Skip to main content

Optimization of Industrial Processes Using Improved and Modified Differential Evolution

  • Chapter

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 226))

Introduction

Optimization refers to finding one or more feasible solutions, which correspond to extreme values of one or more objectives. The need for finding such optimal solutions in a problem comes mostly from the extreme purpose of either designing a solution for minimum possible cost of fabrication, or for maximum possible reliability, or others. Because of such extreme properties of optimal solutions, optimization methods are of great importance in practice, particularly in engineering design, scientific experiments and business decision-making.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbass, H.A., Sarkar, R., Newton, C.: PDE: A Pareto-frontier differential evolution approach for multi-objective optimization problems. In: Proceedings of IEEE congress on Evolutionary Computation, pp. 971–978 (2001)

    Google Scholar 

  • Abdalla, B.K., et al.: Intrinsic kinetics and industrial reactors modeling for the dehydrogenation of ethyl benzene to styrene on promoted iron oxide catalysts. Applied Catalysis A: General 113, 89–102 (1994)

    Article  Google Scholar 

  • Adjiman, C.S., et al.: A global optimization method for general twice – differentiable constrained NLPs – I. Theoretical Advances. Computers and Chemical Engineering 22, 1137–1158 (1998)

    Article  Google Scholar 

  • Angira, R.: Evolutionary Computation for Optimization of Selected Non-linear Chemical Processes. Ph.D. thesis, BITS-Pilani, India (2006)

    Google Scholar 

  • Angira, R., Babu, B.V.: Optimization of Non-Linear Chemical Processes Using Modified Differential Evolution (MDE). In: Proceedings of the 2nd Indian International Conference on Artificial Intelligence, Pune, India, pp. 911–923 (2005a)

    Google Scholar 

  • Angira, R., Babu, B.V.: Non-dominated Sorting Differential Evolution (NSDE): An Extension of Differential Evolution for Multi-objective Optimization. In: Proceedings of The 2nd Indian International Conference on Artificial Intelligence, Pune, India, pp. 1428–1443 (2005b)

    Google Scholar 

  • Angira, R., Babu, B.V.: Process Synthesis and Design Using Modified Differential Evolution (MDE). In: Proceedings of International Symposium & 58th Annual Session of IIChE in association with International Partners, New Delhi (2005c)

    Google Scholar 

  • Angira, R., Babu, B.V.: Optimization of Process Synthesis and Design Problems: A Modified Differential Evolution Approach. Chemical Engineering Science 61, 4707–4721 (2006a)

    Article  Google Scholar 

  • Angira, R., Babu, B.V.: Multi-Objective Optimization using Modified Differential Evolution (MDE). International Journal of Mathematical Sciences: Special Issue on Recent Trends in Computational Mathematics and Its Applications 5, 371–387 (2006b)

    MathSciNet  Google Scholar 

  • Angira, R., Babu, B.V.: Performance of Modified Differential Evolution for Optimal Design of Complex and Non-Linear Chemical Processes. Journal of Experimental & Theoretical Artificial Intelligence 18, 501–512 (2006c)

    Article  Google Scholar 

  • Babu, B.V.: Process Plant Simulation. Oxford University Press, New York (2004)

    Google Scholar 

  • Babu, B.V.: Improved Differential Evolution for Single- and Multi-Objective Optimization: MDE, MODE, NSDE, and MNSDE. In: Deb, K., et al. (eds.) Advances in Computational Optimization and its Applications, pp. 24–30. Universities Press, Hyderabad (2007)

    Google Scholar 

  • Babu, B.V., Sastry, K.K.N.: Estimation of Heat-transfer Parameters in a Trickle-bed Reactor using Differential Evolution and Orthogonal Collocation. Computers and Chemical Engineering 23, 327–339 (1999)

    Article  Google Scholar 

  • Babu, B.V., Gaurav, C.: Evolutionary Computation Strategy for Optimization of an Alkylation Reaction. In: Proceedings of International Symposium & 53rd Annual Session of IIChE, Calcutta (2000)

    Google Scholar 

  • Babu, B.V., Munawar, S.A.: Differential Evolution for the Optimal Design of Heat Exchangers. In: Proceedings of All-India seminar on Chemical Engineering Progress on Resource Development: A Vision 2010 and Beyond, Bhuvaneshwar (2000)

    Google Scholar 

  • Babu, B.V., Singh, R.P.: Synthesis & optimization of Heat Integrated Distillation Systems Using Differential Evolution. In: Proceedings of All-India seminar on Chemical Engineering Progress on Resource Development: A Vision 2010 and Beyond, Bhuvaneshwar (2000)

    Google Scholar 

  • Babu, B.V., Angira, R.: Optimization of Non-linear functions using Evolutionary Computation. In: Proceedings of 12th ISME Conference on Mechanical Engineering, Chennai, pp. 153–157 (2001a)

    Google Scholar 

  • Babu, B.V., Angira, R.: Optimization of Thermal Cracker Operation using Differential Evolution. In: Proceedings of International Symposium & 54th Annual Session of IIChE, Chennai (2001b)

    Google Scholar 

  • Babu, B.V., Angira, R.: Optimization of Water Pumping System Using Differential Evolution Strategies. In: Proceedings of The Second International Conference on Computational Intelligence, Robotics, and Autonomous Systems, Singapore (2003)

    Google Scholar 

  • Babu, B.V., Angira, R.: Optimal Design of an Auto-thermal Ammonia Synthesis Reactor. Computers and Chemical Engineering 29, 1041–1045 (2005)

    Article  Google Scholar 

  • Babu, B.V., Anbarasu, B.: Multi-Objective Differential Evolution (MODE): An Evolutionary Algorithm for Multi-Objective Optimization Problems (MOOPs). In: Proceedings of The Third International Conference on Computational Intelligence, Robotics, and Autonomous Systems, Singapore (2005)

    Google Scholar 

  • Babu, B.V., Angira, R.: Modified Differential Evolution (MDE) for Optimization of Non-Linear Chemical Processes. Computers and Chemical Engineering 30, 989–1002 (2006)

    Article  Google Scholar 

  • Babu, B.V., Mubeen, J.H.S., Chakole, P.G.: Multiobjective Optimization Using Differential Evolution. TechGenesis-The Journal of Information Technology 2, 4–12 (2005a)

    Google Scholar 

  • Babu, B.V., Chakole, P.G., Mubeen, J.H.S.: Multiobjective Differential Evolution (MODE) for Optimization of Adiabatic Styrene Reactor. Chemical Engineering Science 60, 4822–4837 (2005b)

    Article  Google Scholar 

  • Babu, B.V., Chakole, P.G., Mubeen, J.H.S.: Differential Evolution Strategy for Optimal Design of Gas Transmission Network. Journal of Multidisciplinary Modeling in Materials and Structures 1, 315–328 (2005c)

    Article  Google Scholar 

  • Babu, B.V., et al.: Strategies of Multi-Objective Differential Evolution (MODE) for Optimization of Adiabatic Styrene Reactor. In: Proceedings of International Conference on Emerging Mechanical Technology-Macro to Nano, BITS-Pilani, pp. 243–250 (2007a)

    Google Scholar 

  • Babu, B.V., Mubeen, J.H.S., Chakole, P.G.: Simulation and Optimization of Wiped Film Poly Ethylene Terephthalate (PET) Reactor using Multiobjective Differential Evolution (MODE). Materials and Manufacturing Processes: Special Issue on Genetic Algorithms in Materials (in press, 2007b)

    Google Scholar 

  • Bergey, P.K., Ragsdale, C.: Modified differential evolution: a greedy random strategy for genetic recombination. Omega 33, 255–265 (2005)

    Article  Google Scholar 

  • Bhaskar, V., Gupta, S.K., Ray, A.K.: Multi-objective optimization of an industrial wiped film PET reactor. AIChE J. 46, 1046–1048 (2001)

    Article  Google Scholar 

  • Bracken, J., McCormick, J.P.: Selected Applications of Nonlinear Programming. John Wiley & Sons Limited, New York (1968)

    MATH  Google Scholar 

  • Chiou, J.P., Wang, F.S.: Hybrid Method of Evolutionary Algorithms for Static and Dynamic Optimization Problems with Application to a Fed-batch Fermentation Process. Computers and Chemical Engineering 23, 1277–1291 (1997)

    Article  Google Scholar 

  • Chiou, J.P., Wang, F.S.: Hybrid method of evolutionary algorithms for static and dynamic optimization problems with application to a fed batch fermentation process. Computers and Chemical Engineering 23, 1277–1291 (1999)

    Article  Google Scholar 

  • Corne, D., Dorigo, M., Glover, F.: New Ideas in Optimization. McGraw-Hill Publications, London (1999)

    Google Scholar 

  • Dadebo, S.A., Mcauley, K.B.: Dynamic optimization of constrained chemical engineering problems using dynamic programming. Computers and Chemical Engineering 19, 513–525 (1995)

    Article  Google Scholar 

  • Deb, K.: Optimization for engineering design: Algorithms and examples. Prentice-Hall, New Delhi (1996)

    Google Scholar 

  • Deb, K.: Multi-Objective Optimization using Evolutionary Algorithms. John Wiley & Sons Limited, New York (2001)

    MATH  Google Scholar 

  • Deb, K., et al.: A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation 6, 182–197 (2002)

    Article  Google Scholar 

  • Dembo, R.S.: A set of geometric programming test problems and their solutions. Math. Program. 10, 193–213 (1976)

    Article  MathSciNet  Google Scholar 

  • Edgar, T.F., Himmelblau, D.M.: Optimization of Chemical Processes. McGraw-Hill, Inc., Singapore (1989)

    Google Scholar 

  • Elnashaie, S.S.E.H., Abdalla, B.K., Hughes, R.: Simulation of the industrial fixed bed catalytic reactor for the dehydrogenation of ethyl benzene to styrene: heterogeneous dusty gas model. Industrial and Engineering Chemistry Research 32, 2537–2541 (1993)

    Article  Google Scholar 

  • Floudas, C.A., Pardalos, P.M.: A collection of test problems for constrained global optimization algorithms. LNCS. Springer, Germany (1990)

    MATH  Google Scholar 

  • Floudas, C.A.: Non-linear and mixed-integer optimization. Oxford University Press, New York (1995)

    Google Scholar 

  • Gujarathi, A.M., Babu, B.V.: Multi-Objective Differential Evolution (MODE): A New Algorithm of Solving Multi-Objective Optimization Problems. In: Proceedings of International Symposium & 58th Annual Session of IIChE in association with International Partners, New Delhi (2005)

    Google Scholar 

  • Gujarathi, A.M., Babu, B.V.: Multi-Objective Optimization of Styrene Reactor Using Multi-Objective Differential Evolution (MODE): Adiabatic vs. Steam Injected Operation. In: Proceedings of International Symposium & 59th Annual Session of IIChE in association with International Partners, Bharuch (2006)

    Google Scholar 

  • Goldberg, D.E.: Genetic Algorithms for Search, Optimization, and Machine Learning Reading. Addison-Wesley, Reading, MA (1989)

    Google Scholar 

  • Lee, M.H., Han, C., Chang, K.S.: Dynamic optimization of a continuous polymer reactor using a modified differential evolution algorithm. Industrial and Engineering Chemistry Research 38, 4825–4831 (1999)

    Article  Google Scholar 

  • Logsdon, J.S., Biegler, L.T.: Accurate solution of differential algebraic equations. Industrial and Engineering Chemistry Research 28, 1628–1639 (1989)

    Article  Google Scholar 

  • Lu, J.C., Wang, F.S.: Optimization of Low Pressure Chemical Vapor Deposition Reactors Using Hybrid Differential Evolution. Canadian Journal of Chemical Engineering 79, 246–254 (2001)

    Article  Google Scholar 

  • Madavan, N.K.: Multi-objective optimization using a pareto differential evolution approach. In: Congress on Evolutionary Computation, New Jersey, vol. 2, pp. 1145–1150 (2002)

    Google Scholar 

  • Maranas, C.D., Floudas, C.A.: Global optimization in generalized geometric programming. Computers and Chemical Engineering 21, 351–370 (1997)

    Article  MathSciNet  Google Scholar 

  • Onwubolu, G.C., Babu, B.V.: New Optimization Techniques in Engineering. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  • Pinto, E.G.: Supply Chain Optimization using Multi-Objective Evolutionary Algorithms, Technical Report (2002), available at: http://www.engrpsu.edu/ce/Divisions/Hydro/Reed/Reports.htm

  • Price, K.V., Storn, R.: Differential evolution – a simple evolution strategy for fast optimization. Dr. Dobb’s Journal 22, 18–24 (1997)

    Google Scholar 

  • Price, K.V., Storn, R.: Home page of differential evolution (2007), http://www.ICSI.Berkeley.edu/storn/code.html

  • Ray, W.H.: Advanced process control. McGraw-Hill, New York (1981)

    Google Scholar 

  • Renfro, J.G., Morshedi, A.M., Osbjornsen, O.A.: Simultaneous optimization and solution of systems described by differential/algebraic equations. Computer and Chemical Engineering 11, 503–517 (1987)

    Article  Google Scholar 

  • Ryoo, H.S., Sahinidis, N.V.: Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers and Chemical Engineering 19, 551–566 (1995)

    Article  Google Scholar 

  • Sauer, R.N., Coville, A.R., Burwick, C.W.: Computer points way to more profits. Hydrocarbon Processing Petroleum Refiner 43, 84 (1964)

    Google Scholar 

  • Sheel, J.G.P., Crowe, C.M.: Simulation and optimization of an existing ethyl benzene dehydrogenation reactor. Canadian Journal of Chemical Engineering 47, 183–187 (1969)

    Article  Google Scholar 

  • Storn, R.: Differential Evolution design of an IIR-filter with requirements for magnitude and group delay. International Computer Science Institute (1995)

    Google Scholar 

  • Tasoulis, D.K., Pavlidis, N.G., Plagianakos, V.P., Vrahatis, M.N.: Parallel differential evolution (2004), available at: http://www.math.upatras.gr/~dtas/papers/TasoulisPPV2004.pdf

  • Wang, F.S., Chiou, J.P.: Optimal control and optimal time location problems of differential-algebraic systems by differential evolution. Industrial & Engineering Chemistry Research 36, 5348–5357 (1997)

    Article  Google Scholar 

  • Wang, F.S., Cheng, W.M.: Simultaneous optimization of feeding rate and operation parameters for fed-batch fermentation processes. Biotechnology Progress 15, 949–952 (1999)

    Article  MathSciNet  Google Scholar 

  • Yee, A.K.Y., Ray, A.K., Rangiah, G.P.: Multi-objective optimization of industrial styrene reactor. Computers and Chemical Engineering 27, 111–130 (2003)

    Article  Google Scholar 

  • Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the strength pareto evolutionary algorithm Technical Report 103, Computer Engineering and Networks Laboratory (TIK), Swiss Federal Institute of Technology (ETH) Zurich, Gloriastrasse 35, CH-8092 Zurich, Switzerland (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bhanu Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Babu, B.V., Angira, R. (2008). Optimization of Industrial Processes Using Improved and Modified Differential Evolution. In: Prasad, B. (eds) Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77465-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77465-5_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77464-8

  • Online ISBN: 978-3-540-77465-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics