Skip to main content

Noise-Robust Tool Condition Monitoring in Micro-milling with Hidden Markov Models

  • Chapter
Soft Computing Applications in Industry

Part of the book series: Studies in Fuzziness and Soft Computing ((STUDFUZZ,volume 226))

Introduction

Tool condition monitoring is crucial to the efficient operation of machining process where the cutting tool is subject to continuous wear. In particular, in micro machining, the tolerances, depth of cut, and even workpiece sizes are in micro scale. Micromachining can overcome the shortcomings of micro fabrication techniques (such as lithography and etching) with limitation of work materials (mostly on silicon) and geometric forms (2 or 2.5 dimensions) (Byrne et al. 2003; Liu et al. 2004). One very versatile micro-machining process is micro-milling. Micro-milling has advantages over other micro-machining techniques with respect to the types of workable materials and the free-form 3D micro structures with high aspect ratios and high geometric complexity. However, in micro-milling, with the miniaturisation of the cutting tool (<1 mm in diameter), and the use of high speed (>10,000 rpm), the tool wears quickly. It is critical to monitor the tool wear in micro-machining due to the high precision required. Compared to conventional machining, the noise component in the signal for monitoring micro-machining is usually very high and difficult to separate (Tansel et al 1998; Zhu et al. 2007). This phenomenon makes it difficult to apply TCM in micro-machining.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bell, A.J., Sejnowski, T.J.: An information-maximisation approach to blind separation and blind deconvolution. Neural computation 7(6), 1004–1034 (1995)

    Google Scholar 

  • Byrne, G., et al.: Tool condition monitoring (TCM)—the status of research and industrial application. Annals of CIRP 44(2), 541–567 (1995)

    Article  Google Scholar 

  • Byrne, G., Dornfeld, D., Denkena, B.: Advancing Cutting Technology, Annals of CIRP Keynotes (2003)

    Google Scholar 

  • Cardoso, J.F.: Blind signal separation: statistical principles. Proceedings of the IEEE 9(10), 2009–2025 (1998)

    Article  Google Scholar 

  • Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1994)

    Article  MathSciNet  Google Scholar 

  • Du, R., Elbestawi, M.A., Wu, S.M.: Computer automated monitoring of manufacturing processes: Part 2, applications, Transactions of ASME. Journal of Engineering for Industry (1995)

    Google Scholar 

  • Fish, R.K., et al.: Multilevel Classification of Milling Tool Wear with Confidence Estimation. IEEE Transactions on Pattern Analysis and Machine Intelligence 25(1) (2003)

    Google Scholar 

  • Fraley, C., Raftery, A.E.: How many clusters? Which clustering method? -Answers via model-based cluster analysis. The Computer Journal 41, 578–588 (1998)

    Article  MATH  Google Scholar 

  • Gelle, G., Colas, M.: Blind source searation: A tool for rotating machine monitoring by vibration analysis? Journal of Sound and Vibration 248(5), 865–885 (2001)

    Article  Google Scholar 

  • Goebel, K., Yan, W.: Feature Selection for Tool Wear Diagnosis Using Soft Computing Techniques, GE Technical Information Series, 2001CRD011 (2001)

    Google Scholar 

  • Heck, L.P., Chou, K.C.: Gaussian Mixture Model Classifiers for Machine Monitoring, ICASSP 1994. In: IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 6, pp. VI/133–136 (1994)

    Google Scholar 

  • Hong, G.S., Rahman, M., Zhou, Q.: Using neural network for tool condition monitoring based on wavelet decomposition. Int. J. Mach. Tools Manufacture 36(5), 551–566 (1996)

    Article  Google Scholar 

  • Hyvärinen, A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Transactions on Neural Networks 10, 626–634 (1999)

    Article  Google Scholar 

  • Hyvärinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. John Wiley & Sons, Chichester (2001)

    Google Scholar 

  • International Standard Organization (ISO 8688-2: 1989) Tool life testing in milling -Part 2: End milling (1989)

    Google Scholar 

  • Kassim, A.A., Zhu, M., Mannan, M.A.: Tool condition classification using Hidden Markov Model based on fractal analysis of machined surface textures. Machine Vision and Applications 17, 327–336 (2006)

    Article  Google Scholar 

  • Kumar, S.A., Ravindra, H.V., Srinivasa, Y.G.: In-process Tool Wear Monitoring through Time Series Modeling and Pattern Recognition. International Journal of Production Research 35(3), 739–751 (1997)

    Article  MATH  Google Scholar 

  • Li, X., Tso, S.K., Wang, J.: Real time tool condition monitoring using wavelet transforms & fuzzy techniques. IEEE Transactions on Systems, Man, and Cybernetics Part C: Applications and Reviews 31(3), 352–357 (2000)

    Google Scholar 

  • Li, D., Douglas, O.S.: Speech processing: A Dynamic and Object-oriented Approach, Marcel Dekker, Inc. (2003)

    Google Scholar 

  • Li, S., Elbestawi, M.A.: Fuzzy Clustering for Automated Tool Conditon Monitoring in Machining. Mechanical Systems and Signal Processing 10(5), 533–550 (1996)

    Article  Google Scholar 

  • Liang, S.Y., Dornfeld, D.A.: Detection of Cutting Tool-wear Using Adaptive Time Series Modeling of Acoustic Emission Signal, Sensors for Manufacturing, ASME, pp. 27–38 (1987)

    Google Scholar 

  • Liu, X., et al.: The Mechanics of Machining at the Micro-Scale: Assessment of the Current State of the Science. Journal of Manufacturing Science and Engineering 126(4), 666–677 (2004)

    Article  Google Scholar 

  • Mallat, S.G.A.: Wavelet Tour of Signal Processing. Academic Press, San Diego (1998)

    MATH  Google Scholar 

  • Niu, Y.M., Wong, Y.S., Hong, G.S.: Multi-category classification of tool conditions using wavelet packets and ART2 network. ASME J. of Manufacturing Science and Technology 120, 807–815 (1998)

    Google Scholar 

  • Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  • Rahman, R., Kumar, A.S., Prakash, J.R.R.: Micro-milling of pure copper. International Journal of Materials Processing 16, 39–43 (2001)

    Article  Google Scholar 

  • Roan, M.J., Erling, J.G., Sibul, L.H.: A new, non-linear, adaptive, blind source separation approach to geartooth failure detection and analysis. Mechanical Systems & Signal Processing 16(5), 719–740 (2002)

    Article  Google Scholar 

  • Saglam, H., Unuvar, A.: Tool Condition Monitoring in Milling on cutting forces by a Neural Network. Int. J. Production Research 41(7), 1519–1532 (2003)

    Article  Google Scholar 

  • Serviere, C., Fabry, P.: Blind source separation of noisy harmonic signals for rotating machine diagnosis. Journal of Sound and Vibration 272(1-2), 317–339 (2004)

    Article  Google Scholar 

  • Shaw, M.C.: Metal Cutting Principles, 2nd edn. Oxford University Press, Oxford, UK (2005)

    Google Scholar 

  • Sun, J., et al.: Identification of feature set for effective tool condition monitoring by acoustic emission sensing. International Journal of Production Research 42(5), 901–918 (2004)

    Article  Google Scholar 

  • Tansel, I.N., et al.: Micro-end-milling—I. wear and breakage. International Journal of Machine Tools & Manufacture 38, 1419–1436 (1998)

    Article  Google Scholar 

  • Tansel, I.N., et al.: Tool wear estimation in micro-machining. Part I: tool usage–cutting force relationship. Int. J. Mach. Tools Manufacture 40, 599–608 (2000)

    Article  Google Scholar 

  • Tansel, I.N., et al.: Micro-end-milling—III. wear estimation and tool breakage detection using acoustic emission signals. International Journal of Machine Tools & Manufacture 38, 1449–1466 (1998)

    Article  Google Scholar 

  • Theodoridis, S., Koutroumbas, K.: Pattern Recognition, vol. 2. Academic Press, London (2003)

    Google Scholar 

  • Tian, X., et al.: Gearbox fault diagnosis using independent component analysis in the frequency domain and wavelet filtering. In: IEEE ICASSP 2003, pp. II245–248 (2003)

    Google Scholar 

  • Wang, L., Mehrabi, M.G., Elijah, K.A.: Hidden Markov Model-based Tool Wear Monitoring in Turning. ASME Journal of Manufacturing Science and Engineering 124, 652–658 (2002)

    Google Scholar 

  • Wang, W.H., et al.: Sensor fusion for on-line tool condition monitoring in milling. International Journal of Production Research (in press, 2007)

    Google Scholar 

  • Wu, Y., Escande, P., Du, R.: A New Method for Real-Time Tool Condition Monitoring in Transfer Machining Stations. ASME Journal of Manufacturing Science and Engineering 123, 339–347 (2001)

    Article  Google Scholar 

  • Zhu, K.P., Hong, G.S., Wong, Y.S.: Cutting Force Denoising in Micro-milling Tool Condition Monitoring. International Journal of Production Research (in press, 2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Bhanu Prasad

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhu, K.P., Wong, Y.S., Hong, G.S. (2008). Noise-Robust Tool Condition Monitoring in Micro-milling with Hidden Markov Models. In: Prasad, B. (eds) Soft Computing Applications in Industry. Studies in Fuzziness and Soft Computing, vol 226. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77465-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77465-5_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77464-8

  • Online ISBN: 978-3-540-77465-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics