
Logical Methods in Computer Science
Vol. 4 (3:10) 2008, pp. 1–31
www.lmcs-online.org

Submitted Sep. 25, 2007
Published Sep. 20, 2008

PROVING NONINTERFERENCE BY A FULLY COMPLETE

TRANSLATION TO THE SIMPLY TYPED λ-CALCULUS ∗

NAOKATA SHIKUMA AND ATSUSHI IGARASHI

Graduate School of Informatics, Kyoto University, Kyoto 606-8501 Japan
e-mail address: {naokata,igarashi}@kuis.kyoto-u.ac.jp

Abstract. Tse and Zdancewic have formalized the notion of noninterference for Abadi
et al.’s DCC in terms of logical relations and given a proof of noninterference by reduction
to parametricity of System F. Unfortunately, their proof contains errors in a key lemma
that their translation from DCC to System F preserves the logical relations defined for
both calculi. In fact, we have found a counterexample for it. In this article, instead of
DCC, we prove noninterference for sealing calculus, a new variant of DCC, by reduction
to the basic lemma of a logical relation for the simply typed λ-calculus, using a fully
complete translation to the simply typed λ-calculus. Full completeness plays an important
role in showing preservation of the two logical relations through the translation. Also, we
investigate relationship among sealing calculus, DCC, and an extension of DCC by Tse
and Zdancewic and show that the first and the last of the three are equivalent.

1. Introduction

Background. Dependency analysis is a family of static program analyses to trace depen-
dencies between inputs and outputs of a given program. For example, information flow
analysis [3], binding-time analysis [8], and call tracking [20] are its instances. One of the
most important correctness criteria of the dependency analysis is called noninterference [5],
which roughly means that, for any pair of program inputs that are equivalent from the
viewpoint of an observer at some dependency level (e.g., security level, binding-time), the
outputs are also equivalent for the observer. Various techniques for type-based dependency
analyses have been proposed, especially, in the context of language-based security [18].

Abadi et al. proposed a unifying framework called dependency core calculus (DCC)
[1] for type-based dependency analyses for higher-order functional languages, and gave it
a denotational model whose idea comes from parametricity [17, 24] of System F [16, 4]
through other information flow analyses [7, 11]. They showed noninterference for several
type systems of concrete dependency analyses by embedding them into DCC.

1998 ACM Subject Classification: D.3.1, F.3.2, F.3.3.
Key words and phrases: Dependency, Information flow, Logical relations, Noninterference, Security, Type

systems.
∗ An earlier version of the paper has appeared in the Proceedings of the 11th Annual Asian Computing

Science Conference (ASIAN’06), Springer-Verlag LNCS 4435, pp. 302–316, 2006.

LOGICAL METHODS
l IN COMPUTER SCIENCE DOI:10.2168/LMCS-4 (3:10) 2008

c© N. Shikuma and A. Igarashi
CC© Creative Commons

http://creativecommons.org/about/licenses


2 N. SHIKUMA AND A. IGARASHI

Recently, Tse and Zdancewic [21, 22, 23] studied the relationship between DCC and
System F. First, they formalized the noninterference property for recursion-free DCC by
using a syntactic logical relation [9]—a family of type-indexed relations, defined by induc-
tion on types, over programs—as the equivalence relations for inputs and outputs, thereby
generalizing the notion of noninterference to higher-order inputs and outputs. Then, they
gave a proof of noninterference by reducing it to the parametricity theorem, which was also
formalized in terms of syntactic logical relations, of System F. Their technical development
is summarized as follows:

(1) Define a translation F from DCC to System F;
(2) Prove, by induction on the structure of types, that the translation is both sound

and complete—that is, it preserves the logical relations in the sense that

e1 ≈D e2 : t ⇐⇒ F(e1) ≈F F(e2) : F(t)

where t is a DCC type, and ≈D and ≈F represent the logical relations for DCC and
System F, respectively; and

(3) Prove noninterference by reduction to the parametricity theorem of System F, using
the sound and complete translation above.

Unfortunately, in the second step, their proof [21, 22, 23] contains an error1, which we
will briefly explain here. Note first that, for function types t1 → t2, the logical relations are
defined by: e1 ≈x e2 : t1 → t2 if and only if e1 e′1 ≈x e2 e′2 : t2 for any e′1 ≈x e′2 : t1 (x stands
for either D or F ) and that the type translation is homomorphic for function types, namely
F(t1 → t2) = F(t1) → F(t2). Then, consider the case where t is a function type t1 → t2. To
show the left-to-right direction, we must show that F(e1)M1 ≈F F(e2)M2 : F(t2) for any
M1 ≈F M2 : F(t1), from the assumption e1 ≈D e2 : t1 → t2, but we get stuck because there
is no applicable induction hypothesis. If there existed a DCC term e such that F(e) = M
for any System F term M of type F(t)—in this case, we say a translation is full [6]—
then M1 and M2 would be of the forms F(e′1) and F(e′2), making it possible to apply an
induction hypothesis, and the whole proof would go through. Their translation, however,
turns out not to be full; we have actually found a counterexample for the preservation of
the equivalence from the failure of the fullness (see Section 6 for more details). So, although
interesting, this indirect proof method fails at least for the combination of DCC and System
F. Note that the noninterference property itself could be proved directly by induction on
DCC typing.

Our Contributions. In this paper, we prove noninterference by Tse and Zdancewic’s method
in a slightly different setting: In order to obtain a fully complete translation, we change
the source language to a richer one, what we call Sealing Calculus (λ[ ]), and use a simpler
target language, namely the simply typed λ-calculus λ→. Then, the basic lemma for logical
relations of λ→ is used in place of the parametricity theorem.

λ[ ] is a simply typed λ-calculus with the notion of sealing and a simplification of a
security calculus which Tse and Zdancewic proposed as an extension of DCC (we call it

DCCpc throughout this paper) [21, 22, 23]. A λ[ ] term [e]ℓ stands for sealing e with a level
ℓ, which is a degree of confidentiality of the sealed data. The sealed data can be extracted
by unsealing eℓ. For example, let v a sealed boolean value, then ([v]ℓ)

ℓ is evaluated to v.
We control unsealing operations by a type system so that only users with relevant authority

1The latest version [21] was submitted and accepted for publication, but, due to this flaw, has not been
published yet. The authors are fixing the problem (personal communication with the authors).



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 3

can unseal. In the type system, e.g., we assign a sealing type [bool]ℓ to [v]ℓ for any user,
but, ([v]ℓ)

ℓ has type bool only for authorized users. To take such a notion of “authorized
users” into account, a type judgment is augmented with information about authority.

Then, we define a translation of λ[ ] to λ→ in the same way as Tse–Zdancewic’s transla-
tion of DCC [21, 22, 23]: we encode [v]ℓ and its type [bool]ℓ by λ-abstraction λk :αℓ. v and
function type αℓ → bool, respectively, where αℓ is a type variable. Intuitively, a term K of
type αℓ, if exists, will be a key of unsealing, that is, we can apply λk :αℓ. v to K and get the
sealed value v. The existence of such a typable term K of αℓ in λ→ corresponds to a user’s
authority to unseal with ℓ in λ[ ]. Our translation is full and, hence, there is no problem to
prove noninterference property of λ[ ] under Tse–Zdancewic’s scenario described above.

Our main technical contributions can be summarized as follows:

• Development of a sound and fully complete translation from λ[ ] to λ→;
• A proof of the noninterference theorem of λ[ ] by reduction to the basic lemma of

λ→; and
• A proof of equivalence between λ[ ] and DCCpc.

