Skip to main content

Real-Time Microforce Sensors and High Speed Vision System for Insect Flight Control Analysis

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 39))

Summary

In this paper, we show how ”bio-inspired” robotics can benefit from a more generalized approach than case-by-case emulation. This generalization is obtained by investigating the design constraints found in biological organisms using a reverse-engineering approach. To achieve this, we have developed two novel technologies that are well suited to analyze the biomechanics and neural control in insect flight. First, we present a micro-electro-mechanical (MEMS) force sensor for measuring flight forces. Second, we describe a 6000Hz high speed vision system for characterizing wing kinematics in real time. Finally, we integrate these technologies within a tethered flight ”simulator” for open and closed-loop investigations of sensory-motor pathways. Initial results are presented and future research perspectives are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sitti, M., Fearing, R.S.: Synthetic gecko foot-hair micro/nano-structures as dry adhesives. Journal of Adhesion Science and Technology 17(8), 1055–1073 (2003)

    Article  Google Scholar 

  2. Wu, W.-C., Schenato, L., Wood, R.J., Fearing, R.S.: Biomimetic sensor suite for flight control of a micromechanical flying insect: design and experimental results. In: ICRA. IEEE International Conference on Robotics and Automation, Taipei, Taiwan, pp. 1146–1151 (2003)

    Google Scholar 

  3. Dickinson, M.H., Götz, K.G.: The wake dynamics and flight forces of the fruit fly Drosophila melanogaster. Journal of Experimental Biology 199, 2085–2104 (1996)

    Google Scholar 

  4. Sun, Y., Nelson, B.J., Potasek, D.P., Enikov, E.: A bulk microfabricated multi-axis capacitive cellular force sensor using transverse comb drives. Journal of Micromechanics and Microengineering 12, 832–840 (2002)

    Article  Google Scholar 

  5. Fry, S.N., Sayaman, R., Dickinson, M.H.: The aerodynamics of hovering flight in Drosophila. Journal of Experimental Biology 208, 2303–2318 (2005)

    Article  Google Scholar 

  6. Zanker, J.M.: The wing beat of Drosophila melanogaster I. Kinematics. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 327, 1–18 (1990)

    Article  Google Scholar 

  7. Dickinson, M.H., Lehmann, F.-O., Götz, K.G.: The active control of wing rotation by Drosophila. Journal of Experimental Biology 182, 173–189 (1993)

    Google Scholar 

  8. Sun, Y., Fry, S.N., Potasek, D.P., Bell, D.J., Nelson, B.J.: Characterizing fruit fly flight behavior using a microforce sensor with a new comb-drive configuration. Journal of Microelectromechanical Systems 14, 4–11 (2005)

    Article  Google Scholar 

  9. Graetzel, C.F., Fry, S.N., Nelson, B.J.: A 6000 Hz computer vision system for real-time wing beat analysis of Drosophila. In: BioRob. The First IEEE / RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1–6 (2006)

    Google Scholar 

  10. Oku, H., Ogawa, N., Ishikawa, M., Hashimoto, K.: Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques. Review of Scientific Instruments 76 (2005)

    Google Scholar 

  11. Wilburn, B., Joshi, N., Vaish, V., Talvala, E.V., Antunez, E., Barth, A., Adams, A., Horowitz, M., Levoy, M.: High performance imaging using large camera arrays. ACM Transactions on Graphics 24, 765–776 (2005)

    Article  Google Scholar 

  12. Juusola, M., Hardie, R.C.: Light adaptation in Drosophila photoreceptors: I. Response dynamics and signaling efficiency at 25 degrees C. Journal of General Physiology 117, 3–25 (2001)

    Article  Google Scholar 

  13. Reiser, M.B., Dickinson, M.H.: Modular electronics for rapid development of visual stimuli (in prep.)

    Google Scholar 

  14. Sane, S.P., Dickinson, M.H.: The aerodynamic effects of wing rotation and a revised quasi- steady model of flapping flight. Journal of Experimental Biology 205, 1087–1096 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib Vijay Kumar Daniela Rus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Graetzel, C.F., Fry, S.N., Beyeler, F., Sun, Y., Nelson, B.J. (2008). Real-Time Microforce Sensors and High Speed Vision System for Insect Flight Control Analysis. In: Khatib, O., Kumar, V., Rus, D. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77457-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77457-0_42

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77456-3

  • Online ISBN: 978-3-540-77457-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics