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Summary. We describe a novel user interface for natural, whole hand interaction
with 3D environments. Our interface uses a graspable device called the Tango, which
looks like a ball but measures contact pressures on its surface at 256 tactual elements
(taxels) at a high rate (100 Hz). The acceleration of the device is also measured.
The key idea is to use this information to recognize the shape and movement of the
user’s hand grasping the object. This allows the user to interact with 3D virtual
objects using a hand avatar. The interface provides passive force feedback, and is
easier to use than interfaces that require wearing gloves or other sensors on the hand.
We describe a rotationally invariant matching algorithm for recognizing the hand
shape from examples of previous interaction collected with motion capture. We also
describe examples of 3D interaction using our system.

1 Introduction

Programming robots by demonstration has long been a dream of robotics,
but it has remained elusive for complex tasks involving grasping and manip-
ulation. This is, in part, due to the difficulty of simultaneously capturing the
configuration of the user’s hand and the intended contact forces. In addition,
one would like the manipulandum to be simple and easy to use, without re-
quiring cumbersome motion capture equipment or instrumented gloves that
distract from the task at hand. One possible option is to use a manipulan-
dum with a pressure sensitive skin and inertial sensors for quickly recognizing
the shape and movement of the user’s hand grasping the object, with visual
feedback provided by 3D virtual environment. Such a system would make it
much easier to program interaction with 3D objects.

In this paper, we describe one way to achieve this type of natural inter-
face using a device called the Tango. The Tango, whose name is derived from
the word “tangoreception” (meaning pertaining to the sensation of touch),
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is a ball that fits conveniently in the hand. There are 256 pressure sensors
on the device’s surface and a 3-axis accelerometer within. We describe a new
rotationally invariant algorithm for recognizing hand configuration from pres-
sure on the surface of the Tango, by using examples of previous interaction
collected with motion capture. The recognition method is sufficiently fast for
interactive manipulation. We also describe examples of 3D interaction using
our system, in which the user interacts with 3D virtual objects using a hand
avatar.

2 Related Work

Our previous work on the Tango [11] described the design of the Tango device,
and presented a simple method for grasp tracking. In this paper, we focus on
recognizing realistic hand shapes and using this and other input from the
Tango for 3D interaction.

Glove-based interfaces are currently the most common whole-hand user
interfaces [4, 14], though computer vision has also been used (e.g.,[10]). The
lack of force feedback is an important limitation with these interfaces. Several
devices address this problem by providing active force feedback [2, 5]. However,
whole hand force feedback is expensive and complex; passive force feedback
via a tangible object such as a ball is often sufficient [16, 6].

Reconstruction of full body posture from foot pressure data [15] is a similar
problem but requires a different solution because the latency requirements are
more severe for manual interaction than for animation. Previous work on grasp
recognition includes [1], which uses both forces and the hand shape to classify
grasps for robotic programming by demonstration.

3 Technical Approach

We recognize the user’s hand configuration by rotationally invariant compar-
isons of pressures on the Tango with previous training measurements that cap-
ture both the pressures and the actual 3D hand shapes during manipulation.
This section explains our method in three parts: clustering and identifying
fingers, grasp hashing, and grasp identification.

3.1 Clustering and Identifying Fingers

We first cluster taxels (tactual elements) for different contacts to determine
the number of fingers that are involved in a grasp, and compute a pressure
centroid and a total pressure for each cluster.

At each activated taxel, we search its four directly connected neighbours
(east, west, north, and south) and perform a merge if any of the neighbours
are activated. In addition, we also check two additional taxels along the same
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meridian (the second taxel to the north and the second taxel to the south).
Since variation in the sensitivity of taxels can result in taxels that do not
activate during light grasps, this allows for clusters with a vertical gap (for
example, see the bottom left corner of Figure 1).

In the case of three-finger grasps, we have also explored the use of heuristics
to identify which finger is responsible for each cluster. The thumb cluster
is almost always identifiable as the cluster with the greatest total pressure.
Assuming the Tango is grasped from above with the right hand, then starting
at the thumb cluster and travelling westward along the surface of the Tango,
we identify the next cluster with the index finger and the next following with
the middle finger. Furthermore, we restrict the search for the middle finger
to meridians that are within 45 degrees of the meridian opposite the thumb
cluster. This avoids identifying spurious single taxel clusters (caused by noise)
as finger plants. The alternative is the arbitrary removal of single taxel clusters
from consideration. Results of these finger heuristics can also be seen in the
left hand side of Figure 1, where thumb, index, and middle finger clusters are
coloured red, green, and blue, respectively. Observe that the thumb heuristic
is not sufficient to disambiguate the two finger grasp, but this case can be
handled by taking into account continuity with previous grasps.

3.2 Grasp Hashing with Spherical Harmonics

Inverse kinematics and the location of finger plants (as identified by heuristics)
could be used to produce grasp configurations; however, the inverse kinemat-
ics problem is underconstrained. Instead, we use example data to resolve the
redundancy. Using previously collected example data, we associate a distri-
bution of natural hand configurations with observed pressure measurements.
A plausible hand shape can then be selected from the distribution. In this
manner, we can infer the pose of all fingers from the pressure generated by
just those fingers that are in contact.

We perform rotationally invariant comparisons, so that identical pressure
distributions applied at different orientations will match. Similar to the work
of Kazhdan, et al. on shape matching [7], our spherical pressure functions can
be transformed into rotationally invariant features.

We first project the pressures pij on to real-valued bases ym
l derived from

spherical harmonics and sampled at the taxel locations. The coefficients are

am
l =

∑
i,j

ym
l (θj , φi) pij , (1)

where θj and φi provide the polar and azimuth angles of the taxel centers,
and pij is the pressure of the taxel located on meridian i and parallel j. We
precompute ym

l since the taxel locations are fixed. The pressure function in
the spherical harmonic basis is a frequency-limited smoothly varying repre-
sentation.
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Fig. 1. Tango data, clusters, spherical harmonics, and hand pose

We use 10 frequencies, f = 10, in our spherical harmonic basis, which
corresponds to a total of 100 basis functions, since there are 2l − 1 functions
at each integer frequency l. Note that 10 is a user-selected parameter; we
need f = 16 to make Equation 1 invertible. With our smaller value of f ,
Equation 1 is a projection and acts like a low pass spatial filter. Given the
size of fingerpads in comparison to taxel areas, we believe the omission of the
higher frequencies is reasonable.

The sum of the energies (`2 norm) at each of the first f frequencies pro-
duces a histogram x = (x0, · · · , xf )T ,

xl = ||al||, (2)

where al = (a−l
l , · · · , al

l)
T is the vector of coefficients at frequency l. This

histogram can be thought of as a feature vector, fingerprint, or hashing of
the pressure function, with built-in rotational invariance. A key feature of
this hash function is that it is locality-preserving. Specifically, a set of similar
grasps result in similar histograms, while a set of similar histograms corre-
spond with subsets of similar grasps.

Because our example data consists only of pressures produced by a hand
and does not contain arbitrary pressure images, there exists a fair amount of
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Fig. 2. Variation explained when using different number of components, shown for
2, 3, 4, and 5 finger precision grasps, and for all data.

redundancy in the histograms. Principal component analysis (PCA) of the ex-
ample data energy histograms provides a smaller orthogonal basis in which we
can compare measurements. Projecting the histograms into a truncated PCA
space reduces the sparsity of previously collected data (and lowers memory
requirements). It also lets us compute more meaningful distance comparisons
by discarding dimensions that contain only noise while boosting the contribu-
tion of important dimensions with small variance. Previous work has shown
that final grasp postures are well approximated by only a few principal com-
ponents [13]. Likewise, our measured variations in hand shape (similarly the
pressure distribution and corresponding histogram) are well approximated by
a lower dimensional subspace, especially considering that the user’s hand is
constrained to be grasping an object of fixed shape, the Tango. Figure 2 shows
that only a few components are necessary to explain 90% of the variation. We
project each histogram into a previously computed truncated PCA space to
produce a d-dimensional vector representing the current grasp shape (we used
d = 6 in our experiments). We refer to these vectors as pressure hashes and
use comparisons of them for grasp identification as described below.

3.3 Grasp Identification

We acquire example data that includes both grasp pressures and hand config-
uration, measured using a Vicon motion capture system. For run-time grasp
identification, we use the pressure hash to find the k-nearest (Euclidian dis-
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Fig. 3. Example four finger grasp collected with motion capture. Fingertips have
markers on “stilts” to reduce occlusion during grasps.

tance) neighbours in the previously computed data. For this we use a bounding
hyper-sphere tree constructed with the method described by [12] but extended
to arbitrary dimension. Recall that building a tree of data in PCA coordinates
lets us easily compute Mahalanobis-like distances in different truncated spaces
by simply summing fewer terms in our `2 distance computation. The bounding
sphere tree is still valid for truncated spaces, though possibly less efficient.

Each of the k neighbours for the current pressure measurement has a cor-
responding hand configuration, which we compare with our current hand con-
figuration using a weighted Euclidean distance. The weighted distance metric
allows us to ignore the position and orientation of both the forearm and wrist.
Overall, our method works much like a simplified particle filter tracker [3]. The
closest hand configuration among the k-nearest pressure-hash neighbours be-
comes the proposal configuration. Note that if there is no pressure observed
on the Tango, then we can infer nothing about the hand shape. In this case,
we use a previously selected rest pose configuration for the proposal.

4 Results

We used the Tango [11] in our experiments (see Figure 4). It produces an
8x32 tactual image with 8 bits per taxel, and a 3-axis acceleration reading,
at 100 Hz. Filtering techniques for the raw data are described in [11]. Fig-
ure 1 (left column) shows examples of the initial pressure clustering, where
thumb, index, and middle finger clusters are coloured red, green, and blue,
respectively.

To build our example data set, we acquired synchronized motion capture
of the Tango position and orientation, hand configuration, taxel pressures,
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Fig. 4. Grasp approximation results

and Tango accelerations. We used a 6-camera Vicon motion capture system
(Vicon Peak, Lake Forest, CA) to track small retro-reflective markers on a
subject’s hand (see Figure 3). Interactions with different numbers of fingers
were considered separate “conditions”. In total, approximately 10 minutes
of capture data was acquired at 60 Hz. For each condition, we compute a
separate PCA space of the energy histograms of surface pressure samples.

Figure 1 shows three example data points from the two, three, and four
finger trials. The left column shows raw taxel data (pressure magnitudes shown
by lines emanating from activated taxels, shaded yellow) with clusters shown
in unique colours displaced from the surface. The center column shows the
spherical harmonic representations for the pressure data and its 10-frequency
energy histogram. The right column shows the corresponding synchronously
captured hand pose.

The recognition algorithm using nearest neighbour searches are very fast
because of the simple bounding volume test, combined with small tree depths.
Our deepest tree has 19 levels for about 9500 data points.

To improve performance, we use the finger count from clustering to restrict
our search for proposals to only the example data containing grasps with the
same number of finger plants. Figure 4 shows our approximation result for a
two-finger and three-finger grasp.

5 Experiments

We have developed a small virtual world in which we can explore the per-
formance of positioning, orienting, and object interaction tasks. Figure 5 left
shows a snapshot of the user’s view of the world. Note that grasping in our
demonstration is iconic, though we could use simulation to bring the hand into
contact with the object [8]. Positioning and targeting the hand using only ac-
celerometers is difficult, and could be improved by addition of gyroscopes that
are now readily available. Nevertheless, we implemented a simple positioning
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Fig. 5. Left, a screen shot from the Tango interaction demonstration. Right, a graph
of Tango vertical position control from acceleration.

interface that uses the measured attitude for velocity and position control for
experimentation (see Figure 5 right).

We can also use the grasp information for mode selection. Specifically,
the number of fingers used in a grasp, as identified by clustering, provides a
reliable method of mode selection. Virtual or free form buttons can also be
implemented this way. In our initial experiments, we tried assigning different
fingers to different virtual buttons, but it is difficult to control the pressure of
one finger independently of the others because the user’s fingers must satisfy
a force closure property on the Tango to maintain a stable grasp. Instead, the
number of fingers used in a grasp can determine the button number.

Using this interface, the user can grasp an object, rotate it in 3D, trans-
port it to a different location, and place it, using hand movements analogous
to those that would be used in a real setting. In the future, such tangible
interfaces could be used for programming robots by demonstration or for
model-based telerobotics [9].

6 Conclusions

This paper presents a novel user interface for 3D whole hand interaction using
a new interface called the Tango. Hand shapes during grasping can be recog-
nized from pressure distributions using rotationally-invariant feature match-
ing and a collection of interaction examples collected with synchronized Tango
and motion capture data. With this interface, the user receives passive hap-
tic feedback while performing 3D interaction. In our experiments, the user is
shown a hand avatar that mimics the shape and motion of the user’s hand
without the use of a glove.
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6.1 Limitations and Future Work

We assume all grasps on the Tango are precision grasps, which simplifies
the identification of number of fingers as the number of clusters; however,
rotationally invariant pressure hashes show promise for correctly identifying
the number of fingers and hand shape when all of our example data trials
are combined into one. Furthermore, we expect our method extends to other
grasp types, such as conforming and palmar grasps.
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