPS units. Physical communication be-
tween nodes was achieved with standard IEEE 802.11b wireless network adaptors
using the UDP protocol. The system architecture as a whole was developed using the
Active Sensor Network framework [27] while the software implementation of the sys-
tem adopted the component paradigm of the Orca robotics project1. This ensured a
modular approach to development and ease of software component interaction and
communication which is essential in such a system. Decentralised communication
and testing of various probabilistic representations also required the development of
a low-level communication software library2 and a general library for probabilistic
algorithms3.

The experiments were performed at an outdoor test facility over an area of a
few square kilometres. The position of each of the vehicles and the fused estimates
at each of the nodes could be monitored with an online graphical user interface
(GUI) overlaying a geo-referenced aerial image taken prior to the demonstration.
A number of objects such as trees, sheds, and cars were surveyed using differential
GPS measurements allowing comparisons to ground truth.

Fig. 4 illustrates GUI screenshots of a sequence of map updates for observations
of a tree from a ground vehicle. The camera was mounted sideways so forward
movement automatically increased the baseline between observations. As the vehicle
moves past the tree, the updated estimate increases in accuracy and converges to
the true location of the object (indicated by the white cross). Note that the label,
representing the component with the highest probability inferred from the visual
model, also correctly identifies the object.

The map shown in Fig. 5 is a live screenshot of the belief of one of the plat-
forms after multiple nodes entered the network. Each set of coloured ellipses with
a corresponding label represents a different feature. Qualitatively, it can be seen

1 http://orca-robotics.sf.net/orca1
2 http://crud.sf.net
3 http://spasm.sf.net
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Fig. 5. RHS: The belief of one of the nodes in the network. Each set of coloured
ellipses corresponds to a particular feature and the labels represent the identity
state with highest probability. The icons represent each of the different nodes in the
network; UAV = air vehicle, GV = ground vehicle, HO = human operator. LHS:
the original aerial image with arrows highlighting a few of the correspondences with
the belief of the node.

that an accurate map with correct feature classification was achieved. Simulations
in previous papers show detailed analysis of the algorithms [16, 28].

5 Practical Experiences

Our practical experience of deploying such a large scale system has highlighted the
benefits of a decentralised architecture. Although implementation initially proved to
be time consuming and intensive, once the basic software infrastructure was in place,
physical and functional extension to the system was relatively easy. This success
was due to system division into independent, interacting software components. The
component paradigm also improved software-hardware integration to a much larger
extent than was expected.

Component interaction was specified using Orca’s graphical utility Gorca, which
provided a simple drag-&-drop interface with automatic creation of configuration
files for each platform. Thus we were able to easily build and observe the interaction
between many software components over different platforms. Each component could
be started remotely through Orca’s monitoring utility and thus each platform could
easily be integrated into the network.

Demonstration of such a large system also pointed out the weaknesses in our
approach, the main one being the use of consumer-grade wireless network hardware.
Although low in price, we found that the buggy firmware was detrimental to system
operation. Often the hardware would work between two nodes over a relatively
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large distance, however failure would occur as more nodes contributed information.
Thus, reliable equipment and extensive testing at all levels is required for system
robustness.

6 Conclusion

We have shown that decentralised data fusion with non-Gaussian represenations
can be performed in real-time. Additional to position, appearance and identity la-
bels were included in the estimation process increasing the richness of information.
Human operators were able to submit observations at the identity level allowing hu-
man and robotic information to complement each other. Future research will involve
analysing the advantages of including additional attributes particularly for data as-
sociation. Further understanding of non-Gaussian data estimation is also needed to
ensure consistent estimates are maintained at the node-node fusion level.
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