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Abstract. Software security can be ensured by specifying and verifying secu-
rity properties of software using formal methods with strong theoretical bases.
In particular, programs can be modeled in the framework of lambda-calculi, and
interesting properties can be expressed formally by contextual equivalence (a.k.a.
observational equivalence). Furthermore, imperative features, which exist in most
real-life software, can be nicely expressed in the so-called computational lambda-
calculus. Contextual equivalence is difficult to prove directly, but we can often use
logical relations as a tool to establish it in lambda-calculi. We have already de-
fined logical relations for the computational lambda-calculus in previous work.
We devote this paper to the study of their completeness w.r.t. contextual equiva-
lence in the computational lambda-calculus.

1 Introduction

Contextual equivalence. Two programs are contextually equivalent (a.k.a. observa-
tionally equivalent) if they have the same observable behavior, i.e. an outsider cannot
distinguish them. Interesting properties of programs can be expressed using the notion
of contextual equivalence. For example, to prove that a program does not leak a secret,
such as the secret key used by an ATM to communicate with the bank, it is sufficient to
prove that if we change the secret, the observable behavior will not change [18,3,19]:
whatever experiment a customer makes with the ATM, he or she cannot guess infor-
mation about the secret key by observing the reaction of the ATM. Another example is
to specify functional properties by contextual equivalence. For example, ifsorted is a
function which checks that a list is sorted andsort is a function which sorts a list, then,
for all list l, you want the expressionsorted(sort(l)) to be contextually equivalent to the
expressiontrue. Finally, in the context of parameterized verification, contextual equiv-
alence allows the verification for all instantiations of theparameter to be reduced to the
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verification for a finite number of instantiations (See e.g. [6] where logical relations are
one of the essential ingredients).

Logical relations. While contextual equivalence is difficult to prove directlybecause
of the universal quantification over contexts, logical relations [15,8] are powerful tools
that allow us to deduce contextual equivalence in typedλ-calculi. With the aid of the
so-called Basic Lemma, one can easily prove that logical relations are sound w.r.t. con-
textual equivalence. However, completeness of logical relations is much more difficult
to achieve: usually we can only show the completeness of logical relations for types up
to first order.

On the other hand, the computationalλ-calculus [10] has proved useful to define
various notions of computations on top of theλ-calculus: partial computations, ex-
ceptions, state transformers, continuations and non-determinism in particular. Moggi’s
insight is based on categorical semantics: while categorical models of the standardλ-
calculus are cartesian closed categories (CCCs), the computationalλ-calculus requires
CCCs with a strong monad. Logical relations for monadic types, which are particularly
introduced in Moggi’s language, can be derived by the construction defined in [2] where
soundness of logical relations is guaranteed.

However, monadic types introduce new difficulties. In particular, contextual equiv-
alence becomes subtler due to the different semantics of different monads: equivalent
programs in one monad are not necessarily equivalent in another! This accordingly
makes completeness of logical relations more difficult to achieve in the computational
λ-calculus. In particular the usual proofs of completeness up to first order do not go
through.

Contributions. We propose in this paper a notion of contextual equivalence for the
computationalλ-calculus. Logical relations for this language are defined according to
the general derivation in [2]. We then explore the completeness and we prove that for the
partial computation monad, the exception monad and the state transformer monad, logi-
cal relations are still complete up to first-order types. In the case of the non-determinism
monad, we need to restrict ourselves to a subset of first-order types. As a corollary, we
prove that strong bisimulation is complete w.r.t. contextual equivalence in aλ-calculus
with monadic non-determinism.

Not like previous work on using logical relations to study contextual equivalence
in models with computational effects [16,13,11], most of which focus on computations
with local states, our work in this paper is based on a more general framework for
describing computations, namely the computationalλ-calculus. In particular, very dif-
ferent forms of computations like continuations and non-determinism are studied, not
just those for local states.

Plan. The rest of this paper is structured as follows: we devote Section 2 to prelimi-
naries, by introducing basic knowledge of logical relations in a simple version of typed
λ-calculus; then from Section 3 on, we move to the computational λ-calculus and we
rest on a set-theoretical model. In particular, Section 3.4sketches out the proof scheme



of completeness of logical relations for monadic types and shows the difficulty of get-
ting a general proof; we then switch to case studies and we explore, in Section 4, the
completeness in the computationalλ-calculus for a list of common monads: partial
computations, exceptions, state transformers, continuations and the non-determinism;
the last section consists of a discussion on related work andperspectives.

2 Logical relations for the simply typedλ-calculus

2.1 The simply typedλ-calculusλ→

Let λ→ be a simple version of typedλ-calculus:

Types: τ, τ ′, ... ::= b | τ → τ ′

Terms: t, t′, ... ::= x | c | λx · t | tt′

whereb ranges over a set of base types (booleans, integers, etc.),c over a set of constants
andx over a set of variables. We writet[u/x] the result of substituting the termu for free
occurrences of the variablex in the termt. Typing judgmentsare of the formΓ ⊢ t : τ
whereΓ is a typing context, i.e. a finite mapping from variables to types. We say that
x : τ is inΓ wheneverΓ (x) = τ . We writeΓ, x : τ for the typing context which agrees
with Γ except that it mapsx to τ . Typing rules are as standard. We consider the set
theoretical semantics ofλ→. The semantics of any typeτ is given by a setJτK. Those
sets are such thatJτ → τ ′K is the set of all functions fromJτK to Jτ ′K, for all typesτ
andτ ′. A Γ -environmentρ is a map such that, for everyx : τ in Γ , ρ(x) is an element
of JτK. We writeρ[x := a] for the environment which agrees withρ except that it maps
x to a. We write[x := a] for the environment just mappingx to a. Let t be a term such
thatΓ ⊢ t : τ is derivable. The denotation oft, w.r.t. aΓ -environmentρ, is given as
usual by an elementJtKρ of JτK. We writeJtK instead ofJtKρ whenρ is irrelevant, e.g.,
whent is a closed term. When given a valuea ∈ JτK, we say that it isdefinableif and
only if there exists a closed termt such that⊢ t : τ is derivable anda = JtK.

Let Obs be a subset of base types, calledobservation types, such as booleans,
integers, etc. AcontextC is a term such thatx : τ ⊢ C : o is derivable, whereo
is an observation type. We spell the standard notion ofcontextual equivalencein a
denotational setting: two elementsa1 anda2 of JτK, arecontextually equivalent(written
asa1 ≈τ a2), if and only if for any contextC such thatx : τ ⊢ C : o (o ∈ Obs) is
derivable,JCK[x := a1] = JCK[x := a2]. We say that two closed termst1 andt2 of
the same typeτ arecontextually equivalentwheneverJt1K ≈τ Jt2K. Without making
confusion, we shall use the same notation≈τ to denote the contextual equivalence
between terms. We also define a relation∼τ : for every pair of valuesa1, a2 ∈ JτK,
a1 ∼τ a2 if and only if a1, a2 are definable anda1 ≈τ a2.

2.2 Logical relations

Essentially, a (binary)logical relation [8] is a family (Rτ )τ type of relations, one for
each typeτ , on JτK such that related functions map related arguments to related re-
sults. More formally, it is a family(Rτ )τ type of relations such that for everyf1, f2 ∈



Jτ → τ ′K,
f1 Rτ→τ ′ f2 ⇐⇒ ∀a1, a2 ∈ JτK . a1 Rτ a2 =⇒ f1(a1) Rτ ′ f2(a2)

There is no constraint on relations at base types. Inλ→, once the relations at base types
are fixed, the above condition forces(Rτ )τ type to be uniquely determined by induction
on types. We might have other complex types, e.g., products in variations ofλ→, and
in general, relations of these complex types should be also uniquely determined by
relations of their type components. For instance, pairs arerelated when their elements
are pairwise related. A unary logical relation is also called a logical predicate.

A so-calledBasic Lemmacomes along with logical relations since Plotkin’s work
[15]. It states that ifΓ ⊢ t : τ is derivable,ρ1, ρ2 are two relatedΓ -environments, and
every constant is related to itself, thenJtKρ1 Rτ JtKρ2. Here twoΓ -environmentsρ1,
ρ2 are related by the logical relation, if and only ifρ1(x) Rτ ρ2(x) for everyx : τ
in Γ . Basic Lemma is crucial for proving various properties using logical relations [8].
In the case of establishing contextual equivalence, it implies that, for every contextC
such thatx : τ ⊢ C : o is derivable (o ∈ Obs), JCK[x := a1] Ro JCK[x := a2] for
every pair of related valuesa1, a2 in JτK. If Ro is the equality, thenJCK[x := a1] =
JCK[x := a2], i.e.,a1 ≈τ a2. Briefly, for every logical relation(Rτ )τ type such that
Ro is the equality for every observation typeo, logically related values are necessarily
contextually equivalent, i.e.,Rτ ⊆ ≈τ for any typeτ .

Completeness states the inverse: a logical relation(Rτ )τ type is completeif every
contextually equivalent values are related by this logicalrelation, i.e.,≈τ ⊆ Rτ for
every typeτ . Completeness for logical relations is hard to achieve, even in a simple
version ofλ-calculus likeλ→. Usually we are only able to prove completeness for
types up to first order (the order of types is defined inductively: ord(b) = 0 for any base
typeb; ord(τ → τ ′) = max(ord(τ) + 1,ord(τ ′)) for function types). The following
proposition states the completeness of logical relations inλ→, for types up to first order:

Proposition 1. There exists a logical relation(Rτ )τ type for λ→, with partial equality
on observation types, such that if⊢ t1 : τ and ⊢ t2 : τ are derivable, for any typeτ up
to first order,t1 ≈τ t2 =⇒ Jt1K Rτ Jt2K.
Proof. Let (Rτ )τ type be the logical relation induced byRb = ∼b at every base typeb
and we show that it is complete for types up to first order.

The proof is by induction overτ . Caseτ = b is obvious. Letτ = b → τ ′. Take two
termst1, t2 of typeb → τ ′ such thatJt1K andJt2K are related by≈b→τ ′ . Let f1 = Jt1K
andf2 = Jt2K. Assume thata1, a2 ∈ JbK are related byRb, thereforea1 ∼b a2 since
Rb = ∼b. Clearly,a1 anda2 are thus definable, say by termsu1 andu2, respectively.
Then, for any contextC such thatx : τ ′ ⊢ C : o (o ∈ Obs) is derivable,

JCK[x := f1(a1)]
= JC[xu1/x]K[x := f1] (sincea1 = Ju1K)
= JC[xu1/x]K[x := f2] (sincef1 ≈b→τ ′ f2)
= JCK[x := f2(a1)]
= JC[t2x/x]K[x := a1] (sincef2 = Jt2K)
= JC[t2x/x]K[x := a2] (sincea1 ≈b a2)
= JCK[x := f2(a2)].



Hencef1(a1) ≈τ ′ f2(a2). Moreover,f1(a1) andf2(a2) are therefore definable byt1u1

andt2u2 respectively. By induction hypothesis,f1(a1) Rτ ′ f2(a2). Becausea1 anda2
are arbitrary, we conclude thatf1 Rb→τ ′ f2. ⊓⊔

Note that an equivalent way to state completeness of logicalrelations is to say that
there exists a logical relation(Rτ )τ type which is partial equality on observation types
and such that, for all first-order typesτ , ∼τ⊆ Rτ .

3 Logical relations for the computationalλ-calculus

3.1 The computationalλ-calculusλComp

From the section on, our discussion is based on another language — Moggi’s compu-
tationalλ-calculus. Moggi defines this language so that one can express various forms
of side effects (exceptions, non-determinism, etc.) in this general framework [10]. The
computationalλ-calculus, denoted byλComp , extendsλ→:

Types: τ, τ ′, ... ::= b | τ → τ ′ | Tτ
Terms: t, t′, ... ::= x | c | λx · t | tt′ | val(t) | let x⇐ t in t′

An extra unary type constructorT is introduced in the computationalλ-calculus: intu-
itively, a typeTτ is the type of computations of typeτ . We callTτ a monadic typein
the sequel. The two extra constructsval(t) andlet x⇐ t in t′ represent respectively
the trivial computation and the sequential computation, with the typing rules:

Γ ⊢ t : τ

Γ ⊢ val(t) : Tτ

Γ ⊢ t : Tτ Γ, x : τ ⊢ t′ : Tτ ′

Γ ⊢ let x ⇐ t in t′ : Tτ ′

Note that thelet construct here should not be confused with that in PCF: inλComp ,
we bind the result of the termt to the variablex, but they are not of the same type —t
must be a computation.

Moggi also builds a categorical model for the computationalλ-calculus, using the
notion of monads [10]. Whereas categorical models of simplytypedλ-calculi such as
λ→ are usually cartesian closed categories (CCCs), a model forλComp requires addi-
tionally a strong monad(T, η, µ, t) be defined over the CCC. Consequently, a monadic
type is interpreted using the monadT : JTτK = T JτK, and each term inλComp has a
unique interpretation as a morphism in a CCC with the strong monad [10]. Semantics
of the two additional constructs can be given in full generality in a categorical setting
[10]: the denotations ofval construct andlet construct are defined by the follwoing
composites respectively:

JΓ ⊢ val(t) : TτK : JΓ K JΓ⊢t:τK
−−−−−→ JτK ηJτK

−−−→ T JτK,

JΓ ⊢ let x⇐ t1 in t2 : Tτ ′K : JΓ K 〈idJΓK,JΓ⊢t1:TτK〉
−−−−−−−−−−−→ JΓ K × T JτK tJΓK,JτK

−−−−−→ T JΓ K × JτK
TJΓ,x:τ⊢t2:Tτ ′K
−−−−−−−−−−→ TT Jτ ′K

µJτ′K
−−−→ T Jτ ′K.



In particular, the interpretation of terms in the computationalλ-calculus must satisfy
the following equations:

Jlet x ⇐ val(t1) in t2Kρ = Jt2[t1/x]Kρ, (1)

Jlet x2 ⇐ (let x1 ⇐ t1 in t2) in t3Kρ = Jlet x1 ⇐ t1 in let x2 ⇐ t2 in t3Kρ,(2)

Jlet x ⇐ t in val(x)Kρ = JtKρ. (3)

We shall focus on Moggi’s monads defined over the categorySet of sets and func-
tions. Figure 1 lists the definitions of some concrete monads: partial computations, ex-
ceptions, state transformers, continuations and non-determinism. We shall writeλPESCN

Comp

to refer toλComp where the monad is restricted to be one of these five monads.

Partial computation: JTτK = JτK ∪ {⊥}
Jval(t)Kρ = JtKρ

Jlet x ⇐ t1 in t2Kρ =



Jt2Kρ[x := Jt1Kρ], if Jt1Kρ 6= ⊥
⊥, if Jt1Kρ = ⊥

Exception: JTτK = JτK ∪ E

Jval(t)Kρ = JtKρ

Jlet x ⇐ t1 in t2Kρ =



Jt2Kρ[x := Jt1Kρ], if Jt1Kρ 6∈ E

Jt1Kρ, if Jt1Kρ ∈ E

State transformer: JTτK = (JτK × St)St

Jval(t)Kρ = λ s · (JtKρ, s)
Jlet x ⇐ t1 in t2Kρ = λ s · (Jt2Kρ[x := a1])s1,

wherea1 = π1((Jt1Kρ)s), s1 = π2((Jt2Kρ)s)

Continuation: JTτK = RRJτK

Jval(t)Kρ = λ kJτK→R · k(JtKρ)

Jlet x ⇐ t1 in t2Kρ = λ kJτ2K→R · (Jt1Kρ)k
′

wherek′ is a function:λvJτ1K · (Jt2Kρ[x := v])k
Non-determinism: JTτK = Pfin(JτK)

Jval(t)Kρ = {JtKρ}
Jlet x ⇐ t1 in t2Kρ =

S

a∈Jt1Kρ

Jt2Kρ[x := a]

Fig. 1.Concrete monads defined inSet

The computationalλ-calculus is strongly normalizing [1]. The reduction rulesin
λComp are calledβc-reduction rules in [1], which, apart from standardβ-reduction in
theλ-calculus, contains especially the following two rules forcomputations:

let x⇐ val(t1) in t2 →βc t2[t1/x], (4)

let x2 ⇐ (let x1 ⇐ t1 in t2) in t →βc let x1 ⇐ t1 in (let x2 ⇐ t2 in t).(5)

With respect to theβc rules, every term can be reduced to a term in theβc-normal form.
Considering also the followingη-equality rule for monadic types [1]:

let x⇐ t in t′[val(x)/x′] =η t′[t/x′], (6)



we can write every term of a monadic type in the followingβc-normalη-long form

let x1 ⇐ d1u11 · · ·u1k1
in · · ·let xn ⇐ dnun1 · · ·unkn

in val(u),

wheren = 0, 1, 2, . . ., everydi (1 ≤ i ≤ n) is either a constant or a variable,u and
uij (1 ≤ i ≤ n, 1 ≤ j ≤ kj) are allβc-normal terms orβc-normal-η-long terms (of
monadic types). In fact, the rules (4-6) just identify the equations (1-3) respectively.

Lemma 1. For every termt of typeTτ in λComp , there exists aβc-normal-η-long
term t′ such thatJt′Kρ = JtKρ, for every valid interpretationJ_Kρ (i.e., interpretations
satisfying the equations (1-3)).

Proof. Because the computationalλ-calculus is strongly normalizing, we consider the
βc-normal form of termt and prove it by the structural induction ont.

– If t is either a variable, a constant or an application, according to the equation (3):

JtKρ = Jlet x⇐ t in val(x)Kρ.

In particular, ift is an applicationt1t1, thent1 must be either a variable or a constant
sincet isβc-normal. Therefore, the termlet x⇐ t in val(x) is in theβc-normal-
η-long form.

– If t is a trivial computationval(t′), by induction there is aβc-normal-η-long term
t′′ such thatJt′Kρ = Jt′′Kρ, for every validρ, thenJval(t′)Kρ = Jval(t′′)Kρ as
well.

– If t is a sequential computationlet x⇐ t1 in t2, since it isβc-normal,t1 should
not be anyval or let term —t1 must be of the formdu1 · · ·un (n = 0, 1, 2, . . .)
with d either a variable or a constant. By induction, there is aβc-normal-η-long
termt′2 such thatJt2Kρ = Jt2Kρ, for every validρ, thenJtKρ = Jlet x ⇐ t′1 in t′2Kρ
and the latter is in theβc-normal-η-long form. ⊓⊔

3.2 Contextual equivalence forλComp

As argued in [3], the standard notion of contextual equivalence does not fit in the setting
of the computationalλ-calculus. In order to define contextual equivalence forλComp ,
we have to consider contextsC of typeTo (o is an observation type), not of typeo.
Indeed, contexts should be allowed to do some computations:if they were of typeo,
they could only return values. In particular, a contextC such thatx : Tτ ⊢ C : o is
derivable, meant to observe computations of typeτ , cannot observe anything, because
the typing rule for thelet construct only allows us to use computations to build other
computations, never values. Taking this into account, we get the following definition:

Definition 1 (Contextual equivalence forλComp). In λComp , two valuesa1, a2 ∈ JτK
arecontextually equivalent, written asa1 ≈τ a2, if and only if, for all observable types
o ∈ Obs and contextsC such thatx : τ ⊢ C : To is derivable,JCK[x := a1] =
JCK[x := a2]. Two closed termst1 and t2 of typeτ are contextually equivalent if and
only if Jt1K ≈τ Jt2K. We use the same notation

≈τ to denote the contextual equivalence for terms.



3.3 Logical relations forλComp

A uniform framework for defining logical relations relies onthe categorical notion of
subscones [9], and a natural extension of logical relationsable to deal with monadic
types was introduced in [2]. The construction consists in lifting the CCC structure and
the strong monad from the categorical model to the subscone.We reformulate this con-
struction in the categorySet. The subscone is the category whose objects are binary
relations(A,B,R ⊆ A × B) whereA andB are sets; and a morphism between
two objects(A,B,R ⊆ A × B) and (A′, B′, R′ ⊆ A′ × B′) is a pair of functions
(f : A → A′, g : B → B′) preserving relations, i.e.a R b ⇒ f(a) R′ g(b).

The lifting of the CCC structure gives rise to the standard logical relations given in
Section 2.2 and the lifting of the strong monad will give riseto relations for monadic
types. We writeT̃ for the lifting of the strong monadT . Given a relationR ⊆ A×B
and two computationsa ∈ TA andb ∈ TB, (a, b) ∈ T̃ (R) if and only if there exists
a computationc ∈ T (R) (i.e. c computes pairs inR) such thata = Tπ1(c) andb =
Tπ2(c). The standard definition of logical relation for the simply typedλ-calculus is
then extended with:

(c1, c2) ∈ RTτ ⇐⇒ (c1, c2) ∈ T̃ (Rτ ). (7)

This construction guarantees that Basic Lemma always holdsprovided that every con-
stant is related to itself [2]. A list of instantiations of the above definition in concrete
monads is also given in [2]. Figure 2 cites the relations for those monads defined in
Figure 1.

Partial computation: c1 RTτ c2 ⇔ c1 Rτ c2 or c1 = c2 = ⊥
Exception: c1 RTτ c2 ⇔ c1 Rτ c2 or c1 = c2 ∈ E

whereE is the set of exceptions
State transformer: c1 RTτ c2 ⇔ ∀s ∈ St . π1(c1s) Rτ π1(c2s) & π2(c1s) = π2(c2s)

whereSt is the set of states
Continuation: c1 RTτ c2 ⇔ c1(k1) = c2(k2) for everyk1, k2 such that

∀a1, a2. a1 Rτ a2 =⇒ k1(a1) = k2(a2)
Non-determinism: c1 RTτ c2 ⇔ (∀a1 ∈ c1. ∃a2 ∈ c2. a1 Rτ a2) &

(∀a2 ∈ c2. ∃a1 ∈ c1. a1 Rτ a2)

Fig. 2.Logical relations for concrete monads

We restrict our attention to logical relations(Rτ )τ type such that, for any observa-
tion typeo ∈ Obs, RTo is a partial equality. Such relations are calledobservationalin
the rest of the paper.

Note that we require partial identity onTo, not ono. But if we assume that denota-
tion of val(_), i.e., the unit operationη, is injective, then thatRTo is a partial equality
implies thatRo is a partial equality as well. Indeed, leta1 Ro a2, and by Basic Lemma,
Jval(x)K[x := a1] RTo Jval(x)K[x := a2], that is to sayηJoK(a1) = ηJoK(a2). By in-
jectivity of η, a1 = a2.



Theorem 1 (Soundness of logical relations inλComp). If (Rτ )τ type is an observa-
tional logical relation, thenRτ ⊆ ≈τ for every typeτ .

It is straightforward from the Basic Lemma.

3.4 Toward a proof on completeness of logical relations forλComp

Completeness of logical relations forλComp is much subtler than inλ→ due to the
introduction of monadic types. We were expecting to find a general proof following the
general construction defined in [2]. However, this turns outextremely difficult although
it might not be impossible with certain restrictions, on types for example. The difficulty
arises mainly from the different semantics for different forms of computations, which
actually do not ensure that equivalent programs in one monadare necessarily equivalent
in another. For instance, consider the following two programs inλComp :

let x⇐ t1 in let y ⇐ t2 in val(x),
let y ⇐ t2 in let x⇐ t1 in val(x),

where botht1 andt2 are closed term. We can conclude that they are equivalent in the
non-determinism monad — they return the same set of possibleresults oft1, no matter
what resultst2 produces, but this is not the case in, e.g., the exception monad whent1
andt2 throw different exceptions.

Being with such an obstacle, we shall switch our effort to case studies in Section 4
and we explore the completeness of logical relations for a list of common monads,
precisely, all the monads listed in Figure 1. But, let us sketch out here a general structure
for proving completeness of logical relations inλComp . In particular, our study is still
restricted to first-order types, which, inλComp , are defined by the following grammar:

τ1 ::= b | Tτ1 | b → τ1,

whereb ranges over the set of base types.
Similarly as in Proposition 1 in Section 2.2, we investigatecompleteness in a strong

sense: we aim at finding an observational logical relation(Rτ )τ type such that if ⊢
t1 : τ and ⊢ t2 : τ are derivable andt1 ≈τ t2, for any typeτ up to first order, then
Jt1K Rτ Jt2K. Or briefly,∼τ ⊆ Rτ , where∼τ is the relation defined in Section 2. As in
the proof of Proposition 1, the logical relation(Rτ )τ type will be induced byRb = ∼b,
for any base typeb. Then how to prove the completeness for an arbitrary monadT?

Note that we should also check that the logical relation(Rτ )τ type, induced by
Rb = ∼b, is observational, i.e., a partial equality onTo, for any observable typeo.
Consider any pair(a, b) ∈ RTo = T̃ (Ro). By definition of the lifted monad̃T , there
exists a computationc ∈ TRo such thata = Tπ1(c) andb = Tπ2(c). ButRo = ∼o ⊆
idJoK, hence the two projectionsπ1, π2 : Ro → JoK are the same function,π1 = π2, and
consequentlya = Tπ1(c) = Tπ2(c) = b. This proves thatRTo is a partial equality.

As usual, the proof of completeness would go by induction over τ , to show∼τ ⊆
Rτ for each first-order typeτ . Casesτ = b andτ = b → τ ′ go identically as inλ→.
The only difficult case isτ = Tτ ′, i.e., the induction step:

∼τ ⊆ Rτ =⇒ ∼Tτ ⊆ RTτ (8)



We did not find any general way to show (8) for an arbitrary monad. Instead, in the next
section we prove it by cases, for all the monads in Figure 1 except the non-determinism
monad. The non-determinism monad is an exceptional case where we do not have com-
pleteness for all first-order types but a subset of them. Thiswill be studied separately in
Section 4.3.

At the heart of the difficulty of showing (8), we find an issue ofdefinability at
monadic types in the set-theoretical model. We writedefτ for the subset of definable
elements inJτK, and we eventually show that the relation betweendefTτ anddefτ can
be shortly spelled-out:

defTτ ⊆ Tdefτ (9)

for all the monads we consider in this paper. This is a crucialargument for proving
completeness of logical relations for monadic types, but toshow (9), we need different
proofs for different monads. This is detailed in Section 4.1.

4 Completeness of logical relations for monadic types

4.1 Definability in the set-theoretical model ofλPESCN
Comp

As we have seen inλ→, definability is involved largely in the proof of completeness of
logical relations (for first-order types). This is also the case inλComp and it apparently
needs more concern due to the introduction of monadic types.

Despite we did not find a general proof for (9), it does hold forall the concrete
monads inλPESCN

Comp . To state it formally, let us first define a predicatePτ on elements
of JτK, by induction on types:

– Pb = defb, for every base typeb;
– PTτ = T (defτ ∩ Pτ );
– Pτ→τ ′ = {f ∈ Pτ→τ ′ | ∀a ∈ defτ , f(a) ∈ Pτ ′}.

We say that a constant c (of typeτ ) is logical if and only ifτ is a base type orJcK ∈ Pτ .
We then require thatλPESCN

Comp contains only logical constants. Note that this restriction
is valid because the predicatesPTτ andPτ→τ ′ depend only on definability at typeτ .
Some typical logical constants for monads inλPESCN

Comp are as follows:

– Partial computation: a constantΩτ of typeTτ , for everyτ . Ωτ denotes the non-
termination, soJΩτ K = ⊥.

– Exception: a constantraiseeτ of typeTτ for every typeτ and every exception
e ∈ E. raiseeτ does nothing but raises the exceptione, soJraiseeτ K = e.

– State transformer: a constantupdates of typeTunit for every states ∈ St , where
unit is the base type which contains only a dummy value∗.updates simply changes
the current state tos, so for anys′ ∈ St , JupdatesK(s′) = (∗, s).

– Continuation: a constantcallkτ of type τ → Tbool for everyτ and every con-
tinuationk ∈ RJτK. callkτ calls directly the continuationk — it behaves some-
how like “goto” command, so for anya ∈ JτK and any continuationk′ ∈ Rbool,q
callkτ

y
(a)(k′) = k(a).



– Non-determinism: a constant+τ of typeτ → τ → Tτ for every non-monadic type
τ . +τ takes two arguments and returns randomly one of them — it introduces the
non-determinism, so for anya1, a2 ∈ JτK, J+τ K(a1, a2) = {a1, a2}.

We assume in the rest of this paper that the above constants are present inλPESCN
Comp . 1

Note thatPτ being a predicate on elements ofJτK is equivalent to say thatPτ can
be seen as subset ofJτK, but in the case of monadic types,PTτ (i.e.,T (defτ ∩ Pτ )) is
not necessary a subset ofJTτK (i.e.,T JτK). Fortunately, we prove that all the monads in
λPESCN
Comp preserves inclusions, which ensures that the predicateP is well-defined:

Proposition 2. All the monads inλPESCN
Comp preserve inclusions:A ⊆ B ⇒ TA ⊆ TB.

Proof. We check it for every monad inλPESCN
Comp :

– Partial computation: according to the monad definition, ifA ⊆ B, then for every
c ∈ TA:

c ∈ TA ⇐⇒ c ∈ A or c = ⊥ =⇒ c ∈ B or c = ⊥ ⇐⇒ c ∈ TB.

– Exception: for every elementc ∈ TA:

c ∈ TA ⇐⇒ c ∈ A or c ∈ E =⇒ c ∈ B or c ∈ E ⇐⇒ c ∈ TB.

– State transformer: for everya ∈ TA:

c ∈ TA ⇐⇒ ∀s ∈ St . π1(cs) ∈ A =⇒ ∀s ∈ St . π1(cs) ∈ B ⇐⇒ c ∈ TB.

– Continuation: this is a special case because apparentlyTA = RRA

is not a subset of
TB = RRB

, since they contain functions that are defined on different domains, but
we shall consider here the functions coinciding on the smaller setA as equivalent.
We say that two functionsf1 andf2 defined on a domainB coincide onA (A ⊆ B),
written asf1|A = f2|A, if and only if for everyx ∈ A, f1(x) = f2(x). Then for
everyc ∈ TA:

∀k1, k2 ∈ RB . k1 = k2 =⇒ k1|A = k2|A =⇒ c(k1) = c(k2),

soc is also function fromRB to R, i.e.,c ∈ TB.
– Non-determinism: for everyc ∈ TA:

c ∈ TA ⇐⇒ ∀a ∈ c . a ∈ A =⇒ ∀a ∈ c . a ∈ B ⇐⇒ c ∈ TB. ⊓⊔

Introducing such a constraint on constants is mainly for proving (9). Let us figure
out the proof. Take an arbitrary elementc in defTτ . By definition, there exists a closed
termt of typeTτ such thatJtK = c. While it is not evident thatc ∈ Tdefτ , we are ex-
pecting to show thatJtK ∈ Tdefτ , by considering theβc-normal-η-long form oft, since

1 It is easy to check that each of these constants is related to itself, exceptcallkτ for continua-
tions. However, we still assume the presence ofcall

k
τ for the sake of proving completeness,

while we are not able to prove the soundness with it. Note thatTheorem 1 and Theorem 2 still
hold, but they are not speaking of the same language.



λComp is strongly normalizing, Take the partial computation monad as an example,
whereTdefτ = defτ ∪ {⊥}. Consider theβc-normal-η-long form oft:

let x1 ⇐ d1u11 · · ·u1k1
in · · ·let xn ⇐ dnun1 · · ·unkn

in val(u).

We shall make the induction onn. It is clear thatJtK ∈ Tdefτ whenn = 0. For
the induction step, we hope that the closed termd1u11 · · ·u1k1

(of typeTτ1) would
produce either⊥ (the non-termination), or a definable result (of typeτ1) so that we can
substitutex1 in the rest of the normal term with the result ofd1u11 · · ·u1k1

and make
use of induction hypothesis. The constraint on constants helps here: to ensure that after
the substitution, the resulted term is still in the proper form so that the induction would
go through.

The following lemma shows that for every computation termt, JtK ∈ Tdefτ if t is
in a particular form, which is a more general form ofβc-normal-η-long form.

Lemma 2. In λPESCN
Comp , JtK ∈ Tdefτ , for every closed computation termt (of typeTτ )

of the following form:

t ≡ let x1 ⇐ t1w11 · · ·w1k1
in · · · let xn ⇐ tnwn1 · · ·wnkn

in val(w),

wheren = 0, 1, 2, . . . andti (1 ≤ i ≤ n) is either a variable or a closed term such that
P(JtiK) holds, andw,wij (1 ≤ i ≤ n, 1 ≤ j ≤ ki) are validλPESCN

Comp terms.

Proof. We prove it by induction onn, for every monad:

– Partial computation (Tdefτ = defτ ∪ {⊥}): if n = 0, it is clear thatJtK ∈ Tdefτ .
When n > 0, becauseP(Jt1K) holds (t1 must be closed),Jt1w11 · · ·w1k1

K ∈
T (defτ1 ∩ Pτ1). If Jt1w11 · · ·w1k1

K = ⊥, then JtK = ⊥ ∈ Tdefτ ; otherwise,
assume thatJt′1K = Jt1w11 · · ·w1k1

K wheret′1 is a closed term of typeτ1 (assuming
thatt1w11 · · ·w1k1

is of typeTτ1). According to the definition ofP ,P(Jt′1K) holds.
Let t′ be another closed term:

t′ ≡ let x2 ⇐ t′2w
′
21 · · ·w

′
2k2

in · · · let xn ⇐ t′nw
′
n1 · · ·w

′
nkn

in val(w[t′1/x1]),

wheret′i (2 ≤ i ≤ n) is eithert′1 or ti, w′
ij ≡ wij [t

′
1/x1] (2 ≤ i ≤ n, 1 ≤ j ≤ ki).

By induction,Jt′K ∈ Tdefτ holds. Furthermore,

Jt′K = Jlet x2 ⇐ t2w21 · · ·w2k2
in · · ·

let xn ⇐ tnwn1 · · ·wnkn
in val(w)K[x1 := Jt′1K]

= Jlet x1 ⇐ t1w11 · · ·w1k1
in · · · let xn ⇐ tnwn1 · · ·wnkn

in val(w)K
= JtK,

henceJtK ∈ Tdefτ .
– Exception (Tdefτ = defτ ∪ E): if n = 0, clearly JtK ∈ Tdefτ . Whenn > 0,

becauseP(Jt1K) holds,Jt1w11 · · ·w1k1
K ∈ T (defτ1 ∩ Pτ1). If Jt1w11 · · ·w1k1

K ∈
E, thenJtK ∈ E ⊆ Tdefτ ; otherwise, exactly as in the case of partial computation,
build a termt′. Similarly, we prove thatJtK = Jt′K ∈ Tdefτ by induction.



– State transformer (Tdefτ = (defτ × St)St ): whenn = 0, for everys ∈ St ,
π1(JtKs) = JwK ∈ defτ henceJtK ∈ Tdefτ . Whenn > 0, for everys ∈ St ,
assume thatJts1K = π1(Jt1w11 · · ·w1k1

Ks) wheret′1 is a closed term of typeτ1
(assuming thatt1w11 · · ·w1k1

is of typeTτ1). According to the definition ofP ,
P(Jts1K) holds. Letts be another closed term:

ts ≡ let x2 ⇐ ts2w
s
21 · · ·w

s
2k2

in · · ·let xn ⇐ tsnw
s
n1 · · ·w

s
nkn

in val(w[ts1/x1]),

wheretsi (2 ≤ i ≤ n) is eitherts1 or ti, ws
ij ≡ wij [t

s
1/x1] (2 ≤ i ≤ n, 1 ≤ j ≤ ki).

By induction,JtsK ∈ Tdefτ holds. Furthermore, for everys ∈ St ,

JtKs = Jlet x1 ⇐ t1w11 · · ·w1k1
in · · ·let xn ⇐ tnwn1 · · ·wnkn

in val(w)Ks
= (Jlet x2 ⇐ t2w21 · · ·w2k2

in · · ·
let xn ⇐ tnwn1 · · ·wnkn

in val(w)K[x1 := Jts1K])s′
= JtsKs′,

wheres′ = π2(Jt1w11 · · ·w1k1
Ks). SinceJtsK ∈ Tdefτ for everys ∈ St ,π1(JtKs) =

π1(JtsKs′) ∈ defτ , henceJtK ∈ Tdefτ .
– Continuation (Tdefτ = RRdefτ

): we say that an elementc ∈ JTτK = RRJτK

is in
Tdefτ if and only if for every pair of continuationsk1, k2 ∈ RJτK,

k1|defτ = k2|defτ =⇒ c(k1) = c(k2).

If n = 0, JtK = λk.k(JwK) ∈ Tdefτ . Whenn > 0, according to the definition of
the continuation monad:JtK = λk · Jt1w11 · · ·wnkn

K(k′), where

k′ = λa·(Jlet x2 ⇐ t2w21 · · ·w2k2
in · · · let xn ⇐ tnwn1 · · ·wnkn

in val(w)K[x1 := a])k.

For every continuationsk1, k2 ∈ RJτK such thatk1|defτ = k2|defτ let

k′i = λa·(Jlet x2 ⇐ t2w21 · · ·w2k2
in · · · let xn ⇐ tnwn1 · · ·wnkn

in val(w)K[x1 := a])ki,

i = 1, 2. BecauseJt1w11 · · ·w1k1
K ∈ T (Pτ1∩defτ1), if we can provek′1|Pτ1

∩defτ1
=

k′2|Pτ1
∩defτ1

, which impliesJtK(k1) = JtK(k2), we can concludeJtK ∈ Tdefτ . For
everya ∈ Pτ1 ∩defτ1 , let Jta1K = a whereta1 is a closed term. Define another closed
termta:

ta ≡ let x2 ⇐ ta2w
a
21 · · ·w

a
2k2

in · · · let xn ⇐ tanw
a
n1 · · ·w

a
nkn

in val(w[ta1/x1]),

wheretai (2 ≤ i ≤ n) is eitherta1 or ti, wa
ij ≡ wij [t

a
1/x1] (2 ≤ i ≤ n, 1 ≤

j ≤ ki). By induction,JtaK ∈ Tdefτ , sok′1(a) = JtaKk1 = JtaKk2 = k′2(a), i.e.,
k′1|Pτ1

∩defτ1
= k′2|Pτ1

∩defτ1
.

– Non-determinism (Tdefτ = Pfin(defτ )): whenn = 0, JtK = {JwK} ∈ Tdefτ .
Whenn > 0, for everya ∈ Jt1w11 · · ·w1k1

K, assume thatJta1K = a wheret′1 is a
closed term of typeτ1 (assuming thatt1w11 · · ·w1k1

is of typeTτ1). According to
the definition ofP , P(Jta1K) holds. Letta be another closed term:

ta ≡ let x2 ⇐ ta2w
a
21 · · ·w

a
2k2

in · · · let xn ⇐ tanw
a
n1 · · ·w

a
nkn

in val(w[ta1/x1]),



wheretai (2 ≤ i ≤ n) is eitherta1 or ti, wa
ij ≡ wij [t

a
1/x1] (2 ≤ i ≤ n, 1 ≤ j ≤ ki).

By induction,JtaK ∈ Tdefτ holds. Furthermore,

JtK = Jlet x1 ⇐ t1w11 · · ·w1k1
in · · ·let xn ⇐ tnwn1 · · ·wnkn

in val(w)K
=

⋃

a∈Jt1K

Jlet x2 ⇐ t2w21 · · ·w2k2
in · · ·

let xn ⇐ tnwn1 · · ·wnkn
in val(w)K[x1 := a]

=
⋃

a∈Jt1K

JtaK.

BecauseJtaK ∈ Tdefτ holds for everya ∈ Jt1w11 · · ·w1k1
K, JtK ∈ Tdefτ . ⊓⊔

From the above lemma, we conclude immediately that for everyclosedβc-normal-
η-long computation termt in λPESCN

Comp with logical constants,JtK ⊆ Tdefτ .

Proposition 3. defTτ ⊆ Tdefτ holds in the set-theoretical model ofλPESCN
Comp with

logical constants.

Proof. It follows from Lemma 2 by considering theβc-normal-η-long terms that define
elements inJTτK sinceλComp is strongly normalizing. ⊓⊔

4.2 Completeness of logical relations inλPESC
Comp for first-order types

We prove (8) in this section for the partial computation monad, the exception monad,
the state monad and the continuation monad. We writeλPESC

Comp for λComp where the
monad is restricted to one of these four monads.

Proofs depend typically on the particular semantics of every form of computation,
but a common technique is used frequently: given two definable but non-related ele-
ments ofJTτK, one can find a context to distinguish the programs (of typeTτ ) that
define the two given elements, and such a context is usually built based on another
context that can distinguish programs of typeτ .

Lemma 3. Let (Rτ )τ type be a logical relation inλPESC
Comp with only logical constants.

∼τ ⊆ Rτ =⇒ ∼Tτ ⊆ RTτ holds for every typeτ .

Proof. Take two arbitrary elementsc1, c2 ∈ JTτK such that(c1, c2) 6∈ R
Tτ , we prove

thatc1 6∼Tτ c2 for every monad inλPESC
Comp :

– Partial computation: the fact(c1, c2) 6∈ R
Tτ amounts to the following two cases:

• c1, c2 ∈ JτK but (c1, c2) 6∈ Rτ , thenc1 6∼τ c2. If one of these two values is
not definable at typeτ , by Proposition 3, it is not definable at typeTτ either.
If both values are definable at typeτ but they are not contextually equivalent,
then there is a contextx : τ ⊢ C : To such thatJCK[x := c1] 6= JCK[x := c2].
Thus, the contexty : Tτ ⊢ let x ⇐ y in C : To can distinguishc1 andc2 (as
two values of typeTτ ).

• c1 ∈ JτK and c2 = ⊥ (or symmetrically,c1 = ⊥ and c2 ∈ JτK), then the
contextlet x⇐ y in val(true) can be used to distinguish them.

c1 6∼Tτ c2 in both cases.
– Exception: the fact(c1, c2) 6∈ R

Tτ amounts to three cases:



• c1, c2 ∈ JτK but (c1, c2) 6∈ Rτ , thenc1 6∼τ c2. Suppose both values are defin-
able at typeτ , otherwise by Proposition 3, they must not be definable at type
Tτ . Similar as in the case of partial computation we can build a context that
distinguishesc1 andc2 as values of typeTτ , from the context that distinguishes
c1 andc2 as values of typeτ .

• c1 ∈ JτK, c2 ∈ E. Consider the following context:

y : Tτ ⊢ let x⇐ y in val(true) : Tbool.

Wheny is substituted byc1 andc2, the context evaluates to different values,
namely, a boolean and an exception.

• c1, c2 ∈ E butc1 6= c2. Try the same context as in the second case, which will
evaluate to two different exceptions that can be distinguished.

c1 6∼Tτ c2 in all the three cases.
– State transformer: because(c1, c2) 6∈ RTτ , there exists somes0 ∈ St such that

• either(π1(c1s0), π1(c2s0)) 6∈ Rτ . Then by inductionπ1(c1s0) 6∼τ π1(c2s0).
If π1(cis0) (i = 1, 2) is not definable, then by Proposition 3,ci is not definable
either. If bothπ1(c1s0) andπ1(c2s0) are definable, butπ1(c1s0) 6≈τ π1(c2s0),
then there is a contextx : τ ⊢ C : To such thatJCK[x := π1(c1s0)] 6= JCK[x :=
π1(c2s0)], i.e., for some states′0 ∈ St ,

JCK[x := π1(c1s0)](s
′
0) 6= JCK[x := π1(c1s0)](s

′
0).

Now we can use the following context:

y : Tτ ⊢ let x⇐ y in let z ⇐ updates′
0

in C : To,

Let fi =
r
let x⇐ y in let z ⇐ updates′

0

in C

z
[y := ci], then for every

s ∈ St ,

fi(s) =
r
let z ⇐ updates′

0

in C

z
[x := π1(cis)](π2(cis))

= JCK[x := π1(cis)](s
′
0), (i = 1, 2).

f1 6= f2, because when applied to the states0, they will return two different
pairs, so the above context can distinguish the two valuesc1 andc2;

• or π2(c1s0) 6= π2(c2s0). we use the context

y : Tτ ⊢ let x⇐ y in val(true) : Tbool,

then Jlet x⇐ y in val(true)K[y := ci] = λs.(true, π2(cis)) (i = 1, 2).
These two functions are not equal since they return different results when ap-
plied to the states0.

In both cases,c1 6∼Tτ c2.
– Continuation: first say that two continuationsk1, k2 ∈ RJτK areR-related, if and

only if for everya1, a2 ∈ JτK, a1 Rτ a2 =⇒ k1(a1) = k2(a2). The fact(c1, c2) 6∈



RTτ means that there are twoR-related continuationsk1, k2 such thatc1(k1) 6=
c2(k2). Because∼τ⊆ Rτ , for every definable valuea ∈ defτ , clearly,

a ∼τ a =⇒ a1 R a2 =⇒ k1(a1) = k2(a2),

sok1 andk2 coincide overdefτ . Suppose that bothc1 andc2 are definable, then
by Proposition 3,c1(k1) = c1(k2) andc2(k1) = c2(k2), hencec1(k1) 6= c2(k1).
Consider the context

y : Tτ ⊢ let x⇐ y in callk1

τ (x) : Tbool.

For everyk ∈ RJboolK,

q
let x⇐ y in callk1

τ (x)
y
[y := ci](k) (i = 1, 2),

= ci(λ a · (
q
callk1

τ (x)
y
[x := a])k)

= ci(λ a · k1(a)) = ci(k1).

Sincec1(k1) 6= c2(k1), this context distinguishes the two computations, hence
c1 6∼Tτ c2. ⊓⊔

Theorem 2. In λPESC
Comp , if all constants are logical and in particular, if the following

constants are present

– updates for the state transformer monad;
– callkτ for the continuation monad,

then logical relations are complete up to first-order types,in the strong sense that there
exists an observational logical relation(Rτ )τ type such that for any closed termst1, t2
of any typeτ1 up to first order, ift1 ≈τ1 t2, thenJt1K Rτ1 Jt2K.

Proof. Take the logical relation(Rτ )τ type induced byRb =∼b, for any base typeb.
We prove by induction on types that∼τ⊆ Rτ for any first-order typeτ . In particular,
the induction step∼τ ⊆ Rτ =⇒∼Tτ ;⊆ RTτ is shown by Lemma 3. ⊓⊔

4.3 Completeness of logical relations for the non-determinism monad

The non-determinism monad is an interesting case: the completeness of logical relations
for this monad does not hold for all first-order types! To state it, consider the following
two programs of a first-order type that break the completeness of logical relations:

⊢ val(λx.(true+bool false)) : T(bool → Tbool),
⊢ λx.val(true) +bool→Tbool λx.(true+bool false) : T(bool → Tbool).

Recall the logical constant+τ of type τ → τ → Tτ : J+τ K(a1, a2) = {a1, a2} for
everya1, a2 ∈ JτK. The two programs are contextually equivalent: what contexts can
do is to apply the functions to some arguments and observe theresults. But no matter
how many time we apply these two functions, we always get the same set of possible



values ({true, false}), so there is no way to distinguish them with a context. Recall
the logical relation for non-determinism monad in Figure 2:

c1 RTτ c2 ⇔ (∀a1 ∈ c1. ∃a2 ∈ c2. a1 Rτ a2) & (∀a2 ∈ c2. ∃a1 ∈ c1. a1 Rτ a2).

Clearly the denotations of the above two programs are not related by that relation be-
cause the functionJλx.val(true)K from the second program is not related to the func-
tion in the first.

However, if we assume that for every non-observablebase typeb, there is an equality
test constanttestb : b → b → bool (clearly,P(testb) holds), logical relations for the
non-determinism monad are then complete for a set ofweak first-order types:

τ1w ::= b | Tb | b → τ1w.

Compared to all types up to first order, weak first-order typesdo not contain monadic
types of functions, so it immediately excludes the two programs in the above counterex-
ample.

Theorem 3. Logical relations for the non-determinism monad are complete up to weak
first-order types. in the strong sense that there exists an observational logical relation
(Rτ )τ type such that for any closed termst1, t2 of a weak first-order typeτ1w, if t1 ≈τ1

w

t2, thenJt1K Rτ1
w

Jt2K.

Proof. Take the logical relationR induced byRb =∼b, for any base typeb. We prove
by induction on types that∼τ1

w
⊆ R

τ1
w

for any weak first-order typeτ1w.

Casesb andb → τ1w go identically as in standard typed lambda-calculi. For monadic
typesTb, suppose that(c1, c2) 6∈ RTb, which means either there is a value inc1 such
that no value ofc2 is related to it, or there is such a value inc2. We assume that every
value inc1 andc2 is definable (otherwise it is obvious thatc1 6∼Tb c2 because at least
one of them is not definable, according to Proposition 3). Suppose there is a valuea ∈ c1
such that no value inc2 is related to it, anda can be defined by a closed termt of type
b. Then the following context can distinguishc1 andc2:

x : Tτ ⊢ let y ⇐ x in testb(y, t) : Tbool

since every value inc2 is not contextually equivalent toa, hence not equal toa. �

Now let state and label be base types such thatlabel is an observation type,
whereasstate is not. Using non-determinism monad, we can define labeled transition
systems as elements ofJstate → label → TstateK, with states inJstateK and labels
in JlabelK, as functions mapping statesa and labelsl to the set of statesb such that

a
l

// b . The logical relation at typestate → label → Tstate is given by [2]:

(f1, f2) ∈ Rstate→label→Tstate ⇐⇒
∀a1, a2, l1, l2 · (a1, a2) ∈ Rstate & (l1, l2) ∈ Rlabel =⇒

(∀b1 ∈ f1(a1, l1) · ∃b2 ∈ f2(a2, l2) · (b1, b2) ∈ Rstate)
& (∀b2 ∈ f2(a2, l2) · ∃b1 ∈ f1(a1, l1) · (b1, b2) ∈ Rstate)



In caseRlabel is equality,f1 andf2 are logically related if and only ifRstate is astrong
bisimulationbetween the labeled transition systemsf1 andf2.

Sometimes we explicitly specify an initial state for certain labeled transition system.
In this case, the encoding of the labeled transition system in the nondeterminism monad
is a pair(q, f) of Jstate× (state → label → Tstate)K, whereq is the initial state and
f is the transition relation as defined above. Then(q1, f1) and (q2, f2) are logically
related if and only if they are strongly bisimular, i.e.,Rstate is a strong bisimulation
between the two labeled transition systems andq1Rstateq2.

Corollary 1 (Soundness of strong bisimulation).Letf1 andf2 be transition systems.
If there exists a strong bisimulation betweenf1 andf2, thenf1 andf2 are contextually
equivalent.

Proof. There exists a strong bisimulation betweenf1 andf2, thereforef1 andf2 are
logically related. By Theorem 1,f1 andf2 are thus contextually equivalent. �

In order to prove completeness, we need to assume thatlabel has nojunk, in the
sense that every value ofJlabelK is definable.

Corollary 2 (Completeness of strong bisimulation).Let f1 andf2 be transition sys-
tems which are definable. Iff1 and f2 are contextually equivalent andlabel has no
junk, then there exists a strong bisimulation betweenf1 andf2.

Proof. Let R be the logical relation given by Theorem 3.f1 andf2 are definable and
contextually equivalent, sof1 Rstate→label→Tstate f2. Moreover, becauselabel has no
junk, Rlabel is equality. Rstate is thus a strong bisimulation betweenf1 andf2. ⊓⊔

5 Conclusion

The work presented in this paper is a natural continuation ofthe authors’ previous
work [2,3]. In [2], we extend [9] and derive logical relations for monadic types which
are sound in the sense that the Basic Lemma still holds. In [3], we study contextual
equivalence in a specific version of the computationalλ-calculus with cryptographic
primitives and we show that lax logical relations (the categorical generalization of log-
ical relations [14]) derived using the same construction iscomplete. Then in this paper,
we explore the completeness of logical relations for the computationalλ-calculus and
we show that they are complete at first-order types, for a listof common monads: par-
tial computations, exceptions, state transformers and continuations, while in the case
of continuation, the completeness depends on a natural constantcall, with which we
cannot show the soundness.

Pitts and Stark have defined operationally based logical relations to characterize the
contextual equivalence in a language with local store [13].This work can be traced back
to their early work on the nu-calculus [12] which can be translated in a special version of
the computationalλ-calculus and be modeled using the dynamic name creation monad
[17]. Logical relations for this monad are derived in [19] using the construction from
[2]. It is also shown in [19] that such derived logical relations are equivalent to Pitts and
Stark’s operational logical relations up to second-order types.



An exceptional case of our completeness result is the non-determinism monad,
where logical relations are not complete for all first-ordertypes, but a subset of them.
We effectively show this by providing a counter-example that breaks the completeness
at first-order types. This is indeed an interesting case. A more comprehensive study on
this monad can be found in [4], where Jeffrey defines a denotational model for the com-
putationalλ-calculus specialized in non-determinism and proves that this model is fully
abstract for may-testing. The relation between our notion of contextual equivalence and
the may-testing equivalence remains to be clarified.

Recently, Lindley and Stark introduce the syntactic⊤⊤-lifting for the computa-
tional λ-calculus and prove the strong normalization [7]. Katsumata then instantiates
their liftings in Set [5]. The ⊤⊤-lifting of strong monads is an essentially different
approach from that in [2]. It would be interesting to establish a formal relationship be-
tween these two approaches, and to look for a general proof ofcompleteness using the
⊤⊤-lifting.
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