arXiv:cs/0612106v1 [cs.LO] 21 Dec 2006

On completeness of logical relations for monadic types

Stawomir Lasota** David Nowak Yu Zhang ***

! Institute of Informatics, Warsaw University, WarszawalaPal
2 Research Center for Information Security,
National Institute of Advanced Industrial Science and Texdtbgy, Tokyo, Japan
3 Project Everest, INRIA Sophia-Antipolis, France

Abstract. Software security can be ensured by specifying and vegfgiecu-
rity properties of software using formal methods with sggagheoretical bases.
In particular, programs can be modeled in the framework mbida-calculi, and
interesting properties can be expressed formally by comiérquivalence (a.k.a.
observational equivalence). Furthermore, imperativiifes, which exist in most
real-life software, can be nicely expressed in the so-daltenputational lambda-
calculus. Contextual equivalence is difficult to prove dilg but we can often use
logical relations as a tool to establish it in lambda-cadldMe have already de-
fined logical relations for the computational lambda-chlsun previous work.
We devote this paper to the study of their completeness womntextual equiva-
lence in the computational lambda-calculus.

1 Introduction

Contextual equivalence. Two programs are contextually equivalent (a.k.a. observa-
tionally equivalent) if they have the same observable biehaive. an outsider cannot
distinguish them. Interesting properties of programs camtpressed using the notion
of contextual equivalence. For example, to prove that anamgloes not leak a secret,
such as the secret key used by an ATM to communicate with thig, litas sufficient to
prove that if we change the secret, the observable behavianat change[[18,8,19]:
whatever experiment a customer makes with the ATM, he or aheat guess infor-
mation about the secret key by observing the reaction of iHd.AAnother example is
to specify functional properties by contextual equivakerfeor example, iborted is a
function which checks that a list is sorted asuglt is a function which sorts a list, then,
for all list [, you want the expressiaorted(sort(!)) to be contextually equivalent to the
expressionrue. Finally, in the context of parameterized verification, mxtual equiv-
alence allows the verification for all instantiations of treameter to be reduced to the

* Partially supported by the RNTL project Prouvé, the ACI S#éunformatique Rossignol,
the ACI jeunes chercheurs “Sécurité informatique, prdegaryptographiques et détection
d’intrusions”, and the ACI Cryptologie “PSI-Robuste”.

** Partially supported by the Polishat grant No. 4 T11C 042 25 and by the European Commu-
nity Research Training Netwoi®ames This work was performed in part during the author’s
stay at LSV.

*** This work was mainly done when the author was a PhD studergruamd MENRT grant on

ACI Cryptologie funding, Ecole Doctorale Sciences Prag(Cachan).

http://arxiv.org/abs/cs/0612106v1

verification for a finite number of instantiations (See e6j wWhere logical relations are
one of the essential ingredients).

Logical relations. While contextual equivalence is difficult to prove directigcause
of the universal quantification over contexts, logical tielas [15,8] are powerful tools
that allow us to deduce contextual equivalence in typezalculi. With the aid of the
so-called Basic Lemma, one can easily prove that logicaticels are sound w.r.t. con-
textual equivalence. However, completeness of logicatiais is much more difficult
to achieve: usually we can only show the completeness ofdbgtlations for types up
to first order.

On the other hand, the computationatalculus [10] has proved useful to define
various notions of computations on top of thecalculus: partial computations, ex-
ceptions, state transformers, continuations and nomdetesm in particular. Moggi's
insight is based on categorical semantics: while categbmodels of the standarkt
calculus are cartesian closed categories (CCCs), the datignal \-calculus requires
CCCs with a strong monad. Logical relations for monadic sypéhich are particularly
introduced in Moggi’s language, can be derived by the cantin defined in[2] where
soundness of logical relations is guaranteed.

However, monadic types introduce new difficulties. In pautr, contextual equiv-
alence becomes subtler due to the different semantics fefrelift monads: equivalent
programs in one monad are not necessarily equivalent irharoThis accordingly
makes completeness of logical relations more difficult toieee in the computational
A-calculus. In particular the usual proofs of completengss$oufirst order do not go
through.

Contributions. We propose in this paper a notion of contextual equivalencéhie
computational\-calculus. Logical relations for this language are definezbeding to
the general derivation in[2]. We then explore the complessrand we prove that for the
partial computation monad, the exception monad and the statsformer monad, logi-
cal relations are still complete up to first-order typeshim¢ase of the non-determinism
monad, we need to restrict ourselves to a subset of first-tydes. As a corollary, we
prove that strong bisimulation is complete w.r.t. contekequivalence in a-calculus
with monadic non-determinism.

Not like previous work on using logical relations to studyntextual equivalence
in models with computational effects |16/13,11], most ofeifocus on computations
with local states, our work in this paper is based on a moreigérdramework for
describing computations, namely the computatioreahlculus. In particular, very dif-
ferent forms of computations like continuations and notedwrinism are studied, not
just those for local states.

Plan. The rest of this paper is structured as follows: we devot¢i@e@ to prelimi-
naries, by introducing basic knowledge of logical relatiéma simple version of typed
A-calculus; then from Sectidd 3 on, we move to the computatiarcalculus and we
rest on a set-theoretical model. In particular, SediiolsBetches out the proof scheme

of completeness of logical relations for monadic types dmhs the difficulty of get-
ting a general proof; we then switch to case studies and wiexpn Sectio i, the
completeness in the computatiomatalculus for a list of common monads: partial
computations, exceptions, state transformers, confomsmtand the non-determinism;
the last section consists of a discussion on related worlpangpectives.

2 Logical relations for the simply typed A-calculus

2.1 The simply typedA-calculusA™

Let A\ be a simple version of typekicalculus:

Types: 7,7 ..uo=0blT =1
Terms: t,t/,... == z|c| -t |t

whereb ranges over a set of base types (booleans, integerscaieer, a set of constants
andz over a set of variables. We writ@. /] the result of substituting the terafor free
occurrences of the variablein the termt. Typingjudgmentsre of the formi" ¢ :
where" is atyping contexti.e. a finite mapping from variables to types. We say that
x : TisinI"wheneved (z) = 7. We write ', = : 7 for the typing context which agrees
with I" except that it maps to 7. Typing rules are as standard. We consider the set
theoretical semantics of . The semantics of any typeis given by a sefr]. Those
sets are such thdt — 7'] is the set of all functions fronfi] to [r'], for all typest
andr’. A I'-environmenp is a map such that, for eveny: 7 in I, p(z) is an element
of [7]. We write p[x := a] for the environment which agrees wittexcept that it maps
x to a. We write[z := «] for the environment just mappingto a. Lett¢ be a term such
thatl" t : 7 is derivable. The denotation of w.r.t. al’-environmeni, is given as
usual by an elemerft]p of [r]. We write[t] instead of[t]p whenp is irrelevant, e.g.,
whent is a closed term. When given a values [7], we say that it iglefinablef and
only if there exists a closed tertrsuch that- ¢ : 7 is derivable and = [¢].

Let Obs be a subset of base types, calleolservation typessuch as booleans,
integers, etc. AcontextC is a term such that : 7 - C : o is derivable, where
is an observation type. We spell the standard notiorasftextual equivalencm a
denotational setting: two elementsanda; of [7], arecontextually equivalerftvritten
asa; =, as), if and only if for any contexC such thatr : 7 - C : 0 (0 € Obs) is
derivable,[C][z := ai] = [C][z := az2]. We say that two closed terms andt;, of
the same type arecontextually equivalenvheneveft;] =~ [t2]. Without making
confusion, we shall use the same notatien to denote the contextual equivalence
between terms. We also define a relatiop: for every pair of values;,ay € [7],
a1 ~; ag ifand only if a1, ao are definable and; ~, as.

2.2 Logical relations

Essentially, a (binarylogical relation[8] is a family (R-)._ type of relations, one for
each typer, on [r] such that related functions map related arguments to telate

sults. More formally, it is a familyR), .. . of relations such that for everfj, f> €

[r — 7],
fiRror fo = Var,az € [7].a1 Ry a2 = fi(a1) R fa(az)

There is no constraint on relations at base typea: tnonce the relations at base types
are fixed, the above condition forc€®) . to be uniquely determined by induction
on types. We might have other complex types, e.g., prodoctariations ofA~, and

in general, relations of these complex types should be atéguely determined by
relations of their type components. For instance, pairseleted when their elements
are pairwise related. A unary logical relation is also achldogical predicate

A so-calledBasic Lemmaomes along with logical relations since Plotkin’s work
[15]. It states that if” + ¢ : T is derivablep;, p2 are two related"-environments, and
every constant is related to itself, th@tp; R, [t]p2. Here twol'-environments,,
p2 are related by the logical relation, if and onlygf(x) R, p2(x) for everyz : 7
in I". Basic Lemma is crucial for proving various properties gdoygical relations[[B].

In the case of establishing contextual equivalence, itimsphat, for every contex@
such thatz : 7 - C : o is derivable § € Obs), [C][x := a1] R, [C][z := ag] for
every pair of related values,, a; in [7]. If R, is the equality, thefiC][z := a;] =
[C][z = a2], i.e.,a1 =~: ao. Briefly, for every logical relationfR,), . . such that
R, is the equality for every observation typelogically related values are necessarily
contextually equivalent, i.eR.. C = for any typer.

Completeness states the inverse: a logical relgtion) type 1S COMpleteif every
contextually equivalent values are related by this logietation, i.e.,~, C R, for
every typer. Completeness for logical relations is hard to achievenemea simple
version of A-calculus like A\~. Usually we are only able to prove completeness for
types up to first order (the order of types is defined indultiverd (b) = 0 for any base
typed; ord(r — 7') = max(ord(7) + 1, ord(7")) for function types). The following
proposition states the completeness of logical relations’, for types up to first order:

Proposition 1. There exists a logical relatiofiR -) . type fOF A7, with partial equality
on observation types, such thatif¢; : 7 and I ¢ : 7 are derivable, for any type up
to firstordert; ~, to = [[t1] R~ [t2].

Proof. Let (R:) type be the logical relation induced 5§, = ~; at every base type
and we show that it is complete for types up to first order.

The proof is by induction over. Caser = b is obvious. Letr = b — 7’. Take two
termsty, to of typeb — 7’ such thafft;] and[¢2] are related bys,,,. Let f1 = [t1]
and fo = [to]. Assume thati1,as € [b] are related byR,;, thereforen; ~; as since
Ry = ~y. Clearly,a; andas are thus definable, say by termag andus, respectively.
Then, for any context such thatz : 7/ - C : o0 (o € Obs) is derivable,

[C][z == fi(a1)]
= [Clzui /z]][x := f1] (S!nCEal =
= [Clzus /2]][x := fo] (sincefi mp—rr fo)
[Cl[z := f2(a1)]
= [Cltoz/2]][x == a1] (sincefs = [t2])
= [Cltoz/x]][x := a2] (Sincea; = az)

= [C][z := fa(a2)]-

Hencefi(a1) ~; f2(a2). Moreover,f(a;1) andfz(az) are therefore definable byu,
andtous respectively. By induction hypothesif,(a1) R, f2(a2). Because; andas
are arbitrary, we conclude thft Ry, fo. O

Note that an equivalent way to state completeness of logitations is to say that
there exists a logical relatiofiR) - type which is partial equality on observation types
and such that, for all first-order types~,C R..

3 Logical relations for the computational A-calculus

3.1 The computationalA-calculus X comp

From the section on, our discussion is based on anotherdgega- Moggi's compu-

tational \-calculus. Moggi defines this language so that one can expee®us forms

of side effects (exceptions, non-determinism, etc.) ia g@neral framework [10]. The
computationah-calculus, denoted b¥comy, €xtends\=:

Types: 7,7,..u=bl7—=>7|Tr
Terms: t,t/,... u= z|c|dx-t|tt'|val(t)|letz<tint

An extra unary type constructdris introduced in the computationatcalculus: intu-
itively, a typeTr is the type of computations of type We call T+ amonadic typen
the sequel. The two extra construetdl (¢t) andlet = < t in t' represent respectively
the trivial computation and the sequential computatioth wie typing rules:

I'Ht:7 I'tt:Tr Dao:7kY:Tr
I't-val(t): Tr I'Fletx<tint : T7/

Note that thelet construct here should not be confused with that in PCR dp,,,
we bind the result of the termto the variabler, but they are not of the same type t—
must be a computation.

Moggi also builds a categorical model for the computatioxrablculus, using the
notion of monads [10]. Whereas categorical models of simyghed A-calculi such as
A~ are usually cartesian closed categories (CCCs), a modeldgy,, requires addi-
tionally a strong monadrl’, i, i1, t) be defined over the CCC. Consequently, a monadic
type is interpreted using the mondd [T+] = T'[r], and each term it g,y has a
unique interpretation as a morphism in a CCC with the strongad [10]. Semantics
of the two additional constructs can be given in full genigrah a categorical setting
[10]: the denotations ofal construct and.et construct are defined by the follwoing
composites respectively:

[IHt:r]

[r] 2% T[],

id, [Pt
L T g TP S5 7] x [

T[[F,I:Tth:TT'ﬂ
B —

[k val(t): T7]: [

[I'Fletx <ty inty: T7]: [[]
Kyt
T[] L 7.

In particular, the interpretation of terms in the computadil A\-calculus must satisfy
the following equations:

[let x < val(ty) inta]p = [t2[t1/z]]p, 1)
[let 22 <= (let 1 < t1 ints) ints]lp = [let 21 < 1 in let xo < to in t3]42)
[Let x <=t in val(z)]p = [t]p- (3)

We shall focus on Moggi’'s monads defined over the categeryof sets and func-
tions. Figuré 1L lists the definitions of some concrete mongaidial computations, ex-
ceptions, state transformers, continuations and norrdétesm. We shall Writé\gfflgf\’
to refer toA comp Where the monad is restricted to be one of these five monads.

Partial computation: [T7] = [r] U {L}
[val(®)]p = [tlp _
[letz <=t inta]p = { [[iz}]p[ﬂ? =l :I %2%2 i i
Exception: [Tr]=[rJUE
[val(t)]p = [t]p
[let x < t1 inta]p = {

State transformer: [T7] = ([7] x St)**
[val(t)lp = As - ([tlp, s)
[let x <ty inta]p = A s - ([t2]plz := a1])s1,
wherea, = mi(([t1]p)s), s1 = m2(([t2]p)s)
Continuation: [T7] = RE""
[vai(t)]p = AT k([t]p)
[let & < t1 into]p = AkI2I=E . ([t1])k’
wherek’ is a function:A v[™1 . ([ta]pla := v])k
Non-determinism: [T7] = Pan([7])
[va1()lp = {[t]p}

[letx <=tiinte]p= U [t2]plz :=d]
a€ft1]p

[t2]plz == [t:]p], i [ta]p & E
[t:]p, if [t.]p € E

Fig. 1. Concrete monads defineddfet

The computationah-calculus is strongly normalizing [1]. The reduction rulas
Acomp are calleddce-reduction rules in[l], which, apart from standatdaeduction in
the A-calculus, contains especially the following two rulesédomputations:

let < val(t1) inty —gc toft1/z], 4
let 3 < (let x1 < t1 inty) int —g, let 21 <1 in (let x5 < t2 int).(5)

With respect to théc rules, every term can be reduced to a term indb@ormal form.
Considering also the following-equality rule for monadic types|[1]:

let z < tint'[val(z)/a'] =, t'[t/2'], (6)

we can write every term of a monadic type in the followjfetnormaly-long form
let 21 < dyugr -+ - Uk, in---let &, < dpupy - - Ung, in val(u),

wheren = 0,1,2,..., everyd; (1 < ¢ < n) is either a constant or a variable and
uij (1 <4 <n,1 <j < k) are allfe-normal terms oBc-normals)-long terms (of
monadic types). In fact, the ruldg[(%#-6) just identify the:atipns[(A=B) respectively.

Lemma 1. For every termt of type T7 in Acomp, there exists a3c-normal+-long
term¢’ such that[t']p = [t]p, for every valid interpretatiorf_]p (i.e., interpretations
satisfying the equationgl({1-3)).

Proof. Because the computationgicalculus is strongly normalizing, we consider the
Be-normal form of term: and prove it by the structural induction én

— If ¢ is either a variable, a constant or an application, accgrttirthe equatiori{3):
[tlp = [let z <t inval(z)]p.

In particular, ift is an application, ¢1, thent; must be either a variable or a constant
sincet is Sc-normal. Therefore, the terret 2 <= ¢ in val(x) is in thefc-normal-
n-long form.

— If tis atrivial computatiorval(t’), by induction there is @c-normal+-long term
t" such that[t']p = [[t"]p, for every validp, then[val(t)]p = [val(t”)]p as
well.

— If t is a sequential computatidret = < t; in to, since it isBc-normal,t; should
not be anyal or let term —¢; must be of the formlu; - - - u, (n =0,1,2,...)
with d either a variable or a constant. By induction, there jscanormal+-long
termt,, such thafitz]p = [t2] p, for every validp, then[t]p = [let <t} int5]p
and the latter is in théc-normal4)-long form. a

3.2 Contextual equivalence for comp

As argued in[[3], the standard notion of contextual equivedsdoes not fit in the setting
of the computationak-calculus. In order to define contextual equivalenceXey,,,,

we have to consider contex@of type To (o is an observation type), not of type
Indeed, contexts should be allowed to do some computatibtiey were of typeo,
they could only return values. In particular, a cont€xsuch thate : Tt - C : ois
derivable, meant to observe computations of typeannot observe anything, because
the typing rule for the et construct only allows us to use computations to build other
computations, never values. Taking this into account, wetgefollowing definition:

Definition 1 (Contextual equivalence forA comyp)- IN Acomp, tWo valuesiy, az € [7]
are contextually equivalentvritten asa; ~, as, if and only if, for all observable types
o € Obs and context such thatz : 7 = C : To is derivable,[C][z := a1] =
[C][z := a2]. Two closed terms; andt, of typer are contextually equivalent if and
only if [t1] =, [t2]. We use the same notation

~, to denote the contextual equivalence for terms.

3.3 Logical relations for A comp

A uniform framework for defining logical relations relies tre categorical notion of
subscones [9], and a natural extension of logical relataisie to deal with monadic
types was introduced in[2]. The construction consistsftim{j the CCC structure and
the strong monad from the categorical model to the subsd@aeeformulate this con-
struction in the categorget. The subscone is the category whose objects are binary
relations(A,B,R C A x B) whereA and B are sets; and a morphism between
two objects(A, B,R C A x B) and(A’, B’ R’ C A’ x B’) is a pair of functions

(f: A— A’ g: B— B’)preserving relations, i.e. Rb = f(a) R’ g(b).

The lifting of the CCC structure gives rise to the standagidal relations given in
Sectior 2.2 and the lifting of the strong monad will give riegelations for monadic
types. We writel” for the lifting of the strong monad'. Given a relatiol? C A x B
and two computations € T'A andb € TB, (a,b) € T(R) if and only if there exists
a computatiore € T(R) (i.e. c computes pairs i) such thatu = T (c) andb =
Tma(c). The standard definition of logical relation for the simpyypéd A-calculus is
then extended with:

(c1,¢2) € RTr <= (c1,c0) € T(Ry). 7)

This construction guarantees that Basic Lemma always lpslldded that every con-
stant is related to itself [2]. A list of instantiations ofetlabove definition in concrete
monads is also given in[2]. Figuké 2 cites the relations fmse monads defined in
Figurel.

Partial computation: ¢; Rt ca & ¢c1 R-c2 Of ¢ =co =L
Exception: ¢1 R1r ca < c1 Rrce2 Of ¢c1 =c2 € E
whereF is the set of exceptions
State transformer: ¢; Ry, c2 < Vs € St. mi(c18) Rr mi(cas) & ma(c1s) = ma(czs)
whereSt is the set of states
Continuation: c¢i Rr- c2 < c1(k1) = ca(kz) for everyk, k> such that
Vai,az. a1 Ry a2 = ki(a1) = k2(a2)
Non-determinism: c¢; Rtr c2 < (Va1 € ¢1. Jaz € c2. a1 Ry a2) &
(Vaz € cy.da; €c1.a1 Rr a2)

Fig. 2. Logical relations for concrete monads

We restrict our attention to logical relatio(iR ;) ype Such that, for any observa-
tion typeo € Obs, R, is a partial equality. Such relations are cal#gservationaln
the rest of the paper.

Note that we require partial identity ofp, not ono. But if we assume that denota-
tion of val(), i.e., the unit operation, is injective, then thaR, is a partial equality
implies thatR, is a partial equality as well. Indeed, ket R, a2, and by Basic Lemma,
[val(x)][z := a1] R1o [val(z)][z := aso], thatis to say,j(a1) = nep(az). By in-
jectivity of n, a1 = as.

Theorem 1 (Soundness of logical relations itk comp). If (R+)r type IS an observa-
tional logical relation, theriR , C =, for every typer.

It is straightforward from the Basic Lemma.

3.4 Toward a proof on completeness of logical relations fok comp

Completeness of logical relations fag,m,, iS much subtler than i~ due to the
introduction of monadic types. We were expecting to find aegelproof following the
general construction defined [n [2]. However, this turnsesdtemely difficult although
it might not be impossible with certain restrictions, ongggor example. The difficulty
arises mainly from the different semantics for differenfis of computations, which
actually do not ensure that equivalent programs in one maredecessarily equivalent
in another. For instance, consider the following two progsan A corm,y:

let z <t inlet y < o in val(z),
let y <2 in let ¢ < 1 inval(z),

where botht; andt; are closed term. We can conclude that they are equivalehein t
non-determinism monad — they return the same set of pogsibldts oft;, no matter
what results, produces, but this is not the case in, e.g., the exceptiorachatent,
andt, throw different exceptions.

Being with such an obstacle, we shall switch our effort teecstadies in Sectidd 4
and we explore the completeness of logical relations fostadf common monads,
precisely, all the monads listed in Figlule 1. But, let uscketut here a general structure
for proving completeness of logical relationsAg,,. In particular, our study is still
restricted to first-order types, which, Nt,m,, are defined by the following grammar:

=0T b — 7!,

whereb ranges over the set of base types.

Similarly as in Propositionl1 in Sectién 2.2, we investigadepleteness in a strong
sense: we aim at finding an observational logical relati8a) +ype such that if -
t;: 7 and ty: 7 are derivable and; ~. t,, for any typer up to first order, then
[t1] R~ [t2]- Or briefly,~. C R, where~ is the relation defined in Sectibh 2. As in
the proof of Propositionl1, the logical relati¢R -) . type Will be induced byRy, = ~,
for any base typé. Then how to prove the completeness for an arbitrary mariad

Note that we should also check that the logical relati@®y)~ ¢ype, induced by
Ry, = ~y, IS Observational, i.e., a partial equality dm, for any observable type.
Consider any paifa,b) € R, = T(R,). By definition of the lifted monad’, there
exists a computation€ TR, such thatt = T'w1(¢) andb = T'ra(c). BUtR, = ~, C
idj,], hence the two projections , m2 : R, — [o] are the same functiom; = 72, and
consequently, = T'my (¢) = Twa(c) = b. This proves thaR, is a partial equality.

As usual, the proof of completeness would go by inductiorr ay¢o show~., C
‘R for each first-order type. Cases = b andr = b — 7’ go identically as il ™.
The only difficult case is = T7/, i.e., the induction step:

~r C R‘r = ~1, C RTT (8)

We did not find any general way to shdw (8) for an arbitrary ntbhastead, in the next
section we prove it by cases, for all the monads in Fiflire £tdhie non-determinism
monad. The non-determinism monad is an exceptional caseewgedo not have com-
pleteness for all first-order types but a subset of them. Whide studied separately in
Sectior 4.B.

At the heart of the difficulty of showind[8), we find an issuedsfinability at
monadic types in the set-theoretical model. We wdié€. for the subset of definable
elements i 7], and we eventually show that the relation betweefy, anddef, can
be shortly spelled-out:

deft, C T'def, (9

for all the monads we consider in this paper. This is a crumigbment for proving
completeness of logical relations for monadic types, bshtow [9), we need different
proofs for different monads. This is detailed in Secfion 4.1

4 Completeness of logical relations for monadic types

4.1 Definability in the set-theoretical model oA gE>CN

As we have seen i, definability is involved largely in the proof of completeyssof
logical relations (for first-order types). This is also tlese in\ c,., and it apparently
needs more concern due to the introduction of monadic types.

Despite we did not find a general proof fa (9), it does hold drthe concrete
monads iM\¢ESCN . To state it formally, let us first define a predicdte on elements
of 7], by induction on types:

— Py = defy, for every base typg;
— P, =T (def NP,);
= Prosrr = {f € Prsrr | Va € def,, f(a) € P}

We say that a constant ¢ (of typgis logical if and only ifr is a base type dic] € P;.
We then require that£5 55 contains only logical constants. Note that this restrittio
is valid because the predicat®s, and P,_, .. depend only on definability at type
Some typical logical constants for monads\ii)> ™ are as follows:

— Partial computation: a constaf, of type T, for everyr. (2. denotes the non-
termination, sd(2.] = L.

