School of Computer Science

Computer Science Department

Carnegie Mellon University Year 2007

Breaking and Fixing Public-Key

Kerberos
Iliano Cervesato* Aaron D. Jaggard! Andre Scedrov?
Joe-Kay Tsay™** Christopher Walstad '

*Carnegie Mellon University, iliano@cmu.edu
TTulane University of Louisiana,
fUniversity of Pennsylvania

**University of Pennsylvania

Tt University of Pennsylvania

This paper is posted at Research Showcase.

http://repository.cmu.edu/compsci/1

Breaking and Fixing Public-Key Kerberos'!

Iliano Cervesato?, Aaron D. Jaggard®, Andre Scedrov®,
Joe-Kai Tsay ¢, Christopher Walstad ©

aCarnegie Mellon University, Qatar
> Tulane University

¢ University of Pennsylvania

Abstract

We report on a man-in-the-middle attack on PKINIT, the public key extension
of the widely deployed Kerberos 5 authentication protocol. This flaw allows an
attacker to impersonate Kerberos administrative principals (KDC) and end-servers
to a client, hence breaching the authentication guarantees of Kerberos. It also gives
the attacker the keys that the KDC would normally generate to encrypt the service
requests of this client, hence defeating confidentiality as well. The discovery of this
attack caused the IETF to change the specification of PKINIT and Microsoft to
release a security update for some Windows operating systems. We discovered this
attack as part of an ongoing formal analysis of the Kerberos protocol suite, and we
have formally verified several possible fixes to PKINIT—including the one adopted
by the IETF—that prevent our attack as well as other authentication and secrecy
properties of Kerberos with PKINIT.

Key words: Computer Security, Authentication Protocols, Kerberos, PKINIT,
Man-in-the-middle Attack, Protocol Verification.

Email addresses: iliano@cmu.edu (Iliano Cervesato), adj@math.tulane.edu
(Aaron D. Jaggard), scedrov@math.upenn.edu (Andre Scedrov),
jetsay@math.upenn.edu (Joe-Kai Tsay), cwalstad@seas.upenn. edu
(Christopher Walstad).

1 Cervesato was partially supported by the Qatar Foundation under grant number
930107, with early aspects of this work supported by ONR under grants N00014-
99-1-0150 and N00014-01-1-0795. Jaggard was partially supported by NSF Grants
DMS-0239996 and CNS-0429689 and by ONR Grant N00014-05-1-0818; parts of this
work were done while he was a Visiting Scholar in the Mathematics Department
at the University of Pennsylvania. Scedrov, Tsay, and Walstad were partially sup-
ported by OSD/ONR CIP/SW URI “Software Quality and Infrastructure Protec-
tion for Diffuse Computing” through ONR Grant N00014-01-1-0795 and OSD/ONR

Preprint submitted to Elsevier 21 May 2007

1 Introduction

Kerberos [1] is a successful, widely deployed single sign-on protocol that is
designed to authenticate clients to multiple networked services, e.g., remote
hosts, file servers, or print spoolers. Kerberos 5, the most recent version, is
available for all major operating systems: Microsoft has included it in its
Windows operating system, it is available for Linux under the name Heimdal,
and commercial Unix variants as well as Apple’s OS X use code from the MIT
implementation of Kerberos 5. Furthermore, it is being used as a building block
for higher-level protocols [2]. Introduced in the early 1990s [3], Kerberos 5
continues to evolve as new functionalities are added to the basic protocol. One
of these extensions, known as PKINIT, modifies the basic protocol to allow
public-key authentication and in the process adds considerable complexity to
the protocol. Here we report a protocol-level attack on PKINIT and discuss
the constructive process of fixing it. We have verified a few defenses against
our attack, including one we suggested, a different one proposed in the IETF
Kerberos working group (and included the final PKINIT specification), and a
generalization of these two approaches.

A Kerberos session generally starts with a user logging onto a system. This
triggers the creation of a client process that will transparently handle all her
authentication requests. The initial authentication between the client and the
Kerberos administrative principals (altogether known as the KDC, for Key
Distribution Center) is traditionally based on a shared key derived from a
password chosen by the user. PKINIT is intended to add flexibility, security
and administrative convenience by replacing this static shared secret with two
pairs of public/private keys, one assigned to the KDC and one belonging to
the user. PKINIT is supported by Kerberized versions of Microsoft Windows,
typically for use with smartcard authentication, including Windows 2000 Pro-
fessional and Server, Windows XP, Windows Server 2003 and now Windows
Vista [4]; it has also been included in Heimdal since 2002 [5]. The MIT refer-
ence implementation is being extended with PKINIT.

The flaw we have uncovered in PKINIT allows an attacker to impersonate
the KDC, and therefore all the Kerberized services, to a user, hence defeating
authentication of the server to the client. The attacker also obtains all the keys
that the KDC would normally generate for the client to encrypt her service
requests, hence compromising confidentiality as well. This is a protocol-level
attack and was a flaw in the then-current specification, not just a particular
implementation. In contrast to recently reported attacks on Kerberos 4 [6], our

CIP/SW URI “Trustworthy Infrastructure, Mechanisms, and Experimentation for
Diffuse Computing” through ONR Grant N00014-04-1-0725. Additional support
from NSF Grants CNS-0429689 and CNS-0524059.

attack does not use an oracle, but is efficiently mounted in constant time by
simply decrypting a message with one key, changing one important value, and
re-encrypting it with the victim’s public key. The consequences of this attack
are quite serious. For example, the attacker could monitor communication
between an honest client and a Kerberized network file server. This would
allow the attacker to read the files that the client believes are being securely
transferred to the file server.

Our attack is possible because the two messages constituting PKINIT were
insufficiently bound to each other.? More precisely, the reply (the second mes-
sage of this exchange) can easily be modified so that it appears to correspond
to a request (the first message) sent by a client different from the one the reply
is generated for. Assumptions required for this attack are that the attacker is
a legal user, that he can intercept other clients’ requests, and that PKINIT is
used in “public-key encryption mode”. The alternative “Diffie-Hellman (DH)
mode” does not appear vulnerable to this attack; we are in the process of
proving its full security.

We discovered this attack as part of an ongoing formal analysis of the Ker-
beros 5 protocol suite. Our earlier work on Kerberos successfully employed
formal methods for the verification of the authentication properties of basic
intra-realm Kerberos 5 [7,8] and of cross-realm authentication [8,9]. Although
our work is carried out by hand, a variety of automated approaches exist
for symbolic proofs [10-17] and have also been applied to deployed protocols
(e.g., [18-20]). In a recent collaboration with M. Backes, we have started ex-
tending our results from the abstract Dolev-Yao model examined here to the
more concrete computational model [21]. Interestingly, the results described
in more detail here served as a blueprint for the much more fine-grained proofs
in [21]. Furthermore, we have started exploring automated security proofs of
Kerberos [22] using the tool CryptoVerif [23,24], which works directly within
the computational model.

After discovering the attack on PKINIT, we worked in close collaboration
with the IETF Kerberos Working Group, in particular with the authors of the
PKINIT specification documents, to correct the problem. Our contribution
in this regard has been a formal analysis of a general countermeasure to this
attack, as well as the particular instance proposed by the Working Group
that has been adopted in the PKINIT specification [25]. Our attack led to an
August 2005 Microsoft Security Bulletin and patch [4]. It was also recorded
as a CERT advisory [26]. This paper extends our preliminary report [27] with
additional authentication properties, full proofs of our results, and a more
complete discussion of our techniques, formalization, and the protocol itself.

2 The possibility of an ‘identity misbinding’ attack was independently hypothesized
by Ran Canetti, whom we consulted on some details of the specification

Below, in Section 2 we recall the structure of Kerberos and give a detailed
description of PKINIT. In Section 3 we provide an account of the attack
we uncovered and outline its consequences. In Section 4 we discuss various
approaches to prevent the attack, including the one adopted by the IETF
Kerberos working group in response to our work. In Section 5 we review our
representation language, MSR, and use it to formalize the fixed version of
PKINIT; we give some of our formal results—that the fixed version does
prevent our attack and that both the broken and fixed versions have other
authentication and secrecy properties—in Section 6. Section 7 provides some
concluding remarks.

2 Kerberos 5 and its Public-Key Extension

The Kerberos protocol [1] allows a legitimate user to log on to her termi-
nal once a day (typically) and then transparently access all the networked
resources she needs in her organization for the rest of that day. Each time
she wants to retrieve a file from a remote server, for example, Kerberos se-
curely handles the required authentication behind the scene, without any user
intervention.

We now review how Kerberos provides secure authentication based on a single
logon. As we do this, we will be particularly interested in the initial exchange,
which happens when the user first logs onto the system. Figure 1 gives an
overview of the message flow for the entire Kerberos protocol; Figure 4 below
refines this to show some of the message details for the basic protocol. We
start this section with a detailed review of the first exchange in the protocol,
both with and without PKINIT.

2.1 Kerberos Basics

The client process—usually acting on behalf of a human user—interacts with
three other types of principals during the three rounds of Kerberos 5 (with
or without PKINIT). The client’s goal is to be able to authenticate herself to
various application servers (e.g., email, file, and print servers). This is done
by first obtaining credentials, called the “ticket-granting ticket” (TGT), from
a “Kerberos Authentication Server” (KAS) and then by presenting these cre-
dentials to a “Ticket-Granting Server” (TGS) in order to obtain a “service
ticket” (ST), which is the credential that the client finally presents to the ap-
plication servers in order to authenticate herself (see Figure 1). A TGT might
be valid for a day, and may be used to obtain several STs for many different
application servers from the TGS, while a single ST might be valid for a few

Client C KAS TGS Server S
Authenticate C' for U

Credentials (TGT) !
o [)
i Want to use S; here is the TGT
Credentials to use S (ST) :
[J
i Want to use S; here is the ST e
;
o< Ok .

Fig. 1. An Overview of Kerberos Authentication

minutes (although it, too, may be used repeatedly while it is still valid) and
is used for a single application server. The KAS and the TGS are altogether
known as the “Key Distribution Center” (KDC).

The client’s interactions with the KAS, TGS, and application servers are called
the Authentication Service (AS), Ticket-Granting (TG), and Client-Server
(CS) exchanges, respectively. The focus of this work will be the AS exchange,
as PKINIT does not alter the remaining parts of Kerberos.

The Traditional Authentication Service Exchange. The abstract
structure of the messages in the traditional (non-PKINIT) AS exchange is
given in Figure 2. A client C' generates a fresh nonce n; and sends it, together
with her own name and the name T" of the TGS for whom she desires a TGT,
to the KAS. The KAS responds by generating a fresh key AK for use between
the client and the TGS. This key is sent back to the client, along with the
nonce (n1) from the request and other data, encrypted under a long-term key
k¢ shared between C' and the KAS; this long-term key is usually derived from
the user’s password. We write {m}, for the encryption of m with symmetric
key k. This is the only time that this long-term key is used in a standard
Kerberos run because later exchanges use freshly generated keys. AK is also
included in the TGT, sent alongside the message encrypted for the client. The
TGT is encrypted under a long-term key kr shared between the KAS and the
TGS named in the request. These encrypted messages are accompanied by
the client’s name—and other data that we abstract away—sent in the clear.
Once the client has received this reply, she may undertake the Ticket-Granting
exchange.

It should be noted that the actual AS exchange, as well as the other exchanges
in Kerberos, is more complex than the abstract view given here; the details
we omit here do not affect our results and including them would only obscure
their exposition. We refer the reader to [1] for the complete specification of

C KAS
C, T, ny

nl. >~ @

AK,t
C, TGT,{AK, ny,tg, T}, K

Fig. 2. Message Flow in the Traditional AS Exchange where TGT = {AK, C,tx },, .

Kerberos 5, and to [7] for a formalization at an intermediate level of detail.

Security Considerations. One weakness of the standard Kerberos proto-
col is that the key k¢ used to encrypt the client’s credentials is derived from a
password, and passwords are notoriously vulnerable to dictionary attacks [1].
Moreover, since the initial request is entirely plaintext, an active attacker can
repeatedly make requests for an honest client’s credentials and amass a large
quantity of plaintext-ciphertext pairs, the latter component being encrypted
with the client’s long-term key kc. While the attacker is unable to use these
credentials to authenticate to the system, he is given considerable opportunity
to perform an active dictionary attack against the key.

Kerberos can optionally use pre-authentication, a feature that is designed to
prevent an attacker from actively requesting and obtaining credentials for
an honest user. In brief, pre-authentication works by requiring the client to
include a timestamp encrypted with her long-term key (k¢) in the initial re-
quest. The authentication server will only return credentials if the decrypted
timestamp is sufficiently recent. This method successfully prevents an attacker
from actively obtaining ciphertext encrypted with the long-term key; how-
ever, it does not prevent passive dictionary attacks, i.e., a passive attacker
could eavesdrop on network communications, record credentials as the honest
client requests them, and attempt off-line dictionary decryption. Thus, pre-
authentication makes it slower for an attacker to perform cryptanalysis against
the user’s long-term key, but it does not fully prevent the vulnerability. One
goal of PKINIT is to eliminate the possibility of this dictionary attack.

2.2 Public-Key Kerberos

PKINIT [25] is an extension to Kerberos 5 that uses public key cryptogra-
phy to avoid shared secrets between a client and KAS; it modifies the AS
exchange but not other parts of the basic Kerberos 5 protocol. As we just
saw, the long-term shared key (k¢) in the traditional AS exchange is typically
derived from a password, which limits the strength of the authentication to
the user’s ability to choose and remember good passwords; PKINIT does not

use ko and thus avoids this problem. Furthermore, PKINIT allows network
administrators to use an existing public key infrastructure (PKI) rather than
expend additional effort to manage users’ long-term keys needed for traditional
Kerberos. This protocol extension adds complexity to Kerberos as it retains
symmetric encryption in the later rounds but relies on asymmetric encryption,
digital signatures, and corresponding certificates in the first round.

In PKINIT, the client C' and the KAS possess independent public/secret
key pairs, (pkc, skc) and (pkg, ski), respectively. Certificate sets Certe and
Certk issued by a PKI independent from Kerberos are used to testify of the
binding between each principal and her purported public key. This simpli-
fies administration as authentication decisions can now be made based on the
trust the KDC holds in just a few known certification authorities within the
PKI, rather than keys individually shared with each client (local policies can,
however, still be installed for user-by-user authentication). Dictionary attacks
are defeated as user-chosen passwords are replaced with automatically gen-
erated asymmetric keys. The login process changes as very few users would
be able to remember a random public/secret key pair. In Microsoft Windows,
keys and certificate chains are stored in a smartcard that the user swipes in
a reader at login time. A passphrase is generally required as an additional
security measure [28]. Other possibilities include keeping these credentials on
the user’s hard drive, again protected by a passphrase.

The manner in which PKINIT works depends on both the protocol version
and the mode invoked. As the PKINIT extension to Kerberos has recently
been published as RFC 4556 after a sequence of Internet Drafts [25], we use
“PKINIT-n" to refer to the protocol as specified in the n'* draft revision and
“PKINIT” for the protocol more generally. These various drafts and the RFC
can be found at [25]. We discovered the attack described in Section 3 when
studying PKINIT-25; our description of the vulnerable protocol is based on
PKINIT-26, which does not differ from PKINIT-25 in ways that affect the
attack. In response to our work described here, PKINIT-27 included a defense
against our attack; we discuss this fix in Section 4. The version of the protocol
defined in RFC 4556 does not differ from the parts of PKINIT-27 that we
discuss here.

PKINIT can operate in two modes. In public-key encryption mode, the key
pairs (pkc, skc) and (pkk, ski) are used for both signature and encryption.
The latter is designed to (indirectly) protect the confidentiality of AK, while
the former ensures its integrity. In Diffie-Hellman (DH) mode, the key pairs are
used to provide digital signature support for an authenticated Diffie-Hellman
key agreement which is used to protect the fresh key AK shared between
the client and KAS. A variant of this mode allows the reuse of previously
generated shared secrets. We will not discuss the DH mode in detail as our
preliminary investigation did not reveal any flaw in it; we are currently working

C KAS

Certc, [tc,ne]

ny skC7C7T7n1
'@ >~ @

na, to l’

{Certg, [k, ng]SkK}}pkc ,C, TGT,{AK,ny,tg, T} AK, tx

Fig. 3. Message Flow in |[PKINIT-26|, where TGT = {AK, C, tK}kT'

on a complete analysis of this mode. Furthermore, it appears not to have yet
been included in any of the major operating systems. The only support we
are aware of is within the PacketCable system [29], developed by CableLabs,
a cable television research consortium.

Figure 3 illustrates the AS exchange in public-key encryption mode as of
PKINIT-26. The differences with respect to the traditional AS exchange (see
Figure 2) have been highlighted using [boxes|. In discussing this and other
descriptions of the protocol, we write [m],, for the digital signature of message
m with secret key sk. (PKINIT realizes digital signatures by concatenating
the message and a keyed hash for it, occasionally with other data in between.)
In our analysis of PKINIT in Section 6, we make the standard assumption
that digital signatures are unforgeable [30]. The encryption of m with public
key pk is denoted {m} ;. As before, we write {m}, for the encryption of m
with symmetric key k.

The first line of Figure 3 describes the relevant parts of the request that a
client C' sends to a KAS K using PKINIT-26. The last part of the message—
C,T,n,—is exactly as in basic Kerberos 5, containing the client’s name, the
name of the TGS for which she wants a TGT, and a nonce. The boxed parts
added by PKINIT include the client’s certificates C'ertc and her signature
(with her secret key sk¢) over a timestamp ¢t and another nonce ny. (The
nonces and timestamp to the left of this line indicate that these are generated
by C specifically for this request, with the box indicating data not included
in our abstract formalization of basic Kerberos 5 [7,8].) This effectively imple-
ments a form of pre-authentication.

The second line in Figure 3 shows our formalization of K’s response, which is
more complex than in basic Kerberos. The last part of the message—C, T'G'T,
{AK ny, tg, T }—is very similar to K’s reply in basic Kerberos; the difference
(Iboxed]) is that the symmetric key k protecting AK is now freshly generated
by K and not a long-term shared key. The ticket-granting ticket TGT and
the message encrypted under k£ are as in traditional Kerberos. Because k is

freshly generated for the reply, it must be communicated to C' before she can
learn AK. PKINIT does this by adding the message { Certr, [k, na] . ok

C KAS TGS (T) S

C7 T7 ny
nG e > @
lAK
° CJ {AK7 07 tK}kqw {AK7 ny, tK7 T}kc .tK
. N——
ns . TGT
. N
tC; {AK7CatK}k‘T7{CatC}AKysanS e
lSK
° 07{SK7 C7tT}ksv{SK7n37tT75}AK .tT
. —_———
tl ST
C- [P NN
; {SK’ 07 tT}k57 {Cv t/C}SK o
. {tc}sx i

Fig. 4. Message flow in basic Kerberos

This contains K’s certificates and his signature, using his secret key skg, over
k and the nonce nsy from C’s request; all of this is encrypted under C's public

key pkc.

This abstract description leaves out a number of fields which are of no signif-
icance with respect to the reported attack or its fix. We invite the interested
reader to consult the specifications [25]. Also, recall that PKINIT leaves the
subsequent exchanges of Kerberos unchanged.

2.8 Message Flow in Later Fxchanges

For the sake of completeness, we give a brief overview of the message structure
in the remaining rounds of Kerberos; Section 3.3 discusses how the attack on
PKINIT can be propagated through these later rounds. Figure 4 updates Fig-
ure 1 to show the details of the messages in basic Kerberos. PKINIT modifies
the first two of these messages as illustrated in Figure 3.

The AS exchange (either traditional or with PKINIT) provides the client with
an authentication key AK and a ticket granting ticket TGT = {AK, C,tx},, .

In the TG exchange, C' then requests an ST from T after generating a new
nonce n3 and timestamp; her request includes the TGT (which she cannot
read but simply forwards from K'), an authenticator {C,tc},; containing
her name and timestamp and encrypted with AK, the name of the server S
for which she wants an ST, and the new nonce. T’s response has the same
structure as K’s, but now with an ST in place of the TGT and S taking the

role of T" in the rest of the message.

Finally, in the CS exchange, C' authenticates herself to S by sending the ST
and an authenticator {C,t,}¢x containing her name and timestamp, and
encrypted under the fresh key SK. S may authenticate himself back to C' by
encrypting C’s timestamp (but not C’s name, so that the result differs from
the authenticator) with SK and returning this message to C.

3 The Attack

In this section, we report on a dangerous attack against PKINIT in public-key
encryption mode. We discovered this attack as we were interpreting the spec-
ification documents of this protocol [25] in preparation for its formalization
in MSR. [9,31,32], the specification language for our analysis. We start with a
detailed description of the attacker’s actions in the AS exchange, the key to
the attack. We then review the conditions required for the attack and close
this section with a discussion of how the attacker may propagate the effects
of her AS exchange actions throughout the rest of a protocol run.

3.1 Message Flow

Figure 5 shows the AS exchange message flow in the attack. The client C' sends
a request to the KAS K which is intercepted by the attacker I, who constructs
his own request message using the parameters from C’s message. All data
signed by C' are sent unencrypted—indeed [msgls, can be understood as an
abbreviation for the plaintext msg together with a keyed hash of the message—
so that [may generate his own signatures over data from C's request. The
result is a well-formed request message from I, although constructed using
some data originating with C. I’s changes to the request message are
above the top-right arrow of Figure 5. (We have omitted an unkeyed checksum
taken over unencrypted data from these messages; I can regenerate this as
needed to produce a valid request.)

I forwards the fabricated request to the KAS K, who views it as a valid
request for credentials if I is himself a legitimate client; there is nothing to
indicate that some of the data originated with C'. K responds with a reply
containing credentials for I (the bottom-right arrow in Figure 5). The TGT
has the form {AK,I,tx}, ; note that, because it is encrypted with the key
kr shared between K and the TGS T, it is opaque to C' (and I). Another
part of the reply is encrypted using the public key of the client for whom the
credentials are generated, in this case I. This allows the attacker to decrypt

10

C I KAS

C@T’tc, [ta n2]skc7 C, T, ny ’ [tC7 TLQ]’ 7 Ta n
-0 . e

[]
{{CGT’tKa [k7n2]sk1<}}’ {C@Ttl(y [k7n2]5k}(}}pk17 f]’(AK
C], TGT,{AK,ny, tg, T}, I, TGT,{AK,ni,tg,T},
@ @ [J

Fig. 5. Message Flow in the Man-In-The-Middle Attack on PKINIT-26, where
TGT ={AK,I,tx}y,.

this part of the message using his private key, learn the key k, and use this to
learn the key AK. An honest client would only use this information to send a
request message to the TGS T'. Instead, I uses C's public key to re-encrypt the
data he decrypted using his private key (having learned pkc, if necessary, from
Certc in the original request), replaces his name with C’s, and forwards the
result to C'. To C this message appears to be a valid reply from K generated
in response to C’s initial request (recall that C' cannot read I’s name inside
the TGT).

At this point, C' believes she has authenticated herself to the KAS and that the
credentials she has obtained—the key AK and the accompanying TGT—were
generated for her. However, the KAS has completed the PKINIT exchange
with I and has generated AK and the TGT for I. The attacker knows the
key AK (as well as k, which is not used other than to encrypt AK) and can
therefore decrypt any message that C' would protect with it.

Protocol-level attacks in the same vein of the vulnerability we uncovered
have been reported in the literature for other protocols. In 1992, Diffie, van
Oorschot, and Wiener noted that a signature-based variant of the Station-
to-Station protocol [33] could be defeated by a man-in-the-middle (MITM)
attack which bears similarities to what we observed in the first half of our
vulnerability; in 2003 Canetti and Krawczyk [34] observed that the “basic
authenticated Diffie-Hellman” mode of the Internet Key Exchange protocol
(IKE) [35] had this very same vulnerability. In 1996, Lowe [36] found an at-
tack on the Needham-Schroeder public key protocol [37] that manipulates
public key encryption essentially in the same way as what happens in the
second half of our attack. Because it alters both signatures and asymmetric
encryptions, our attack against PKINIT stems from both [36] and [33]. In
1995, Clark and Jacob [38] discovered a similar flaw on Hwang and Chen’s
corrected SPLICE/AS protocol [39)].

11

C I T S

ngthT\ TGT, TGT,
{CatC,T}AKacasan?) {[7tl,T}AK7]757n3
° > e > e
C, ST, I, ST, SK, tr
{SK,n3,tr,S} Ak {SK,ns,tr, S} ax
® <« o < L4
o)
@8 STa {07 tC,S}SK ST7 {[? tI,S}SK
[J > @ []
.. \losisk .- {trs}s i

Fig. 6. Message flow in the man-in-the-middle attack on PKINIT-26, after the
messages in Figure 5, when the attacker forwards and observes traffic; here
TGT ={AK,I,tk}y, and ST = {SK, I, tr}_.

3.2 Assumptions

In order for this attack to work, the attacker must be a legal Kerberos client
so that the KAS will grant him credentials. In particular, he must possess
a public/secret key pair (pk;, sk;) and valid certificates Cert; trusted by the
KAS. The attacker must also be able to intercept messages, which is a standard
assumption. Finally, PKINIT must be used in public-key encryption mode,
which is commonly done as the alternative DH mode does not appear to be
readily available, except for domain specific systems [28,29].

3.8 Effects of the Attack

Attacker Observes Traffic. Once the attacker learns AK in the AS ex-
change, he may either mediate C’s interactions with the various servers (es-
sentially logging in as I while leaking data to C' so she believes she has logged
in) while observing this traffic or simply impersonate the servers in the later
exchanges. In the first variant, which is shown in Figure 6, once C has AK and
a TGT, she would normally contact the TGS to get an ST for some application
server S. This request contains an authenticator of the form {C,tcr} 4 (i-e.,
(’s name and a timestamp, encrypted with AK). Because [knows AK, he
may intercept the request and replace the authenticator with one that refers
to himself: {I,t; 17} 4. The reply from the TGS contains a freshly generated
key SK; this is encrypted under AK, for C' to read and thus accessible to I,
and also included in an ST that is opaque to all but the TGS and application
server. I may intercept this message and learn SK, replace an instance of his

12

nsvtC,Ti TGT, {C,tcr} sk, C, S n3 -e
o- C, Xsr {SK,ns,tr, S} 4x iXST, o

tC,Si Xor, {C\testsk -0

.. {testsk i

Fig. 7. Message Flow in the Man-In-The-Middle Attack on PKINIT-26, after the
messages in Figure 5, when the attacker impersonates the TGS and end server; here
TGT = {AK, I, tK}kT while Xg7 is a garbage message.

name with C’s name, and forward the result to C'. As I knows SK, he can
carry out a similar MITM attack on the CS exchange, replacing the authen-
ticator {C,tc s}gx with the authenticator {I,¢; s}gx and then replacing the
server’s reply {t;s}gx with the reply {tcs}gx that the client is expecting.
This exchange ostensibly authenticates C' to the application server; however,
because the service ticket names I, this server would believe that he is inter-
acting with 7, not C.

Attacker Impersonates Servers. Alternatively, the attacker may inter-
cept C’s requests in the TG and CS exchanges and impersonate the involved
servers rather than forwarding altered messages to them; the message flow for
this version of the attack is shown in Figure 7. In the TG exchange, I will
ignore the TGT and only decrypt the portion of the request encrypted under
AK (which he learned during the initial exchange). The attacker will then
generate a bogus service ticket Xgr, which the client expects to be opaque,
and a fresh key SK encrypted (along with other data ns,tr,S) under AK,
and send these to C' in what appears to be a properly formatted reply from
the TGS. In the CS exchange the attacker may again intercept the client’s
request; in this case, no new keys need to be generated, and the attacker only
needs to return the client’s timestamp encrypted under S K—which I himself
generated in the previous exchange—for C' to believe that she has completed
this exchange with the application server S. Note that the attacker may take
the first approach—mediating the exchange between C' and a TGS—in the
TG exchange and then the second—impersonating the application server—in
the CS exchange. The reverse is not possible because I cannot forge a valid
ST for S when impersonating 7T'.

Regardless of which approach the attacker uses to propagate the attack

13

throughout the protocol run, C finishes the CS exchange believing that she
has interacted with a server S and that 7" has generated a fresh key SK known
only to C' and S. Instead, I knows SK in addition to, or instead of, S (de-
pending on how [propagated the attack). Thus I may learn any data that
C attempts to send to S; depending on the type of server involved, such data
could be quite sensitive. Note that this attack does not allow I to imperson-
ate C' to a TGS or an application server because all involved tickets name [;
Section 6.4 discusses a related authentication property. This also means that
if C'is in communication with an actual server (T or \S), that server will view
the client as I, not C.

4 Preventing the Attack

The attack outlined in the previous section was possible because the two
messages constituting the then-current version of PKINIT were insufficiently
bound to each other. More precisely, the attack shows that, although a client
can link a received response to a previous request (thanks to the nonces n;
and ny, and to the timestamp t¢), she cannot be sure that the KAS generated
the key AK and the ticket granting ticket TGT appearing in this response
for her. Indeed, the only evidence of the principal for whom the KAS gener-
ated these credentials appears inside the TGT, which is opaque to her. This
suggests one approach to making PKINIT immune to this attack, namely to
require the KAS to include the identity of this principal in a component of the
response that is integrity-protected and that the client can verify. An obvious
mechanism is the submessage signed by the KAS in the reply.

Following a methodology we successfully applied in previous work on Ker-
beros [7,9], we have constructed a formal model of both PKINIT-26 and vari-
ous possible fixes to this protocol (including the one adopted in PKINIT-27).
Details can be found in Section 6. Property 4.1 informally states that PKINIT-
27 and subsequent versions satisfy a security property that we see violated in
PKINIT-26, demonstrating that this fix does indeed defend against our attack.

Property 4.1 In PKINIT-27 (and subsequent versions), whenever a client C
processes an AS reply containing server-generated public-key credentials, the
KAS previously produced such credentials for C.

This property informally expresses the contents of Corollary 6.4, which we
prove in Section 6.

As we worked on our formal analysis, we solicited feedback from the IETF
Kerberos Working Group, and in particular the authors of the PKINIT spec-
ifications, about possible fixes we were considering. We also analyzed the fix,

14

C KAS

Certc, [te,no) g, O, T

ni, ° -0
no, to k,AK
{Certg, [k, F(C,n;)]SkK}}pkc,C’, TGT,{AK,ny,tk, T}, ltK
@ <« [J

Fig. 8. Abstract fix of PKINIT

proposed by the Working Group, that was included in PKINIT-27 and subse-
quent revisions of this specification [25].

4.1 Abstract Fix

Having traced the origin of the discovered attack to the fact that the client
cannot verify that the received credentials (the TGT and the key AK) were
generated for her, the problem can be fixed by having the KAS include C’s
name in the reply in such a way that it cannot be modified en route and that
C' can check it. Following well-established recommendations [40], we initially
proposed a simple and minimally intrusive approach to doing so: including C"s
name in the portion of the reply signed by the KAS (in PKINIT-26, this is
&, ng]SkK). We then generalized it by observing that the KAS can sign k& and
any message fragment F(C,n;) that is suitably built from C’s name and at
least one of the nonces n; and ny from C’s request for credentials. With this
abstract fix in place, the PKINIT exchange in public-key encryption mode
is depicted in Figure 8, where we have used a box to highlight the modifi-
cation with respect to PKINIT-26. Here F' represents any construction that
injectively involves C' and either n; or no—i.e.,F'(C,n;) = F(C’,n}) implies
C' = C" and n; = n,—and is verifiable by the client. Integrity protection is
guaranteed by the fact that it appears inside a component signed by the KAS,
and therefore is non-malleable by the attacker (assuming that the KAS’s sig-
nature keys are secure). Intuitively, this defends against the attack since the
client C' can now verify that the KAS generated the received credentials for
her and not for another principal (such as I in our attack). Indeed, an honest
KAS will produce the signature ([k, F'(C,n;)],,) only in response to a request
from C. The presence of the nonces n; or n, uniquely identifies which of the
(possibly several) requests from C' to which this reply corresponds. Note that
the fact that we do not need F' to mention both n; and ns entails that the
nonce ns is superfluous as far as authentication is concerned. We will formally
prove that this variant defends against the attack in Section 6.

A simple instance of this general schema consists in taking F'(C,n;) to be
(C,ng), yielding the signed data [k,C,ny],, , which corresponds to simply

15

C KAS

ni,, Certc, [te, na) g, C, T,

na, tc

-e
lkz,AK

{{CertKa [kj7}skK}pkca Ca TGT7 {AK7 nlatKvT}k 1379

[J []

Fig. 9. Fix of PKINIT adopted in version 27

including C’s name within the signed portion of the PKINIT-26 reply. This
version is very similar to the initial target of our formal verification. We showed
that indeed it defeats the reported attack and satisfied the formal authentica-
tion property violated in PKINIT-26. Only later did we generalize the proof
to refer to the abstract construction F'. Its correctness will follow as a simple
corollary of the validity of our general schema, as we will show in Section 6.

4.2 Solution Adopted in PKINIT-27

When we discussed our initial fix with the authors of the PKINIT document,
we received the request to apply our methodology to verify a different solu-
tion: rather than simply including C’s name in the signed portion of the reply,
replace the nonce ny there with a keyed hash (“checksum” in Kerberos ter-
minology) taken over the client’s entire request. We did so and showed that
this approach also defeats our attack. It is on the basis of this finding that we
distilled the general fix discussed above, of which both solutions are instances.

The IETF Kerberos Working Group later decided to include the checksum-
based approach in PKINIT-27 and its subsequent revisions [25]. The mes-
sage flow of this version of PKINIT is displayed in Figure 9. Here, ck is a
checksum of the client’s request keyed with the key k, i.e., ck has the form
Hy(Certe, [te, ng]skc, C,T,n,) where H is a preimage-resistant MAC function.
This means that it is computationally infeasible for the attacker to find a mes-
sage whose checksum matches that of a given message. Following the specifica-
tions in [41], which discusses cryptographic algorithms for use in the Kerberos
protocol suite, current candidates for H include hmac-shal-96-aes128. New
strong keyed checksums can be used for ck as they are developed.

5 Formalizing PKINIT in MSR

We have formalized PKINIT in the language MSR [9,31,32] and used this
specification to verify the correctness of the proposed fixes. MSR is a flexible

16

framework for specifying complex cryptographic protocols, possibly structured
as a collection of coordinated subprotocols. It uses strongly-typed multiset
rewriting rules over first-order atomic formulas to express protocol actions
and relies on a form of existential quantification to symbolically model the
generation of fresh data (e.g., nonces or short-term keys).

5.1 Terms and Types

MSR represents network messages and their components as first-order terms.
Thus the TGT {AK, C,tk}x, sent from K to C is modeled as the term ob-
tained by applying the binary encryption symbol {_}_to the constant kr and
the subterm (AK, C,tk). This subterm is built using atomic terms and two
applications of the binary concatenation symbol (“_,). For simplicity, we
retain the semi-formal message syntax used earlier. Terms are classified by
types, which describe their intended meaning and restrict the set of terms
that can be legally constructed. For example, {_}_ accepts a key (type key)
and a message (type msg), producing a term of type msg; using a nonce as
the key yields an ill-formed term. Nonces, principal names, etc., often appear
within messages; MSR uses the subsort relation to facilitate this. For example,
defining nonce to be a subsort of msg (written nonce <: msg) allows nonces
to be treated as messages. Both term constructors and types are definable.
This allows us to formalize the specialized principals of Kerberos 5 as subsorts
of the generic principal type: we introduce types client, KAS, TGS and server,
with the obvious meanings.

MSR supports more structured type definitions [31]. Dependent types allow
capturing the binding between a key and the principals for whom it was cre-
ated. For example, the fact that a short-term key k is intended to be shared
between a particular client C' and server S is expressed by declaring it to be
of type shK C' S. Because k is a key, shK C' S is a subsort of key (for all C'
and S), and since k is short term this type is also a subsort of msg as k needs
to be transmitted in a message. We similarly model the long-term keys that
a principal A shares with the KAS as objects of type dbK A, which is again
a subsort of key but not of msg; these keys are not intended to be sent over
the network, and this typing prohibits this. Dependent types give us elegant
means to describe the public-key machinery. If (pk, sk) is the public/secret
key pair of principal A, we simply declare pk of type pubK A and sk of type
secK pk. Secret keys, like the long-term keys, are not intended to be sent over
the messages; thus the type secK pk is a subsort of key but not of msg. Al-
though we do not explicitly include public keys in messages here, pubK A is
a subsort of msg. The constructors for encryption and digital signature are
written {m},, and [m],,, respectively, as in the text so far.

17

VK : KAS
[VC :client VT : TGS Vnqi,no:nonce Vsk :someSecK

VCertco,Certg : CertList Vkr : dbKT Vito,tk : time
Vpkc : pubK C' Vpkg : pubK K Vskg : secK pkg

N(Certe, [te, o)., . JAK :shK C'T, Jdk : shK C K
= N({{Certfﬁ [kv F(Cv ni))]skK}}ka’
C,T,ny) C{AK,C,tx}; . {AK,n1,tx,T};)

| IF VerifySig([tc,na]y; (to,n2); C, Certe), Validk (C,T,n1), Clockk(tr) |

Fig. 10. KAS’s Role in the abstract fix version of the PKINIT AS Exchange

Other types used in the formalization of PKINIT include time for timestamps,
CertList for lists of digital certificates, and someSecK as an auxiliary type
for working with digital signatures. The use of someSecK allows us, e.g., to
model a signed message without declaring the public key or its owner that
correspond to the signing key; in order to verify the signature we use the
predicate VerifySig together with a list of certificates (as in Figure 10) instead
of a specific public key. We also use the constructor Hi(m) to model the
checksum (keyed hash) of message m keyed with symmetric key k.

5.2 States, Rules, and the Formalization of PKINIT

The state of a protocol execution is determined by the network messages in
transit, the local knowledge of each principal, and other similar data. MSR
formalizes individual bits of information in a state by means of facts consisting
of predicate name and one or more terms. For example, the network fact
N({AK,C, tk}i,) indicates that the term {AK, C,tx}y,, a TGT, is present
on the network, and I({AK, C,tk}k,) that it is known by the attacker.

A protocol consists of actions that transform the state. In MSR, this is modeled
by the notion of rule: a description of the facts that an action removes from
the current state and the facts it replaces them with to produce the next
state. For example, Figure 10 describes the actions of the KAS in the abstract
fix of PKINIT (see Section 4) where F(C,n;) stands for a construction that
contains C' and either ny or ny (or both). Ignoring for the moment the leading
VK : KAS and the outermost brackets leaves us with a single MSR rule—
labeled t5 1 above the arrow—that we will use to illustrate characteristics of
MSR rules in general.

Rules are parametric, as evidenced by the leading string of typed universal

18

YC : client
[VT : TGS Vskg :secK C Vic :time YCertc : CertList

dny,ns : nonce
Clocke(te) 44 N(tc, ne, Certc, [tC7n2]ska C,T,ny),
MemASEqc(Certc,te, T,ny,na, skc)

VK : KAS VT : TGS Vpke :pubKC VEk:shKC K Vni,ns:nonce
VX : msg VCertg : Certlist VAK :shK CT Vtg :time Vsk :someSecK

N({{Ce?"t[(, [k¢ F(C, ni)]sk}pk(}’
C, X, {AK,n,tx,T},) =2 Authe(X,T, AK)
MemASEqc(Certe,te, T,n1,n2, skc)

IF VerifySig([k, F(C,n;)],: (k, F(C,n;)); K, Certg)

Fig. 11. Client’s Role in the abstract fix version of the PKINIT AS Exchange

quantifiers: actual values need to be supplied before applying the rule. The
middle portion (--- = ---) describes the transformation performed by the
rule: it replaces states containing a fact of the form N(Certc, [tc, no) 0. C, T,
ny) with states that contain the fact on its right-hand side but which are
otherwise identical. The existential marker “JAK : shK C'T” requires AK to
be replaced with a newly generated symbol of type shK C' T, and similarly for
“Jk : shK C' K7; this is how freshness requirements are modeled in MSR.. The
last line, starting with the keyword IF, further constrains the applicability of
the rule by requiring that certain predicates be present (differently from the
left-hand side, they are not removed as a result of applying the rule). Here, we
use the predicates VerifySig to verify that a digital signature is valid given a
list of credentials (VerifySig(s; m; P, Certs) holds if s is the signature, relative
to certificates Certs, by principal P over the message m). Additionally, we
use Valid i to capture the local policy of K in issuing tickets, and Clocky to
model the local clock of K. While the entities following ‘IF’ are logically facts,
in practice they are often handled procedurally, outside of MSR.

Rule t5; completely describes the behavior of the KAS; in general, multiple
rules may be needed, as when modeling the actions of the client in the AS ex-
change. Coordinated rules describing the behavior of a principal are collected
in a role. A role is just a sequence of rules, parameterized by the principal exe-
cuting them (their owner)—the “VK : KAS” above the brackets in Figure 10.
The two-rule role describing the client’s actions of the abstract fix version of
PKINIT is displayed in Figure 11. Formalizations of the TG and CS exchanges
can be found in Appendix A, with detailed explanations in [7,9,42].

19

5.3 FExecution Semantics

Going into more detail, the execution semantics of MSR operates by trans-
forming not states (as introduced in the previous section) but configurations
of the form (S)&, where S is a state, the signature 3 contains the symbols be-
ing used (with their type), and the active role set R = (pi*,..., p%) records
the remaining actions of the currently present roles (p;) together with the
principals executing them (a;).

Basic execution steps are expressed by judgments of the form P> C — '
where P is the protocol specification, and C' and C’ are consecutive config-
urations. These judgments are defined by the following two rules (which are
somewhat simplified from [43]):

inst

a

(P,p) > ()& — (S)5”

rw

P (S, [0]ihs) 5 "I (S 10, /T rhs) 8

The rule inst prepares a role for execution by inserting it in the active role set:
it associates the role with the principal a that will be executing it. The same
role can be loaded arbitrarily many times by any principal (subject to some
typing limitations), which provides support for the concurrent execution of
multiple sessions and therefore also for multi-session attacks. The inference rw
describes the application of a state transforming rule r = lhs = rhs introduced
in the previous section: if an instance [f]lhs of its left-hand side appears in the
state, it is replaced by the corresponding instantiation of the right-hand side
of r after instantiating the existential variables ¥ with new constants ¢. The
rule r is then removed from the active role set of the configuration, and ¢ is
added to the signature.

In order to present rule application in a compact yet precise way, the notion of
an abstract execution step is used which denotes a quadruple C'-=%C". Here,
C and C’ are consecutive configurations, r identifies the rule from P being
executed, and ¢ stands for the overall substitution [0, ¢/Z] above. We say that
r is applicable in C if there exist a substitution ¢ and a configuration C’ such
that C—=5C" is defined.

A trace T is then a sequence of the form

T1,l1 T2,L2 Tn,ln
CO — Cl —_— . n+1

where Cy = <SO>§8 is called the initial configuration of 7. In the context of
Kerberos, the state component S of the initial configuration contains only the
predicates used in constraints (e.g., VerifySig in Figure 11), and the intruder’s
knowledge (see next section); in particular, no network message or memory

20

predicate is contained in Sy. The initial signature >, within Cy contains the
names of all principals together with their types (client, server, KAS, etc.),
and their keys, etc. The initial active role set Ry within Cj is empty. Note that
we only need to consider finite traces, because execution (in any networked
computer system) proceeds by discrete steps and started at a specific moment
in time. Likewise, a generic trace will contain only a finite, although a priori
unbounded, number of applications of inference inst for the same role p.

5.4 Intruder Model

The intruder model in our analysis of public-key Kerberos is a variant of the
classic Dolev-Yao intruder model [37,44]. The attacker in this model can tradi-
tionally intercept and originate network traffic, encrypt and decrypt captured
messages as long as he knows the correct key, concatenate and split messages
at will, generate certain types of messages (e.g., keys and nonces) but not
others (e.g., principals), and access public data such as principal names.

This set of intruder capabilities is given a precise specification in MSR. For
this purpose, the knowledge of the intruder is modeled as a collection of facts
I(m) (“the intruder knows message m”) distributed in the state. The intruder
himself is represented as the distinguished principal | by means of the declara-
tion | : principal. Each capability is expressed by means of a one-rule role that
can be executed only by |. For example, the specifications of network message
interception, message splitting and nonce generation have the following form:

Ymi, mg : ms

Vm : msg b & [NG dn : nonce]
_[mq), v ’

N(m) EREY I(m)]Emli = (mq, mg) I(n)

Notice that these roles identify | as their owner (above the left brace) rather
than a generic principal (introduced by a universal quantifier in the previous
section).

Because public-key Kerberos relies on more than shared keys, we extend our
earlier intruder formalization with the following rules for public-key encryp-
tion and decryption. These allow the intruder to learn any public key of any
principal P, or to learn any of his own secret keys (but not those of other

21

principals), and then to encrypt and decrypt if the proper keys are known.

VP : principal Vpk : pubK P Vpk : pubK I Vsk : secK sk
2 I(pk) L I(sk)
I I
VP : principal Vpk : pubK P VP : principal Vpk : pubK P
Vm : msg Vsk : secK pk Vm : msg
1(m), I(pk) 5 1({m}u) T(mYp), I(sk) 25" [(m)

Signing is handled similarly as shown in rule SIG below. Rather than having
the intruder verify signatures, an activity an attacker will rarely bother with
(although it could easily be modeled in MSR), rule PEEK allows him to
extract a message from a signature. It should be noted that this specification
deemphasizes the PKI infrastructure on which PKINIT relies as it confines
the use of certificates to the predicate VerifySig. A more explicit treatment is
unnecessary in this case.

VP : principal Vpk : pubK P
Vsk : secK pk VYm : msg
PEEK

I(m), I(sk) =% I(Im],) I([m]y,) = I(m)

Vsk : someSecK Vm : msg

Because secret keys are typed like long-term keys, we add specific rules allow-
ing duplication and deletion in memory of known secret keys (paralleling the
rules DPD and DLD from [42]). These are straightforward, and we omit the

specific rules here.

The remaining rules implementing the other traditional Dolev-Yao intruder
capabilities are defined similarly. A complete list for basic Kerberos can be
found in [42].

6 Formal Analysis of PKINIT

Our formal proofs rely on a double induction aimed at separating the confi-
dentiality and authentication aspects of the analysis of Kerberos 5. Confiden-
tiality and authentication can interact in complex ways, requiring both types

22

Pk(m;mo) =

m 1S an atomic term

0, m = {mi}y, pr(m1;mo) = 0,m1 # mo
1, m = {mo},
pr(ma; mo), m = {mi}y k' #k

m = {m1}y, pr(m1;me) >0

m = {mi fi, pr(m1;me) = 0,m1 # my
m = {mo}x

m={m }p, K #k

m = {mq }i, pp(ma;me) >0

0, m = [my],,, pe(mi;mg) = 0,my # my
m = [ml,

m = [mi]., kK #k

m = [m],, pr(mi;mg) >0

m =1mj, Mo

pr(ma; mo),
pr(mi;me) + 1,
max{ py (m1; mo),

Pk(m2;mo)},

Fig. 12. The definition of pg(m;my), the k-rank of m relative to my.

of functions in a single proof. (This is not so much the case in the AS exchange,
because the security of this first exchange does not rely on properties of earlier
rounds, but it is seen clearly in the later rounds as illustrated in [7,42].) Our
proofs are supported by two classes of functions, rank and corank, whose defi-
nitions we recall in Section 6.1. We prove the correctness of the fixed protocol
in Section 6.2, discuss other authentication properties in Sections 6.3 and 6.4,
and then state and prove auxiliary lemmas in Section 6.5.

6.1 Rank and Corank

We start by reviewing the definition of rank and corank functions as originally
given in [7,8 42] and extended to include the cryptographic primitives that
PKINIT adds to basic Kerberos. We start by defining these classes of functions
inductively on terms and then extend the definitions to facts.

Rank. Rank captures the amount of work done using a specific key to en-
crypt a specified message. For a cryptographic key k£ and a fixed message my,
we define the k-rank of a message m relative to mgy as shown in Figure 12.

If m is an atomic term, then no work has been done using k, and we set the
rank to 0. If m is exactly {mo}, {mo}x, or [mo],, then we set the rank to 1.

23

00, m is atomic, m # my
0, m is atomic, m = my
pe(my;mg) + 1, m={mi},, k€ FE
pe(mi;mo), m={mi};, k¢ E
pe(m;mo) = < pe(my;mg) + 1, m = {mq }i, Ik :secKk, k' € FE
pE(my;mg), m = {m }i, VK :secKk, k' ¢ E
pe(mi;my), m = [m],,
min{pg(my; mg), m=my,my, My, my#0
pe(ma;mo)},

Fig. 13. Definition of pg(m;mg), the E-corank of m relative to my.

Encrypting or signing a message m of positive k-rank will increase the rank by
1 in case one uses the key k, whereas using a key &’ # k will have no effect on
the k-rank of m relative to mg. The rank of the concatenation of two messages
is set to be the larger of the ranks of the constituent messages.

The extension of the rank function to facts is straightforward. For a key k
and for m, mg of type msg, and terms ¢, t;, and P any predicate in the
protocol signature, we define the k-rank of a fact P(ty, ..., ;) relative to mg by
pi(P(t1, ..., t;);mo) = maxi<;<;pk(ti;mo). E.g., for network facts the k-rank
relative to mq is pr(N(m);mg) = pr(m;my).

Our rank functions are most closely connected to data origin authentication,
although they are used in conjunction with corank functions in many proofs [§].
The relationship between rank and authentication follows Theorem 6.1, which
was outlined in [8].

Theorem 6.1 If pi(F;mg) = 0 for every fact F in the initial state of a
generic trace T and no intruder can increase the k-rank relative to mq then
the ezistence of a fact F with pp(F;mg) > 0 in some non-initial state of T
implies that some honest principal fired a rule which produced a fact build up

from {mq}.

As in [42] (although stated there without some of the primitives needed to
model PKINIT), if an intruder rule increases k-rank relative to mg, then the
left-hand side of that rule contains I(k). Thus, if we show that (k) never
appears in a trace, we may invoke Theorem 6.1 to help prove authentication.

Corank. Corank captures the minimum effort needed, using keys from a
specified set, to extract a (possibly) secret message from a given term. For a
set E of keys, none of which is a public key, and a fixed atomic message my,

24

we define the E-corank of message m relative to my as shown in Figure 13. If
m is atomic and m = my, then no work using keys from FE is needed to obtain
mgp, and we set the corank to 0. If m is atomic and m # my, then no amount
of such work can extract mg. The number of decryptions needed to obtain
myo from {m}, using keys from E is 1 more than or the same as the number
of decryptions needed to obtain mg from m, depending on whether &k (if the
encryption is symmetric) or some k' : secK k (if the encryption is asymmetric)
is an element of E or not. The corank of the concatenation of two messages
is equal to the smaller of the coranks of the constituent messages.

The extension of the corank function to facts is slightly different from that of
the rank function. The definition of corank of a fact depends on the predicate
P in which it occurs. For example, for the network predicate N() we define
pe(N(m);mo) = pr(m;mg), while for the client’s memory predicate Authg
(used in the rules in Figures 11, A.1, and A.3) we define pg(Autho (1, Lo, t3); mo)
= pp(t1;mg). This follows our informal rule [7,8] that the corank of a fact de-
pends only on the arguments of the predicate that might be put onto the
network.

Our corank functions are closely connected to confidentiality, which we typi-
cally prove by invoking the following theorem from [8].

Theorem 6.2 If pp(F;mg) > 0 for every fact in the initial state of a generic
trace T , if no intruder can decrease the E-corank relative to mg, and if no hon-
est principal creates a fact F' with pp(F;mg) = 0, then my is secret throughout

T.
6.2 Correctness of the Fiz

We now present the theorem that establishes the correctness of the abstract
fix to PKINIT introduced in Section 4.1. This, in turn, implies the correct-
ness of PKINIT-27 and subsequent versions of PKINIT (including the final
specification)—i.e., that Property 4.1 holds—because these use a special case
of the abstract fix. In the following we will assume that F(C,n;) = F(C’,n})
implies C = C' and n; = n}, for any C,C" : client and n;,n; : nonce (for
i=1,2).

Theorem 6.3 If

(1) the fact N({Certr, [k, F'(C,n:)] 4, Sk, Cs X, {AK, n1, tk, T'}y) appears
in a trace, for some C : client, K : KAS, k : shK C' K, skx : someSecK,
X : msg, Certy : Certlist, pkc : pubK C, T : TGS, AK : shK C' T,
n;, 1 : nonce, and tx : time;

(2) the fact VerifySig([k, F(C,n.)]: (k. F(C.n.)); K, Certye) holds; and

25

(3) for every pky : pubK K and sk : secK pk, the fact I(sk) does not appear
in the trace and no fact in the initial state of the trace contained a fact
of positive sk-rank relative to (k, F(C,n;)),

then

the KAS K fired rule 121, consuming the fact N(Certc, [tc,n2]8k07 C,T,
ni) and creating the fact N({Certg, [k, F'(C,n)| g, Bore, O, {AK,C,
ti b, VAK, 1t Thy), for some Certe @ Certlist, ske : secK pke,
ng : nonce, to, ty : time, kr : dbK T'.

PROOF. Because VerifySig([k, F(C,n;)],, ; (k, F(C,n;)); K, Certg) holds,
by Lemma 6.10 there is some sk : secK pky such that pg([k, F(C,1;)]sky;
(k,F(C,n;))) > 0 (where pkx : pubK K). Thus the fact N({ Certc,
[k, F(Cyni)] g, Soke> Cs X, {AK, na, tie, Thy) has positive sk-rank relative to
(k, F(C,n;)); by hypothesis, no such fact existed in the initial state of the
trace, so some rule firing during the trace must have increased this rank.

By hypothesis, I(sk) does not appear in the initial state of the trace, so by
Lemma 6.14 I(sk) does not appear in any state of the trace. By Lemma 6.11,
this means that no rule fired by the intruder can increase sk-rank relative
to (k, F'(C,n;)); thus, by Theorem 6.1, at some point in this trace an honest
principal must have fired a rule that increased this rank. By inspection of
the principal rules, the only one that can do this is rule ¢91; in order for
this rule to do so, it must be fired by the KAS K who owns sk, consume a
network fact N(Certer, [t,no]y, ,,C",T",n}) for some t : time, nj,n} @ nonce,
Certer : Certlist, C' : client, and 7" : TGS, and produce the fact N({Cert,
[k, F(C",)| g e O {AKT O U by, {AK 0 H, T') for some Certye
CertList, sk : someSecK, pker : pubKC') AK" : shKC'T", t - time, kps : dbKT",
n} : nonce, and F(C',n}) = F(C,n;). By assumption, (C’,n}) = (C,n;), which
implies that the request that K processed must match the request described
in the hypotheses. O

The following corollary specializes the result in Theorem 6.3 to the particular
fix used in PKINIT-27 and to the client’s receipt of the network message
described in the hypotheses of this theorem. It is the formal statement of
Property 4.1, which says that if C' processes a reply message (containing the
signed checksum of a request that C' previously sent), then some KAS K must
have sent a reply message intended for C'.

Corollary 6.4 If
(1) some C' : client fires rule 1, 5, consuming the fact N Certy, [k, ck] . Bprc
C, X, {AK,ny,tk,T},) and producing the fact Authe(X,T,AK) for

26

some K : KAS, k : shK C' K, sk : someSecK, ck, X : msg, Certy :
CertList, pkc : pubK C, T : TGS, AK : shK C' T, n; : nonce, tx : time,
and

(2) ck = Hy(Certc, [tc,naly,.,C,T,m), for some tc : time, ny : nonce,
Certc : Certlist, ske : SecK pke, and

(3) for every pkg : pubK K and sk : secK pk, the fact I(sk) does not appear
in the trace and no fact in the initial state of the trace contained a fact
of positive sk-rank relative to (k,ck),

then

the KAS K fired rule 31, consuming the fact N(Certc, [to,nal ., C, T,
ny) and creating the fact N({Certy, [k, ckly Bpre, C,{AK, Cotic by,
{AK,ny,tx,T}i), for some kr : dbK T, ty : time.

PROOF. This follows by letting F'(C,n;) = ck = Hy(Certc, [tc,na) ., C, T,
n1) in Theorem 6.3; this construction satisfies the assumptions on F(C,n;)
for both ¢ = 1 and ¢ = 2. (s rule firing implies that the first two hypotheses
of the theorem hold; the third hypothesis of the corollary specializes the third
hypothesis of the theorem to the case of ck = F(C,n;), which implies the
conclusion for some n/,n} : nonce and Certy, : CertList. C’s firing of rule ¢; o
(when specialized to the checksum) implies that the n| = n;, n}, = ns, and
Cert,, = Certe. O

As a further remark, if in the abstract fix of PKINIT from Section 4.1 one
chooses F'(C,n;) = F(C,ny), the proof of Theorem 6.3 shows that authenti-
cation of the KAS to the client still holds. In fact, the KAS does not return
any information containing ny. This means that the following holds:

Property 6.5 The signed nonce ny in the client’s AS request is superfluous
for the purpose of authentication in PKINIT.

This property does not imply that ny can simply be omitted from the first
message of PKINIT in general, as some signed session identifiers is necessary to
correctly support authentication as in Property 6.6 below. Rather, it suggests
that it could be simplified by replacing every occurrence of ny with n;.

6.3 Authentication of C' to K

While our primary focus here is on the authentication of K to C, because C

signs a nonce in her request we may also prove authentication of C' to K; note
that this holds in both the broken and fixed versions of PKINIT, as the fix

27

does not affect C’s request or our reasoning about it. Informally, we state this
as the following property

Property 6.6 If a KAS processes a PKINIT request from a client C, then
previously C' sent a PKINIT request that contained the signed data in the
message received and processed by the KAS.

Formally, we state this property as the following theorem.
Theorem 6.7 If

(1) some K : KAS fires rule 121, consuming the fact N(Certc, [te,noly., C,
T,ny) for some Certc : CertList, t¢ : time, ny,nsy : nonce, sk : someSecK,
C : client, and T : TGS; and

(2) for every pk : pubK C and sk : secK pk, the fact I(sk) does not appear in
the trace and no fact in the initial state of the trace contained a fact of
positive sk-rank relative to (to,ns),

then

at some point earlier in the trace, the client C' fired rule v11, generating
the fact N(tc,ng, Certe, [to, nol ..., C,T',n) for some Certy @ Certlist,
T": TGS, and n} : nonce.

PROOF. Having assumed that K fired rule 151, the fact VerifySig([tc, noly;
(tc,m2); C, Certe) must hold. By Lemma 6.10, the fact consumed by this rule
firing has positive sk-rank relative to (¢, n2). By hypothesis, no such fact
appeared in the initial state of the trace, so some rule that was fired during
the trace increased this rank. Also by hypothesis, I(sk) cannot appear in the
trace, so by Lemma 6.11, the intruder cannot increase this rank. By inspection
of the principal rules, the only rule that can increase this rank is rule ¢; ; when
fired by C to create the fact N(tc,nq, Certe, [te,nal,.., C,T',n}) for some
Certy @ CertList, 77 : TGS, and n) : nonce. O

6.4 Authentication in the Pre-Fixz Protocol

Our attack in Section 3 showed that an intruder could impersonate a KAS
to a client. This means that KAS-to-client authentication does not hold when
PKINIT-26 is used, in the sense that a client might receive a reply containing
her name that appears to come from some KAS but without any KAS having
ever sent such a message. However, PKINIT-26 does provide some authentica-
tion with respect to the later exchanges as shown by Property 6.8 below, and
this property still holds in the fixed protocol (PKINIT-27 and later versions).

28

Property 6.8 If TGS T processes a valid request message naming a client
C, and the key used to encrypt the TGT which was contained in that request
message was secret when the system started, then earlier the KAS K generated
a TGT naming C. Furthermore, if C'’s private key was initially secret (so that
C' is honest), then C sent a request to T after K sent a corresponding AS
reply to C.

As a consequence, we see that even if the intruder is carrying out the attack by
letting C' login to T and S as the intruder (so that the intruder can watch the
traffic between them), some KAS must have created a TGT for the intruder,
formalizing the requirement that the intruder be a legal user of the system.
Furthermore, this shows that while C' might successfully ‘request’ a service
ticket as the intruder in the attack scenario, it requires the participation of
the intruder; in particular, C' could not obtain a TGT that names an honest
client C" if the relevant keys are secret.

Theorem 6.9 formalizes this property; the relevant MSR roles for the TG and
CS exchanges can be found in Appendix A.

Theorem 6.9 If

(1) T : TGS fires rule 141 consuming the fact N({AK,C,tx},,., {AK, ns,
ti, T}y, C,S) and creating the fact N(C,{SK,C}, ,{SK,n3, S} 4c) for
some AK : shKCT, C : client, K : KAS, tx : time, kr : dbKT', n3 : nonce,
S : server, and

(2) the fact 1(ky) does not appear in the trace and no fact in the initial state
of the trace contained a fact of positive kr-rank relative to {AK, C,tx},
and

(3) the fact I(skc) is not inferable in the initial state of the trace for every
skc : SecK pkc,

then

(1) the KAS K earlier fired rule 151, creating a fact N({Certg, [k, Hi(Certe,
[t07n2]sk0707 T7 nl)]skK}}’pkca Ca {AK7 Ca tK}kTa {AK7 n17tK7T}k> fOT
some Certy, Certe : Certlist, ny,ns : nonce, and

(i1) C fired rule v3.1, creating the fact N{AK, O, tx by, {AK, n3, tg, T}y, C, S)
in a state later in the trace than the state at which K fired rule 151 pro-
ducing the fact described above.

PROOF. We start with consideration of kp-rank relative to (AK, C,tk). T's
hypothesized rule firing consumed a fact for which this rank is positive, but
by assumption this rank was 0 for every fact in the initial state of the trace.
Thus some rule firing in the trace increased this rank.

29

Because I(kr) does not appear in the initial state of the trace, by Lemma 6.13
this fact never appears in the trace. Thus, by Lemma 6.11, the intruder cannot
have increased kp-rank relative to (AK, C,tx), so some honest principal must
have done this. Inspection of the principal rules shows that if k£ has type dbKT
for some T : TGS, then the only honest principals that increase k-rank relative
to any message are those of type KAS through the firing of rule ¢5 1. Thus some
K : KAS fired rule ¢51, which must have consumed and produced the facts
claimed.

We now show that AK is secret by considering {k, kr}-corank relative to
AK. K’s firing of rule 157 freshly generates AK, so all previous states had
infinite {k, ky}-corank relative to AK, and the state that results from this
rule firing has {k, ky}-corank equal to 1 relative to AK. As noted above,
I(k7) never appears in the trace; we must show that I(k) does not either. K’s
firing of rule 1o also freshly generated k, so all previous states had infinite E-
corank relative to k for every set E; furthermore, the resulting state has {sk¢ }-
corank equal to 1 relative to k. Because I(skc) was not inferable from the
initial state of the trace, by Lemma 6.14 this fact never appears in the trace.
Thus, by Lemma 6.12, the intruder cannot decrease {sk¢ }-corank relative to
k. Inspection of the principal rules show that no honest principal will do this
either; note that while C' decrypts the message containing k, she does not
store this key, much less in a predicate that will allow it to be put onto the
network. Therefore no state in the trace has {sk¢ }-corank equal to 0 relative
to k, so I(k) never appears in the trace.

Because neither I(kr) nor I(k) ever appear in the trace, the intruder cannot
decrease {k, kp}-corank relative to AK. By inspection, we see that the only
principal rule which decreases this corank is rule 157 when it is fired to freshly
generate AK. As noted above, the resulting state must have {k, kr}-corank
equal to 1 relative to AK’; no principal rule will decrease this corank to 0.
Thus no fact of {k, kr}-corank equal to 0 relative to AK, and in particular
the fact [(AK), appears in the trace.

We may now show that C' fired rule ¢3; in the claimed fashion. T”s hypoth-
esized rule firing also consumed a fact of AK-rank equal to 1 relative to
C,tc. Because AK was freshly generated during the trace (as shown above)
and [(AK) never appears in the trace, some honest principal must have
fired a rule that increased AK-rank relative to C,to. By inspection, we see
that the only such principal rule is rule 37, which must produce the fact
N(X,{C,tc} g, C, S, n3) for some X : msg, tc : time, S : server, and nj :
nonce. Because this fact has positive AK-rank relative to C,tc and AK was
freshly generated by K, we know that C’s firing of rule ¢3; occurred after K’s
firing of rule t5;. O

30

6.5 Lemmas

A number of lemmas giving conditions under which various ranks and coranks
can be increased and decreased by rule firings can be found in [42]. However,
we need to add to them as consider public-key operations where not considered
in that work.

Lemma 6.10 If VerifySig(s;m; P,Certs) holds, then for some pk : pubK P
and sk : secK pk, the sk-rank of s relative to m 1is positive.

PROOF. Our assumptions about VerifySig imply that s is a valid signature
of m under one of P’s secret keys, i.e., for some pk : pubK P and sk : secK pk,
s = [m],,. Thus s has positive sk-rank relative to m. O

The following lemmas were proved in [42] for the formalizations of basic Ker-
beros considered there. These property still holds here once we add asymmetric
encryption and digital signatures.

Lemma 6.11 If an intruder rule R can increase k-rank relative to a message
mo, then the left-hand side of R contains I(k).

PROOQOF. By inspection of the intruder rules. O

Lemma 6.12 [f mg is not a principal name, time, or key of one of the types
dbK I, shK I A (for A: TGS or A :server), shK C' I for C : client, or pubK P
for P : principal, then any intruder rule that decreases E-corank relative to myg
either contains I1(k) in its left hand side for some k € E or freshly generates
mo.

PROOF. By inspection of the intruder rules. O

The following lemma is an analog of Lemma 6 in [42]; the additional intruder
rules do not change it.

Lemma 6.13 For any P : principal, P # I, and k : dbK P, if I(k) does not
appear in the initial state of the trace, then I(k) does not appear in any state
of the trace.

31

PROOF. By inspection of the intruder rules. Because dbK P is not a subtype
of msg, if P # I then I(k) appears on the right-hand side of a rule only if it
also appears on the left-hand side. O

The next lemma is analogous to the previous one, but it refers to secret keys
for asymmetric encryption instead of the keys in the KAS’s database.

Lemma 6.14 For any P : principal, pubk : pubK P, P # I, and k : secK pubk,
if 1(k) does not appear in the initial state of the trace, then I(k) does not
appear in any state of the trace.

PROOF. By inspection of the intruder rules. Because secK pubk is not a
subtype of msg, for k : secK pubk, the only time I (k) may appear on the right-
hand side of an intruder rule but not on the left-hand side is in rule sx’, in
which case P =1. O

7 Conclusions and Future Work

In this paper, we describe our discovery of a man-in-the-middle attack against
PKINIT [25], the public key extension to the popular Kerberos 5 authentica-
tion protocol [1]. The attack was found on PKINIT-25, but applies to previous
versions as well. We found this attack as part of an ongoing formal analysis of
Kerberos, which has previously yielded proofs of security for the core Kerberos
5 protocol [7,8] and its use for cross-realm authentication [9]. We have used
formal methods approaches to prove that, at an abstract level, several possible
defenses against our attack restore security properties of Kerberos 5 that are
violated in PKINIT (as shown by the attack); we also proved some security
properties that do hold even for the vulnerable form of PKINIT. The fixes
we analyzed include the one proposed by the IETF Kerberos Working group,
which included it in the specification of PKINIT starting with revision 27 [25].
Our attack was also addressed in a Microsoft security bulletin affecting several
versions of Windows [4] and mentioned in a CERT advisory [26].

As a continuation of this research, we have carried over some of the results
examined here to the computational model by expressing PKINIT and other
aspects of Kerberos in the cryptographic library model of Backes, Pfitzmann
and Waidner (BPW model) [45]. The main outcome of this effort was that the
fixes examined here were proved to be correct at the cryptographic level [21].
The computationally sound proofs in the BPW model were conducted symbol-
ically by hand [21] and there appears to be a strong relation to the symbolic
proof technique used in this work. Gaining a better understanding of how these

32

two methods relate will be subject to future work. If a suitable connection to
the BPW framework is discovered, it could contribute to the automation of
proof in the cryptographic model [46], which will have the effect of speeding
up the analysis work and, therefore, allowing us to tackle larger protocols. We
have also started to mechanically verify security properties of PKINIT directly
within the computational model [22] using Blanchet’s CryptoVerif tool [23,24].
We are also in the process of extending our analysis to the Diffie-Hellman mode
of PKINIT: our preliminary observations suggest that it is immune from the
attack described in this paper, but we do not yet have definite results on other
types of threats.

References

[1] C. Neuman, T. Yu, S. Hartman, K. Raeburn, The Kerberos Network
Authentication Service (V5), http://www.ietf.org/rfc/rfc4120 (July 2005).

[2] M. Thomas, J. Vilhuber, Kerberized Internet Negotiation of Keys (KINK),
http://ietfreport.isoc.org/all-ids/draft-ietf-kink-kink-06.txt
(Dec. 2003).

[3] J.Kohl, C. Neuman, The Kerberos Network Authentication Service (V5), http:
//www.ietf.org/rfc/rfc1510 (September 1993).

[4] Microsoft, Security Bulletin MS05-042, http://www.microsoft.com/technet/
security/bulletin/MS05-042.mspx (Aug. 2005).

[5] M. Strasser, A. Steffen, Kerberos PKINIT Implementation for Unix Clients,
Tech. rep., Zurich University of Applied Sciences Winterthur (2002).

[6] T. Yu, S. Hartman, K. Raeburn, The perils of unauthenticated encryption:
Kerberos version 4, in: Proc. NDSS’04, 2004.

[7] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, An Analysis of Some
Properties of Kerberos 5 Using MSR, in: Proc. CSFW’02, 2002, pp. 175-190.

[8] F.Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, C. Walstad, Formal Analysis
of Kerberos 5, Theoretical Computer Science 367 (1-2) (2006) 57-87.

[9] I. Cervesato, A. D. Jaggard, A. Scedrov, C. Walstad, Specifying Kerberos 5
Cross-Realm Authentication, in: Proc. WITS’05, ACM Digital Lib., 2005, pp.
12-26.

[10] M. Abadi, B. Blanchet, Analyzing Security Protocols with Secrecy Types and
Logic Programs, Journal of the ACM 52 (1) (2005) 102-146.

[11] M. Anlauff, D. Pavlovic, R. Waldinger, S. Westfold, Proving authentication
properties in the Protocol Derivation Assistant, in: P. Degano, R. Kiisters,
L. Vigano (Eds.), Proceedings of FCS-ARSPA 2006, ACM, 2006, to appear.
URL ftp://ftp.kestrel.edu/pub/papers/pavliovic/FCS-ARSPAO6 . pYdf

33

[12] B. Blanchet, An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules, in: 14th IEEE Computer Security Foundations Workshop (CSFW-14),
IEEE Computer Society, Cape Breton, Nova Scotia, Canada, 2001, pp. 82-96.

[13] B. Blanchet, From Secrecy to Authenticity in Security Protocols, in:
M. Hermenegildo, G. Puebla (Eds.), 9th International Static Analysis
Symposium (SAS’02), Vol. 2477 of Lecture Notes on Computer Science,
Springer Verlag, Madrid, Spain, 2002, pp. 342-359.

[14] S. F. Doghmi, J. D. Guttman, F. J. Thayer, Searching for shapes in
cryptographic protocols, in: Proceedings of TACAS 2007, 2007.

[15] L. Vigano, Automated security protocol analysis with the AVISPA tool., Electr.
Notes Theor. Comput. Sci. 155 (2006) 61-86.

[16] A. Armando, D. A. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cuéllar,
P. H. Drielsma, P.-C. Héam, O. Kouchnarenko, J. Mantovani, S. Modersheim,
D. von Oheimb, M. Rusinowitch, J. Santiago, M. Turuani, L. Vigano,
L. Vigneron, The AVISPA tool for the automated validation of internet security
protocols and applications., in: K. Etessami, S. K. Rajamani (Eds.), CAV, Vol.
3576 of Lecture Notes in Computer Science, Springer, 2005, pp. 281-285.

[17] C. Cremers, Scyther - semantics and verification of security protocols, Ph.D.
dissertation, Eindhoven University of Technology (2006).

[18] R. Kemmerer, C. Meadows, J. Millen, Three systems for cryptographic protocol
analysis, J. Cryptology 7 (1994) 79-130.

[19] C. Meadows, Analysis of the Internet Key Exchange Protocol using the NRL
Protocol Analyzer., in: Proc. IEEE Symp. Security and Privacy, 1999, pp. 216—
231.

[20] J. C. Mitchell, V. Shmatikov, U. Stern, Finite-State Analysis of SSL 3.0, in:
Proc. 7 USENIX Security Symp., 1998, pp. 201-216.

[21] M. Backes, I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay,
Cryptographically Sound Security Proofs for Basic and Public-key Kerberos,
in: D. Gollmann, J. Meier, A. Sabelfeld (Eds.), Proc. ESORICS’06, Springer
LNCS 4189, 2006, pp. 362-383.

[22] A. D. Jaggard, A. Scedrov, J.-K. Tsay, Computational Sound Mechanized Proof
of PKINIT for Kerberos, presented at FCC’07 (no proceedings) (2007).

[23] B. Blanchet, A computationally sound mechanized prover for security protocols,
in: IEEE Symposium on Security and Privacy, Oakland, California, 2006, pp.
140-154.

[24] B. Blanchet, Computationally sound mechanized proofs of correspondence

assertions, in: 20th IEEE Computer Security Foundations Symposium
(CSF’07), IEEE, Venice, Italy, 2007, to appear.

34

[25] IETF, Public Key Cryptography for Initial Authentication in Kerberos, RFC
4556. Preliminary versions available as a sequence of Internet Drafts at http:
//tools.ietf.org/wg/krb-wg/draft-ietf-cat-kerberos-pk-init/
(1996-2006).

26] CERT, Vulnerability Note 477341, http://www.kb.cert.org/vuls/id/
p g

[27] I. Cervesato, A. D. Jaggard, A. Scedrov, J.-K. Tsay, C. Walstad, Breaking and
Fixing Public-key Kerberos, in: Proceedings of ASTAN’06, 2006, pp. 164—178.

[28] J. De Clercq, M. Balladelli, Windows 2000 authentication, http://www.
windowsitlibrary.com/Content/617/06/6.html, digital Press (2001).

[29] Cable Television Laboratories, Inc., PacketCable Security Specification,
technical document PKT-SP-SEC-111-040730 (2004).

[30] S. Goldwasser, S. Micali, R. L. Rivest, A Digital Signature Scheme Secure
Against Adaptive Chosen Message Attacks, SIAM J. Computing 17 (1988) 281—
308.

[31] I. Cervesato, Typed MSR: Syntax and Examples, in: Proc. MMM’01, Springer
LNCS 2052, 2001, pp. 159-177.

[32] N. A. Durgin, P. Lincoln, J. Mitchell, A. Scedrov, Multiset Rewriting and the
Complexity of Bounded Security Protocols, J. Comp. Security 12 (2) (2004)
247-311.

[33] W. Diffie, P. C. van Oorschot, M. J. Wiener, Authentication and authenticated
key exchanges, Designs, Codes and Cryptography 2 (2) (1992) 107-125.

[34] R. Canetti, H. Krawczyk, Security Analysis of IKE’s Signature-Based Key-
Exchange Protocol, in: Proc. CRYPTO’02, Springer LNCS 2442, 2002, pp. 143—
161.

[35] D. Harkins, D. Carrel, The Internet Key Exchange (IKE), http://www.ietf.
org/rfc/rfc2409 (Nov. 1998).

[36] G. Lowe, Breaking and Fixing the Needham-Schroeder Public-Key Protocol
using FDR, in: Proc. TACAS’96, Springer LNCS 1055, 1996, pp. 147-166.

[37] R. Needham, M. Schroeder, Using Encryption for Authentication in Large
Networks of Computers, Comm. ACM 21 (12) (1978) 993-999.

[38] J. Clark, J. Jacob, On the security of recent protocols, Information Processing
Letters 56 (3) (1995) 151-155.

[39] T. Hwang, Y.-H. Chen, On the Security of SPLICE/AS — The Authentication
System in WIDE Internet, Information Processing Letters 53 (2) (1995) 91-101.

[40] M. Abadi, R. Needham, Prudent Engineering Practice for Cryptographic
Protocols, IEEE Trans. Software Eng. 22 (1) (1996) 6-15.

35

[41] K. Raeburn, Encryption and Checksum Specifications for Kerberos 5, http:
//www.ietf.org/rfc/rfc3961.txt (Feb. 2005).

[42] F. Butler, I. Cervesato, A. D. Jaggard, A. Scedrov, Confidentiality and
Authentication in Kerberos 5, Tech. Rep. MS-CIS-04-04, UPenn (2004).

[43] I. Cervesato, A Specification Language for Crypto-Protocols based on Multiset
Rewriting, Dependent Types and Subsorting, in: G. Delzanno, S. Etalle,
M. Gabbrielli (Eds.), Workshop on Specification, Analysis and Validation for
Emerging Technologies — SAVE’01, Paphos, Cyprus, 2001, pp. 1-22.

[44] D. Dolev, A. Yao, On the security of public-key protocols, IEEE Trans. Info.
Theory 2 (29) (1983) 198-208.

[45] M. Backes, B. Pfitzmann, M. Waidner, A Composable Cryptographic Library
with Nested Operations, in: Proc. CCS’03, ACM, 2003, pp. 220-230.

[46] C. Sprenger, M. Backes, D. Basin, B. Pfitzmann,
M. Waidner, Cryptographically sound theorem proving, in: Proc., CSFW 06,
2006, pp. 153-166.

A MSR Roles for Later Exchanges

Here we recall the MSR roles for the TG and CS exchanges. These are the
same as for basic Kerberos because PKINIT only modifies the AS exchange.

Figure A.1 shows the client’s role in the TG exchange. The memory predi-
cate Authc(X, T, AK) comes from the AS exchange (formalized in Figure 11
above).

Figure A.2 shows the TGS’s role in the TG exchange. Figures A.3 and A.4
show the client and server roles, respectively, for the CS exchange.

36

VC' : client
VX :msg VT :TGS VS :server VAK :shK CT Vic:time VS :server
dngs : nonce
N(X? {C’ tC}AK? Ca Sa ng),
MemTGE(C,T,AK,n3),
Autho(X, T, AK)

Authc (X, T, AK) 23

IF clocke(te)

VY :msg VS :server VSK :shK(C'S Vng:nonce Vir:time

N(C7Y7{SK7n37tT7‘S}AK)7 % AUthC(YS SK)
MemTGE(C,T, AK,n3) o

Fig. A.1. The client’s role in TG exchange.

VT : TGS
VC :client VS :server VAK :shK CT Vkp:dbKT Vkg:dbK S

Vng : nonce Vip,tc,t: time.

N{AK, C. 1}, {C tch e, 1y FSK :shKC' S
C,S,Tl3) N(C,{SK,C,tT}kS,{SK,ng,tT,S}AK>,

IF Validr(C, S, tc), clocky(tr)

Fig. A.2. The TGS’s role in the TG exchange.

VC' : client

VS :server VSK :shKC'S Vi, :time VY :msg.

/
Autho (Y, 5, SK) 223 NOAC tedsi),
Authc (Y, S, SK)

IF clocke(ty)

Fig. A.3. The client’s role in the CS exchange.

37

VS : server

VC :client VT : TGS VSK :shKC S Vt., tr:time Vkg:dbK S

wi N[t} gg)
N({SK.C.t X7 = LelSKD
USK, Cotrhieg ACy e sk) =7 g o o(C, SK 1)

TP Valids (C, t,)

Fig. A.4. The server’s role in the CS exchange.

38