— Exception: a constantaise? of type Tr for every typer and every exception
e € E. raise® does nothing but raises the exceptigso[raiset] = e.

— State transformer: a constaijidate, of type Tunit for every states € St, where
unit is the base type which contains only a dummy valuepdate, simply changes
the current state te, so for anys’ € St, [update,](s") = (x, s).

— Continuation: a constantal1” of type 7 — Tbool for everyr and every con-
tinuationk € RI7l. ca11” calls directly the continuatioh — it behaves some-
how like “goto” command, so for any € [7] and any continuatiok’ € RP°°,

[ca11%] (a) (k) = k(a).

— Non-determinism: a constast, of typer — 7 — T7 for every non-monadic type
7.+, takes two arguments and returns randomly one of them — idioizes the
non-determinism, so for any , as € [7], [+-] (a1, a2) = {a1, az}.
We assume in the rest of this paper that the above constangsesent in\¢ZoCN .

Note thatP, being a predicate on elements[ef] is equivalent to say tha®, can
be seen as subset [pf], but in the case of monadic typeBr, (i.e.,T(def, N P;)) is
not necessary a subset[dfr] (i.e., T'[]). Fortunately, we prove that all the monads in

AooaSN preserves inclusions, which ensures that the predieasevell-defined:

Proposition 2. All the monads innGEZ>C™ preserve inclusionsd € B = TA C TB.

Proof. We check it for every monad ingZ>C™:

— Partial computation: according to the monad definitiod ifZ B, then for every
ceTA:

ceETA<=cecAorc=1l=ceBorc=1l<«<=ceTB.
— Exception: for every elemente T A:
ceETA<=ceAorce E=ceBorce E<=ceTB.
— State transformer: for everye T A:
ceTA<=Vse St.m(cs) e A= Vse St.m(cs) € B<=ceTB.

— Continuation: this is a special case because appargnily- RE" is not a subset of
TB = RE” since they contain functions that are defined on differemains, but
we shall consider here the functions coinciding on the smaktA as equivalent.
We say that two functiong;, andf, defined on a domaif® coincide onA (A C B),
written asfi|a = fa|a, if and only if for everyz € A, f1(z) = fao(x). Then for
everyc € T A:

Vkl,kz S RB . /{1 = kQ — k1|A = /{2|A — C(kl) = C(kQ),

soc is also function fromR? to R, i.e.,c € T'B.
— Non-determinism: for every € T A:

cceTA—Vacc.ac A=—Vacc.a€ B<= cecTB. O

Introducing such a constraint on constants is mainly fovio (9). Let us figure
out the proof. Take an arbitrary elemerin def+,. By definition, there exists a closed
term¢ of type T+ such thaff¢t] = c¢. While it is not evident that € T'def,, we are ex-
pecting to show thdt] € T'def,, by considering thgc-normal4)-long form oft¢, since

! ltis easy to check that each of these constants is relateskify iexcepiall® for continua-
tions. However, we still assume the presenceaifl” for the sake of proving completeness,
while we are not able to prove the soundness with it. NoteThabrent]l and Theorelnh 2 still
hold, but they are not speaking of the same language.

Acomyp 1S Strongly normalizing, Take the partial computation nbras an example,
whereT'def, = def. U {L}. Consider thésc-normals)-long form oft:

let 1 <= dyuir -+ - Uk, in---let @, < dpUpny - - - Ung,, in val(u).

We shall make the induction on. It is clear that[t] € T'def, whenn = 0. For
the induction step, we hope that the closed tekm,; - - - u1x, (of type Tr) would
produce either (the non-termination), or a definable result (of typgso that we can
substituter; in the rest of the normal term with the resultdfuq; - - - u1x, and make
use of induction hypothesis. The constraint on constarpsliiere: to ensure that after
the substitution, the resulted term is still in the propenfco that the induction would
go through.

The following lemma shows that for every computation térift] € T'def, if ¢ is
in a particular form, which is a more general form&fnormal+-long form.

Lemma 2. In A\EESCN 1] € Tdef ., for every closed computation temfof typeTr)

of the following form:
t=letx; < tiwiy Wik, in---let Ty < tpWpy - - - Wpg, in val(w),

wheren = 0,1,2,...andt; (1 < i < n)is either a variable or a closed term such that
P([t:]) holds, andw, w;; (1 <@ <n,1<j < k;)are valid A\GESCN terms.

Proof. We prove it by induction om, for every monad:

— Partial computationTdef, = def, U {L}):if n = 0, itis clear thaf]t] € T'def,.
Whenn > 0, becauseP([t1]) holds ¢; must be closed)[tiwis - - - wik,] €
T(def,, N Pr). If [trwir w1k,] = L, then[t] = L € Tdef,; otherwise,
assume thdt|] = [t1wi1 - - - w1k, | wheret] is a closed term of type (assuming
thatt; wy - - - w1y, is of typeTr). According to the definition oP, P([¢;]) holds.
Let¢’ be another closed term:

t' = let xg <= thwh, - - whyy, in---let &, < thw), - wy,, inval(wlt) /z1]),
wheret! (2 < i < n) is eithert} ort;, wz’-j =w[th /] (2 <i<n,1<j<k).
By induction,[t'] € T'def, holds. Furthermore,

[[tlﬂ = [[let Lo <= toway - - - Wog, in - -
let @, < thwp - Wak, inval(w)][z; = [#]]]
= [let 1 < tywiy -+ - Wik, in---let &y < thwp + - - Whk, in val(w)]

= [t

hence[t] € Tdef,.

— Exception {"def, = def, U E): if n = 0, clearly[¢] € Tdef,. Whenn > 0,
becaus@([[tl]]) hO'dS,[[tl’wll s wlkl]] S T(deﬂ-1 n PT]) If [[t1w11 .- -wl;ﬁ]} S
E,then[t] € E C Tdef,; otherwise, exactly as in the case of partial computation,
build a term¢’. Similarly, we prove thaft] = [t'] € T'def, by induction.

— State transformerI{def, = (def, x St)°*): whenn = 0, for everys € St,
7t([t]s) = [w] € def, hence[t] € Tdef.. Whenn > 0, for everys € St,
assume thaft;] = 7'([t1wi1 --- w1k,]|s) wheret] is a closed term of type;
(assuming thatywn1 - - - wyg, is of type Try). According to the definition ofP,
P([t5]) holds. Lett® be another closed term:

t° = let xp <= tywy) - - Wy, in---let x, < tyw,, - w,, inval(w(t]/zi]),

wheret; (2 < i < n)is eithert] ort;, wf; = w;;[t7/z1] (2 <i <n,1 <j < k).
By induction,[t*] € T'def, holds. Furthermore, for everye St,

[t]s = [let 1 < tywiy -+ - w1k, in---let x, < tywpy - - - Wpk, inval(w)]s
= ([[let To < taWay - Wak, in - - -
let @y < tpwp « - - Wy, inval(w)][xy = [t5]])s’
— [[tsﬂsl’
wheres’ = mo([tiw11 - - - wik,). Since[t®] € Tdef, foreverys € St, w1 ([t]s) =
m1([t°]s’) € def,, hencelt] € T'def,.

— Continuation {'def, = RE“"): we say that an elemente [T7] = R isin
Tdef . if and only if for every pair of continuations;, k» € RI™],

Eildef, = ka2lder, = c(k1) = c(k2).

If n=0,[t] = Ak.kE([w]) € Tdef.. Whenn > 0, according to the definition of
the continuation monadt] = Ak - [tywi1 - - - wn, | (K'), where

K = Xa-([let z2 <= toway - - - wak, in - - let oy, < tywn - - Wayk, inval(w)][zy := a])k.
For every continuations;, ky € RI™l such that; |ger, = ko |ger, let
ki = Na-([Llet w2 < taway - - wag, in -+ let xy, < tywnt - - Whk, inval(w)][zr = a])ki,

i =1,2.Becausdtiwi; - - - w1k, | € T(Pr,Ndef,,), if we can prOVd€/1|7)Tlﬁdef7_1 =
k5|, ndef,, » which implies[t] (k1) = [t](k2), we can conclud@t] € T'def. For
everya € P, Ndef,,, let[t{] = a wheret{ is a closed term. Define another closed
term¢®:

t* = let mp <= tywy, - - -wyy, in---let @, <= thwyy -+ wyy inval(w[t}/z1]),

wheret! (2 < i < n) is eithert{ or t;, wi; = wy;[t{/z1] (2 < i < n,1 <
j < k;). By induction,[t*] € Tdef,, sok}(a) = [t*]k1 = [t*]ke = k,(a), i.€.,
ki |p,, ndef,, = K5|p, ndef., -

— Non-determinismTdef, = Pg,(def;)): whenn = 0, [t] = {[w]} € Tdef,.
Whenn > 0, for everya € [tyw11 - - - w1k, |, @assume thalt{] = a wheret] is a
closed term of typey (assuming that;wn; - - - w1y, is of typeTr). According to
the definition of P, P([t{]) holds. Lett* be another closed term:

t* = let mp <= tywy - - -wyy, in---let @, <= thwpy -+ wpy inval(w[t]/z1]),

wheret? (2 < i < n)is eithert§ ort,, wi = wij [t9/x1] (2 <i<n,1<j<k).
By induction,[t*] € T'def, holds. Furthermore,

[t] = [let 1 < tyw1y - w1k, in---let &, < tywpy -+ - Wpk, in val(w)]
U [[19’6 To < loway -+ - Wag, in - -+

Il Yot 2, < tywnr - war, inval(w)]lz: = d]

U [l

a€t1]

Becausdt®] € Tdef, holds for everys € [t1wiy - - - w1k, |, [t] € Tdef,. O

From the above lemma, we conclude immediately that for esligedsc-normal-

n-long computation termin AZZSCN with logical constantsft] C T'def .

Proposition 3. deft, C Tdef, holds in the set-theoretical model Q@qugfv with
logical constants.

Proof. It follows from Lemmd2 by considering th#-normal+-long terms that define
elements i T7] sinceXcom, is strongly normalizing. ad

4.2 Completeness of logical relations ilg,~C for first-order types

We prove[(8) in this section for the partial computation nuhrthe exception monad,
the state monad and the continuation monad. We Wwit&>C' for Aconm, Where the
monad is restricted to one of these four monads.

Proofs depend typically on the particular semantics ofyef@m of computation,
but a common technique is used frequently: given two defenbbt non-related ele-
ments of[T7], one can find a context to distinguish the programs (of typ§ that
define the two given elements, and such a context is usuaillydased on another
context that can distinguish programs of type

Lemma 3. Let (R)- type be a logical relation in\¢55¢" with only logical constants.
~r CR; = ~1, C R, holds for every type.

Proof. Take two arbitrary elements, c; € [T7] such that(ci, c2) € R+, we prove

thatc; 1, ¢y for every monad imgf,ig:

— Partial computation: the fa¢t, c2) ¢ R+, amounts to the following two cases:
e ¢1,co € [7] but(cy,e2) € R, theney 7, co. If one of these two values is
not definable at type, by Propositio B, it is not definable at tyfie- either.
If both values are definable at typebut they are not contextually equivalent,
then there is a context: 7 + C : To such thaflC] [z := ¢1] # [C][z := c2].
Thus, the contexg : T7 F let x < y in C : To can distinguistr; ande; (as
two values of typel' 7).
e ¢ € 7] andey = L (or symmetricallyc; = L andes € [7]), then the
contextlet x < y in val(true) can be used to distinguish them.
c1 %1+ co In both cases.
— Exception: the factc:, c2) ¢ R+, amounts to three cases:

e c1,co € [7] but(cq,c2) € R, theney £, ¢o. Suppose both values are defin-
able at typer, otherwise by Propositidd 3, they must not be definable a typ
Tr. Similar as in the case of partial computation we can build@text that
distinguisheg; andc; as values of typd@ 7, from the context that distinguishes
c1 andces as values of type.

e ¢1 € [7],c2 € E. Consider the following context:

y:T7F let z < y in val(true) : Thool.

Wheny is substituted by:; andcs, the context evaluates to different values,
namely, a boolean and an exception.

e c1,co € E bute; # co. Try the same context as in the second case, which will
evaluate to two different exceptions that can be distirtipds

c1 71+ co in all the three cases.
— State transformer: becau§g, c2) € R, there exists some, € St such that

° either(m (Clso), T (CQSQ)) ¢ R,. Then by inductionrl (Clso) 7(/-,— T (CQSQ).
If 1 (cis0) (¢ = 1,2) is not definable, then by Propositiohc3,is not definable
either. If bothr (¢1509) andm (c2so) are definable, but; (¢1s0) %, 71 (c250),
thenthereis acontext: 7 - C : TosuchthafC][x := 71 (c150)] # [C][z :=
m1(c280)], i.e., for some statel, € St,

[Cl[z := m1(c150)](s0) # [Cl[2 := m1(c150)](s0)-
Now we can use the following context:

y: Ttk letz<yinlet z < update,, inC:To,

Let f; = Hlet r < yinlet z < update, in (D]] [y := ¢], then for every
s € St,

fi(s) = Hlet z < update, in C]] [:=m1(c;9)](m2(c;8))
= [C][x := m1(c;is)](sh)s (i=1,2).

f1 # f2, because when applied to the stage they will return two different
pairs, so the above context can distinguish the two valyesidcs;
e orma(c1sg) # ma(casp). we use the context

y:TrF let x <y inval(true) : Thbool,

then[let x < y in val(true)][y := ¢ = As.(true,ma(cs)) (@ = 1,2).
These two functions are not equal since they return difteresults when ap-
plied to the stata,.
In both cases;; %1, ca.
— Continuation: first say that two continuatiohg k, € RI™] areR-related if and
only if for everyay, as € [7], a1 R, a2 = ki(a1) = ka(az2). The fact(cy, c2) ¢

Rt- means that there are tvi®-related continuations, , ko such thate; (k1) #
co(k2). Because-.C R, for every definable value € def, clearly,

a~ra= a1 R a = kl(al) = kg(ag),

so k1 andky coincide overef .. Suppose that botty andc, are definable, then
by Propositioh B¢y (k1) = c¢1(k2) andea(k1) = ca(kz), hencecy (k1) # ca(ky).
Consider the context

y:T7F let x < y in call® (z) : Tbool.
For everyk e RIPooll

[1et 2 <y in call® (z)][y := ;] (k) (i=1,2),
=ci(Aa- ([callk (2)] [z = a])k)
= ci(Aa . kl(a)) = Ci(kl).

Sinceci (k1) # co(k1), this context distinguishes the two computations, hence
cl ’/’TT Ca. O

Theorem 2. In AZZSC, if all constants are logical and in particular, if the folidng

constants are present

— update, for the state transformer monad;
— callk for the continuation monad,

then logical relations are complete up to first-order typaghe strong sense that there
exists an observational logical relatidfR ;) - +,,. such that for any closed termsg, ¢,
of any typer! up to first order, ift; ~,1 to, then[t;] R, [tz2].

Proof. Take the logical relatiofR ;) +ype induced byR;, =~, for any base typé.
We prove by induction on types that,C R, for any first-order type. In particular,
the induction step-, C R, =>~7,; C R, is shown by LemmAl3. O

4.3 Completeness of logical relations for the non-determism monad

The non-determinism monad is an interesting case: the @ien#ss of logical relations
for this monad does not hold for all first-order types! Toetatconsider the following
two programs of a first-order type that break the completenélgical relations:

F val(Az.(true +pool false)) : T(bool — Thool),
F Az.val(true) “+pool—Thool AZ.(true +po0 false) : T(bool — Thool).

Recall the logical constant, of typer — 7 — T7: [+,](a1,a2) = {a1,az} for
everyay,as € [7]. The two programs are contextually equivalent: what castesn
do is to apply the functions to some arguments and observesgtudts. But no matter
how many time we apply these two functions, we always get éneesset of possible

values (true, false}), so there is no way to distinguish them with a context. Recal
the logical relation for non-determinism monad in Figre 2:

¢1 Rrr ca & (Vag € ¢1. Jag € ¢2. a1 Ry az) & (Vag € ¢o. Jay € ¢1. a1 Ry az).

Clearly the denotations of the above two programs are nateglby that relation be-
cause the functiof\z.val(true)] from the second program is not related to the func-
tion in the first.

However, if we assume that for every non-observable basshtypere is an equality
test constantest; : b — b — bool (clearly,P(test;) holds), logical relations for the
non-determinism monad are then complete for a setaak first-order types

Tha=b|Th|b— 7l

Compared to all types up to first order, weak first-order tyg@esot contain monadic
types of functions, so itimmediately excludes the two paogs in the above counterex-
ample.

Theorem 3. Logical relations for the non-determinism monad are cornegolg to weak
first-order types. in the strong sense that there exists @emational logical relation
(R+)+ type SUCh that for any closed termas, ¢ of a weak first-order type, , if ¢, N1
to, then[[tl]] RT}U [[tgﬂ.

Proof. Take the logical relatiofR induced byr;, =~, for any base typé. We prove
by induction on types that., C R _, for any weak first-order typel.

Cased andb — 7. go identically as in standard typed lambda-calculi. For atba
typesTb, suppose thafc, c2) € R1p, which means either there is a valuecinsuch
that no value ot is related to it, or there is such a valuedn We assume that every
value inc; andcs is definable (otherwise it is obvious that 41, ¢ because at least
one of them is not definable, according to Proposftion 3) p8sp there is a valuee ¢;
such that no value iny is related to it, and can be defined by a closed tetrof type
b. Then the following context can distinguishandcs:

x:TTF let y < x in testy(y,t) : Thool
since every value in is not contextually equivalent i@, hence not equal te. O

Now let state and label be base types such thkbel is an observation type,
whereasstate is not. Using non-determinism monad, we can define labetatsition
systems as elements fdtate — label — Tstate], with states in[state] and labels
in [label], as functions mapping statesand labeld to the set of states such that

a—>1p.The logical relation at typstate — label — Tstate is given by [2]:

(fla f2) S Rstate—>|abe|—>Tstate —
Vai,az,l1, 1l - (a1,a2) € Reate & (l1,12) € Riabel =
(Vb1 € fi(a1,ly) - 3ba € fa(az,l2) - (b1,b2) € Restate)
& (Vba € fa(az,l2) - 3by € fi(ar,l1) - (b1,b2) € Rstate)

In caseR apel is equality,f; and f, are logically related if and only iRstate is astrong
bisimulationbetween the labeled transition systefasand f».

Sometimes we explicitly specify an initial state for centi@beled transition system.
In this case, the encoding of the labeled transition systetime nondeterminism monad
is a pair(q, f) of [state x (state — label — Tstate)], whereq is the initial state and
f is the transition relation as defined above. Tlen f1) and (g2, f2) are logically
related if and only if they are strongly bisimular, i.&.te iS @ strong bisimulation
between the two labeled transition systems @ffs;ateg2-

Corollary 1 (Soundness of strong bisimulation)Let f; and f, be transition systems.
If there exists a strong bisimulation betwegnand f,, then f; and f, are contextually
equivalent.

Proof. There exists a strong bisimulation betwegnand f», thereforef; and f, are
logically related. By Theorelm ¥f; andf, are thus contextually equivalent. O

In order to prove completeness, we need to assumdabat has nojunk, in the
sense that every value fitbel] is definable.

Corollary 2 (Completeness of strong bisimulation)Let f; and f, be transition sys-
tems which are definable. fi and f» are contextually equivalent andbel has no
junk, then there exists a strong bisimulation betwéeand f5.

Proof. Let R be the logical relation given by Theorérh 8. and f> are definable and
contextually equivalent, s Rstate_siabelsTstate f2- Moreover, becausiabel has no
junk, Riaper is equality. Reiate IS thus a strong bisimulation betwegnandf,. O

5 Conclusion

The work presented in this paper is a natural continuatiothefauthors’ previous
work [2[3]. In [2], we extend [9] and derive logical relat®for monadic types which
are sound in the sense that the Basic Lemma still holds.| lnw8]study contextual
equivalence in a specific version of the computatioxahlculus with cryptographic
primitives and we show that lax logical relations (the catézpl generalization of log-
ical relations[[14]) derived using the same constructiaroimplete. Then in this paper,
we explore the completeness of logical relations for thematiational\-calculus and
we show that they are complete at first-order types, for afisommon monads: par-
tial computations, exceptions, state transformers antiragations, while in the case
of continuation, the completeness depends on a naturalasdrall, with which we
cannot show the soundness.

Pitts and Stark have defined operationally based logicatiogis to characterize the
contextual equivalence in a language with local storé [IBis work can be traced back
to their early work on the nu-calculuis [12] which can be tfaresl in a special version of
the computationak-calculus and be modeled using the dynamic name creatiomdion
[17]. Logical relations for this monad are derived in{[19]ngsthe construction from
[2]. 1tis also shown in[19] that such derived logical retats are equivalent to Pitts and
Stark’s operational logical relations up to second-orgpes.

An exceptional case of our completeness result is the nterdaism monad,
where logical relations are not complete for all first-ortigres, but a subset of them.
We effectively show this by providing a counter-examplé thr@aks the completeness
at first-order types. This is indeed an interesting case. fermomprehensive study on
this monad can be found inl[4], where Jeffrey defines a deno&tmodel for the com-
putational\-calculus specialized in non-determinism and proves thathodel is fully
abstract for may-testing. The relation between our notfaoatextual equivalence and
the may-testing equivalence remains to be clarified.

Recently, Lindley and Stark introduce the syntactic -lifting for the computa-
tional A-calculus and prove the strong normalizatidh [7]. Katswanben instantiates
their liftings in Set [5]. The T T-lifting of strong monads is an essentially different
approach from that iri [2]. It would be interesting to estsibla formal relationship be-
tween these two approaches, and to look for a general pramfropleteness using the
T T-lifting.

References

1. P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Compoaoieti types from a logical
perspectiveJ. Functional Programming3(2):177-193, 1998.

2. J. Goubault-Larrecq, S. Lasota, and D. Nowak. Logicati@hs for monadic types. In
Proceedings of CSL'’200&olume 2471 oL NCS pages 553-568. Springer, 2002.

3. J. Goubault-Larrecq, S. Lasota, D. Nowak, and Y. Zhangn@ete lax logical relations for
cryptographic lambda-calculi. IRroceedings of CSL'20040lume 3210 ofLNCS pages
400-414. Springer, 2004.

4. A. Jeffrey. A fully abstract semantics for a higher-orfierctional language with nondeter-
ministic computationTheoretical Computer Scienc228(1-2):105-150, 1999.

5. S. Katsumata. A semantic formulation fT -lifting and logical predicates for computa-
tional metalanguage. IRroceedings of CSL'2005%0lume 3634 ofLNCS pages 87-102.
Springer, 2005.

6. R. Lazt and D. Nowak. A unifying approach to data-independence Prbteedings of
CONCUR’2000volume 1877 oL NCS pages 581-595. Springer, 2000.

7. S. Lindley and I. Stark. Reducibility andT -lifting for computation types. IfProceedings
of TLCA’2005 number 3461 in LNCS, pages 262—-277. Springer, 2005.

8. J. C. Mitchell.Foundations of Programming LanguagedIT Press, 1996.

9. J. C. Mitchell and A. Scedrov. Notes on sconing and regatbrProceedings of CSL'1992
volume 702 ofLNCS pages 352-378. Springer, 1993.

10. E. Moggi. Notions of computation and monabigormation and Computatiqr®3(1):55-92,
1991.

11. P.W. O’Hearn and R. D. Tennent. Parametricity and loggables.J. ACM 42(3):658-709,
1995.

12. A. Pitts and |. Stark. Observable properties of highdeofunctions that dynamically create
local names, or: Whateew? InProceedings of MFCS'1993iumber 711 in LNCS, pages
122-141. Springer, 1993.

13. A. Pitts and I. Stark. Operational reasoning for funwiiavith local state. Iidigher Order
Operational Techniques in Semantipages 227-273. Cambridge University Press, 1998.

14. G. Plotkin, J. Power, D. Sannella, and R. Tennent. La#gelations. InProceedings of
ICALP’200Q volume 1853 oL NCS pages 85-102. Springer, 2000.

15

16.

17.

18.

19.

. G. D. Plotkin. Lambda-definability in the full type hiecay. InTo H. B. Curry: Essays
on Combinatory Logic, Lambda Calculus and Formaligrages 363—-373. Academic Press,
1980.

K. Sieber. Full abstraction for the second order sulfsat algol-like languageTheoretical
Computer Sciencel68(1):155-212, 1996.

I. Stark. Categorical models for local namkeisp and Symbolic Computatipf(1):77-107,
1996.

E. Sumiiand B. C. Pierce. Logical relations for encrypti). Computer Security1 1(4):521—
554, 2003.

Y. Zhang.Cryptographic logical relationsPh. d. dissertation, ENS Cachan, France, 2005.

	On completeness of logical relations for monadic types
	Sławomir Lasota1 David Nowak2 Yu Zhang3