As for DCC, noninterference can be proved directly by straightforward induction in a man-
ner quite similar to the basic lemma of λ→. So, the main interest would not be in the
noninterference property itself but, rather, in how semantics of different calculi can be re-
lated with each other by translation. The existence of a fully complete translation means
that λ[ ] provides syntax rich enough to express every denotation in the model (that is,

λ→). The translation is also fully abstract, as our logical relation for λ[ ] coincides with its
contextual equivalence. Also, comparing Tse–Zdancewic’s translation of DCC with ours,
we have found and show that, in spite of simplification, λ[ ] is actually equivalent to DCCpc

mentioned above. This result indicates that both calculi are really improvements over DCC.
This article is an extended version of our previous paper [19]. In addition to giving

detailed proofs, we have extended the earlier version of λ[ ] by introducing ordering on
levels, as DCC or DCCpc, making it easier to compare λ[ ] with them.

Structure of the Paper. The rest of the paper is organized as follows. Section 2 introduces
λ[ ] with its syntax, type system, reduction, and logical relations and then the statement of
the noninterference theorem. In Sections 3 and 4 we introduce λ→ and define a translation
from λ[ ] to λ→ and its inverse. In Section 5, we complete our proof of noninterference by
reducing it to the basic lemma of logical relations for λ→. Section 6 explains why Tse and
Zdancewic’s translation from DCC to System F is neither full nor sound, introduces their
extension DCCpc, which recovers fullness, and shows that λ[ ] and DCCpc are equivalent.
Finally, Section 7 gives concluding remarks.

2. Sealing Calculus

In this section, we define λ[ ], which is the simply typed λ-calculus with sealing.
First, we will introduce two kinds of levels: data levels and observer levels. Intuitively,

a data level represents a degree of confidentiality of data, while an observer level represents
a capability of an observer (e.g., a user or a process) to access data. The observer can access
only data whose data level ℓ is lower than (i.e., inside of the range of) his or her observer
level π. Moreover, he or she can just obtain information depending on such data.

Then, we will define the terms, type systems, and reduction semantics of λ[ ] and show
some basic properties. As mentioned in the previous section, we write [e]ℓ for sealing a



4 N. SHIKUMA AND A. IGARASHI

λ[ ] term e with a data level ℓ. The sealed value can be extracted by unsealing eℓ, whose
result must not be leaked to any observer whose observer level is not higher than ℓ. We
control such dependency by the type system. In this system, information on the data level
ℓ used for sealing is attached to types of sealing [t]ℓ; furthermore, type judgments, written
Γ ; π − e : t, are augmented by an observer level π, which is also called a protection

context elsewhere [22, 23, 21], as well as by a typing context Γ, which is a (finite) mapping
from variables to types. This judgment means that the value of e has type t as usual and,
moreover, can be leaked to (any observer at) an observer level higher than π.

Finally, we will formalize equivalences for λ[ ] and give the formal statement of noninter-
ference. The equivalences are indexed by observer levels. In the definition, any two values
sealed at the same data level will always be considered equal, or indistinguishable, unless
the observer level is higher than the data level; and then the noninterference amounts to
saying that, given inputs equal at a given observer level, a typable program yields equal
outputs (at the same level). So, in other words, an observer level reflects how much power
one has to distinguish the extensional behavior of programs by investigating the contents
of (sealed) values returned by the programs.

2.1. Syntax. Let (L,⊑) be a poset where L is a finite set of data levels, ranged over by ℓ,
and ⊑ is a partial order over L. The metavariable π ranges over observer levels, which are
finite subsets of data levels. We will often omit the qualifications “data” and “observer”
for levels unless there is no confusion. Observer levels are pre-ordered as follows: π1 ⊑ π2

if and only if, for any ℓ1 ∈ π1, there exists ℓ2 ∈ π2 such that ℓ1 ⊑ ℓ2. We also abbreviate
{ℓ} ⊑ π to ℓ ⊑ π.

Remark 2.1. The notions of authorities and levels in the early version of this article [19]
correspond to those of data and observer levels here. A main difference is that authorities
were not given an order but data levels are partially ordered as in DCC. We have changed
them to follow the standard terminology but also introduce an explicit distinction between
two kinds of levels—those of data and those of observers.

Remark 2.2. We could unify data and observer levels and use a lattice, which is more
standard in security calculi [1, 7], to define λ[ ], just as in (precisely speaking, an earlier
version [22, 23] of) Tse and Zdancewic’s extension of DCC. Nevertheless, we adopt a poset
for data levels and the pre-ordered set induced from it for observer levels, because it would
be rather complicated (and also tedious) to translate such a variant into λ→. Note that the
observer levels can be viewed as a lattice by identifying any two elements that are greater
than each other.

Then, the types of λ[ ] are defined as follows.

Definition 2.3 (Types). The set of types, ranged over by t, t′, t1, t2, . . . , is defined as
follows:

t ::= unit | t → t | t × t | t + t | [t]ℓ
We call [t]ℓ a sealing type.

We define the terms of λ[ ] below. The metavariables x, y, and z (possibly with sub-
scripts) range over the denumerable set of variables.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 5

Definition 2.4 (Terms). The set of terms, ranged over by e, e′, e1, e2, . . . , is defined as
follows:

e ::= x | () | λx :t. e | e e | 〈e, e〉 | π1(e) | π2(e) | ι1(e) | ι2(e)

| (case eof ι1(x1).e | ι2(x2).e) | [e]ℓ | eℓ

Terms of λ[ ] include variable, the unit value, λ-abstraction, application, pairing, pro-
jection, injection, and case analysis. As usual, x is bound in e of λx :t. e and x1 and x2

are bound in e1 and e2 of (case e0 of ι1(x1).e1 | ι2(x2).e2), respectively. We say, for [e]ℓ, e
is sealed at ℓ, and call [e]ℓ and eℓ a sealing term and an unsealing term, respectively. In
this paper, α-conversions are defined in a customary manner and implicit α-conversions are
assumed to make all the bound variables distinct from other (bound and free) variables.

2.2. Type System. As mentioned above, the form of type judgment of λ[ ] is Γ ; π − e : t.
This judgment is read as “e is given type t at observer level π under context Γ.” The
intuition is that the computation of e depends on only data levels lower than π, and so the
information on its value can be leaked only to an observer level π′, which is higher than π.

The typing rules of λ[ ] are given as follows:

x : t ∈ Γ

Γ ; π − x : t
(ST-Var)

Γ, x : t1 ; π − e : t2

Γ ; π − λx :t1. e : t1 → t2
(ST-Abs)

Γ ; π − e : t1 → t2 Γ ; π − e′ : t1

Γ ; π − e e′ : t2
(ST-App)

Γ ; π − e1 : t1 Γ ; π − e2 : t2

Γ ; π − 〈e1, e2〉 : t1 × t2
(ST-Pair)

Γ ; π − e : t1 × t2 i ∈ {1, 2}

Γ ; π − πi(e) : ti
(ST-Proj)

Γ ; π − e : ti i ∈ {1, 2}

Γ ; π − ιi(e) : t1 + t2
(ST-Inj)

Γ ; π − e : t1 + t2 Γ, x1 : t1 ; π − e1 : t Γ, x2 : t2 ; π − e2 : t

Γ ; π − (case eof ι1(x1).e1 | ι2(x2).e2) : t
(ST-Case)

Γ ; π ∪ {ℓ} − e : t

Γ ; π − [e]ℓ : [t]ℓ
(ST-Seal)

Γ ; π − e : [t]ℓ ℓ ⊑ π

Γ ; π − eℓ : t
(ST-Unseal)



6 N. SHIKUMA AND A. IGARASHI

All the rules but the last two are straightforward. The rule (ST-Seal) for sealing means
that, by sealing with ℓ, it is legal to leak [e]ℓ to an observer level which is not higher
than ℓ: at such an observer level, however, e cannot be unsealed, as is shown in the rule
(ST-Unseal) for unsealing.

Example 2.5. The following judgment

· ; π −λx : [t1 + t2]ℓ1 . [(case xℓ1 of ι1(x1).ι1([x1]ℓ3) | ι2(x2).ι2([x2]ℓ3))]ℓ2

: [t1 + t2]ℓ1 → [[t1]ℓ3 + [t2]ℓ3 ]ℓ2

is derivable if and only if ℓ1 ⊑ π ∪ {ℓ2}, which is required at unsealing x of [t1 + t2]ℓ1 with
ℓ1—the observer level there is π ∪ {ℓ2} and must be higher than the data level ℓ1.

The type constructor [·]ℓ is very similar to the (indexed) monadic type constructor Tℓ

in DCC [1]. In fact, the logical relations we will define for λ[ ] are essentially the same as

those defined for DCC and a main idea of the translation from λ[ ] to λ→ is also the same as
that from DCC to System F [21, 22, 23]. Nevertheless, we have chosen a different symbol

as the monadic bind construct is no longer used in λ[ ] and, as a result, the type system
is fairly different from DCC. We will give a more detailed comparison with DCC (and its
extension [21, 22, 23]) in Section 6.

2.3. Reduction. The reduction relation for λ[ ] is written e −→ e′, which expresses that e
is reduced to e′ by applying one of the following rules to a subterm of e.

(λx :t. e1) e2 −→ [e2/x]e1

πi(〈e1, e2〉) −→ ei

(case ιi(e)of ι1(x1).e1 | ι2(x2).e2) −→ [e/xi]ei

([e]ℓ)
ℓ −→ e

We write [e/x] for a capture-avoiding substitution of e for the free occurrences of variable
x. All rules are straightforward. The last rule says that the term sealed by ℓ is opened by
the same level. In what follows, we use v for normal forms, that is, terms which cannot be
reduced anymore. Note that λx :t. ([x]ℓ)

ℓ is not a normal form, since the reduction is full,
that is, even a redex under λ-abstraction can be reduced. We write −→∗ for the reflexive
transitive closure of −→.

2.4. Basic Properties. We list some basic properties of λ[ ]. The first lemma below means
that, if e is well typed at some observer level, then it is also well typed at a higher level.

Lemma 2.6 (Observer Level Monotonicity). If Γ ; π1 − e : t and π1 ⊑ π2, then Γ ; π2 −
e : t, and the derivations of these judgments have the same size.

Proof. By induction on the derivation of Γ ; π1 − e : t, using the fact that π1 ∪ π ⊑ π2 ∪ π
if π1 ⊑ π2.

Lemma 2.7 (Substitution Property). If Γ ; π − e : t and Γ, x : t ; π − e′ : t′, then

Γ ; π − [e/x]e′ : t′

Proof. By induction on the derivation of Γ, x : t ; π − e′ : t′, using Lemma 2.6.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 7

The following three theorems are standard.

Theorem 2.8 (Subject Reduction). If Γ ; π − e : t and e −→ e′, then Γ ; π − e′ : t.

Proof. By induction on the derivation of Γ ; π − e : t, using Lemmas 2.6 and 2.7.

Theorem 2.9 (Strong Normalization). If Γ ; π − e : t, then e is strongly normalizing,
that is, there is no infinite sequence of reductions which starts from e.

Proof. Define a translation from λ[ ] into the simply typed λ-calculus as follows:

([t]ℓ)
† = unit → t†

([e]ℓ)
∗ = λ :unit . e∗

(eℓ)∗ = e∗ ().

This translation preserves typing and maps a reduction e1 −→ e2 to e∗1 −→+ e∗2, where
−→+ is the transitive closure of −→. So, from strong normalization for the simply typed
λ-calculus (see, e.g., [9]), we conclude one for λ[ ].

Theorem 2.10 (Church-Rosser Property). If Γ ; π − e : t and e −→∗ e1 and e −→∗ e2,

then there exists a term e′ such that ei −→∗ e′ (i = 1, 2).

Proof. By Theorem 2.9 and Newman’s Lemma [13], it suffices to show that the reduction
is weakly confluent: If Γ ; π − e : t and e −→ e1 and e −→ e2, then there exists a term
e′ such that ei −→∗ e′ (i = 1, 2). This is easy.

2.5. Contextual Equivalence, Noninterference, and Logical Relations. Now we
formalize equivalence of terms from the viewpoint of an observer at a given level as contextual

equivalence, and then state a formalization of noninterference.
We say that e1 and e2 are contextually equivalent at observer level π if C[e1] and C[e2]

are evaluated to the same value for any context C[·] typed at π. Note that the equivalence

is indexed by an observer level. We define contextual equivalence
ctx

=π as follows:

Definition 2.11 (Contextual Equivalence for λ[ ]). Assume that · ; π − ei : t for i = 1, 2

(we write · for the empty variable context). The relation e1
ctx
=π e2 : t is defined by:

e1
ctx
=π e2 : t if and only if fe1

nf
= fe2 for any f such that · ; π − f : t → bool. Here, e

nf
= e′

means that e and e′ have the same normal form and bool stands for unit + unit .

Here we use functions as contexts without loss of generality, because, by Strong Nor-
malization and Church-Rosser, C[e] and (λx :t. C[x]) e has a unique normal form, where t
is the type of e.

The following proposition shows that an observer level in the contextual equivalence
reflects an observer’s distinguishability, in other words, that an observer at a lower level
can distinguish no more terms than another at a higher.

Proposition 2.12. Assume that · ; π1 − ei : t for i = 1, 2. If π1 ⊑ π2 and e1
ctx
=π2 e2 : t,

then e1
ctx
=π1 e2 : t.

Proof. Take a function f such that · ; π1 − f : t → bool. By Observer Level Monotonicity
(Proposition 2.6), · ; π2 − f : t → bool and · ; π2 − ei : t (i = 1, 2). By assumption,

fe1
nf
= fe2, and so e1

ctx
=π1 e2 : t.



8 N. SHIKUMA AND A. IGARASHI

We use γ to represent a simultaneous substitution of terms for variables and write γ1
ctx
=π

γ2 : Γ if dom(γ1) = dom(γ2) = dom(Γ) and γ1(x)
ctx
=π γ2(x) : Γ(x) for any x ∈ dom(γ1).

Then, the noninterference is defined as follows:

Definition 2.13 (Noninterference). Take e such that Γ ; π − e : t. The well typed term

e satisfies noninterference, if and only if, γ1(e)
ctx
=π γ2(e) : t for any γ1 and γ2 such that

γ1
ctx
=π γ2 : Γ.

As mentioned before, noninterference means that, for any pair of program inputs that
are equivalent from the viewpoint of an observer at some security level, the outputs are also
equivalent for the observer. Here, substitutions γ1 and γ2 play roles of equivalent inputs to
program e. So, this property specifies the correctness of the type system as a dependency
analysis.

Though we want to show that any well typed term satisfies the noninterference above,
this is hard due to the following generally-known fact: it is difficult, in general, to show
given two terms are contextually equivalent. The reason is that we must take account of
all contexts but proof by induction on the structure of contexts does not usually work.

To solve this problem, we use the well-known technique of logical relations [9, 14], which
will be shown to be equivalent to the contextual equivalences, and state the noninterference
theorem in terms of the logical relations.

As the contextual equivalence above, the logical relations (for close terms and closed
normal forms) are indexed by observer levels as well as types. A judgment e1 ≈π e2 : t means
that closed terms e1 and e2 of type t are logically related at observer level π. Similarly,
v1 ∼π v2 : t means that closed normal forms v1 and v2 of t are logically related at π. We
assume · ; π − ei : t and · ; π − vi : t for i = 1, 2.

Definition 2.14 (Logical Relations for λ[ ]). The relations v1 ∼π v2 : t and e1 ≈π e2 : t are
defined by the following rules:

() ∼π () : unit (SL-Unit)

∀(e1 ≈π e2 : t1). v1 e1 ≈π v2 e2 : t2

v1 ∼π v2 : t1 → t2
(SL-Fun)

v11 ∼π v21 : t1 v12 ∼π v22 : t2

〈v11, v12〉 ∼π 〈v21, v22〉 : t1 × t2
(SL-Pair)

v1 ∼π v2 : ti i ∈ {1, 2}

ιi(v1) ∼π ιi(v2) : t1 + t2
(SL-Inj)

ℓ 6⊑ π

[v1]ℓ ∼π [v2]ℓ : [t]ℓ
(SL-Seal1)

v1 ∼π v2 : t ℓ ⊑ π

[v1]ℓ ∼π [v2]ℓ : [t]ℓ
(SL-Seal2)

e1 −→∗ v1 e2 −→∗ v2 v1 ∼π v2 : t

e1 ≈π e2 : t
(SL-Term)



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 9

Most rules are straightforward. In the rule (SL-Fun), the premise is the abbreviation
of the following: ∀e1. ∀e2. e1 ≈π e2 : t1 ⇒ v1e1 ≈π v2e2 : t2. There are two rules for
[v1]ℓ ∼π [v2]ℓ : [t]ℓ. When ℓ ⊑ π, an observer at π can examine vi by unsealing [vi]ℓ
(i = 1, 2), so these sealing terms are equivalent only when its contents are equivalent.
Otherwise, the observer cannot distinguish them at all and those terms are always regarded
equivalent.

Example 2.15. We write true and false, respectively, for ι1(()) and ι2(()). Let L and H

data levels and suppose that L is strictly lower than H. Take any ei such that · ; L − ei :
[bool]H (i = 1, 2). Then e1 ≈L e2 : [bool]H. This follows from the facts that [c1]H ∼L [c2]H :
[bool]H where c1, c2 ∈ {true, false} and that each ei has either normal form [true]H or
[false]H.

We define γ1 ≈π γ2 : Γ similarly to γ1
ctx
=π γ2 : Γ. Then, the noninterference theorem is

stated as follows:

Theorem 2.16 (Noninterference). If Γ ; π − e : t and γ1 ≈π γ2 : Γ, then γ1(e) ≈π γ2(e) :
t.

We will give a proof in Section 5.

Example 2.17. Here, we use the same notations as Example 2.15. Take a function f
such that · ; L − f : [bool]H → [bool]L. Now we will show that f is a constant function.
By the theorem above, f ≈L f : [bool]H → [bool]L. From (SL-Term), the discussion in
Example 2.15 and (SL-Fun), fe1 ≈L fe2 : [bool]L. fei has a normal form [ci]L where
some ci ∈ {true, false} (i = 1, 2) and, by (SL-Term), [c1]L ∼L [c2]L : [bool]L. So, by
(SL-Seal2), c1 = c2, which means that f always returns a constant value.

Also, from the noninterference theorem (Theorem 2.16), it follows that the logical
relations exactly coincide with the contextual equivalences above, and hence, in terms of
the latter as well as the former, the noninterference theorem also holds.

Theorem 2.18. e1 ≈π e2 : t if and only if e1
ctx
=π e2 : t.

Proof. First, we show the right from the left. Suppose that e1 ≈π e2 : t. Take arbitrary f
such that · ; π − f : t → bool. By Noninterference Theorem, f ≈π f : t → bool, and by
(SL-Term) and (SL-Fun), fe1 ≈π fe2 : bool. By (SL-Term), (SL-Inj) and (SL-Unit),

fe1
nf
= fe2 and hence e1

ctx
=π e2 : t.

Next, we prove the converse above by induction on the structure of t. Assume that

e1
ctx
=π e2 : t. We show only the main cases:

Case (t = t1 → t2). Take arbitrary e′1 and e′2 such that e′1 ≈π e′2 : t1. By the left-
to-right of Theorem 2.18 (which has been already shown in the first part of this proof),

e′1
ctx
=π e′2 : t1. Take arbitrary f such that · ; π − f : t2 → bool, then f(e1e

′
1)

nf
= f(e1e

′
2)

because e′1
ctx
=π e′2 : t1. Also, by assumption, f(e1e

′
2)

nf
= f(e2e

′
2), and hence f(e1e

′
1)

nf
= f(e2e

′
2)

by transitivity of =nf . So, e1e
′
1

ctx
=π e2e

′
2 : t2, and by the induction hypothesis for t2,

e1e
′
1 ≈π e2e

′
2 : t2, therefore e1 ≈π e2 : t1 → t2.

Case (t = [t1]ℓ). We have two subcases according to whether ℓ ⊑ π or not. If ℓ ⊑ π,
then, by Strong Normalization (Theorem 2.9), there are normal forms v1 and v2 such that

· ; π − vi : t1 and ei −→
∗ [vi]ℓ for i = 1, 2. Then, it must be the case that v1

ctx
=π v2 : t1.



10 N. SHIKUMA AND A. IGARASHI

(Otherwise, there would be a term f such that · ; π − f : t1 → bool and fv1 6=nf fv2.
Let f ′ be λx : [t1]ℓ. fxℓ, then · ; π − f ′ : [t1]ℓ → bool and f ′e1 6=nf f ′e2, and hence,
e1 6=π

ctx e2 : [t1]ℓ, but this is a contradiction.) Applying the induction hypothesis for t1,
v1 ≈π v2 : t1, which is equivalent to v1 ∼π v2 : t1, so e1 ≈π e2 : [t1]ℓ. The case ℓ 6⊑ π is
trivial.

3. The Simply Typed λ-calculus

We review the simply typed λ-calculus λ→ briefly with logical relations for it.

3.1. Definition of λ→. λ→ introduced here is a standard one with unit, base, function,
product, and sum types. We assume that base types, written αℓ (ℓ ∈ L), have one-to-one
correspondence with data levels. We use metavariables M for terms and A for types. The
syntax of λ→ is given as follows:

A ::= αℓ | unit | A → A | A × A | A + A
M ::= x | () | λx :A.M | M M | 〈M, M〉 | πi(M) | ιi(M)

| (caseM of ι1(x1).M | ι2(x2).M)

Note that base type αℓ has neither constants nor closed terms. The reason is that, as
mentioned in Section 1, we will use a term of type αℓ as a key for opening a sealing at level
ℓ and such a key should be permitted only to privileged users. See Section 4 for details.

The form of type judgment of λ→ is ∆ − M : A, where ∆ is a (finite) mapping from
variables to λ→ types. The typing rules are given as follows:

x : A ∈ Γ

∆ − x : A
(LT-Var)

∆ − () : unit (LT-Unit)

∆, x : A − M : B

∆ − λx :A.M : A → B
(LT-Abs)

∆ − M : A → B ∆ − N : A

∆ − M N : B
(LT-App)

∆ − M : A ∆ − N : B

∆ − 〈M, N〉 : A × B
(LT-Pair)

∆ − M : A1 × A2 i ∈ {1, 2}

∆ − πi(M) : Ai

(LT-Proj)

∆ − M : Ai i ∈ {1, 2}

∆ − ιi(M) : A1 + A2
(LT-Inj)

∆ − M : A1 + A2 ∆, x1 : A1 − N1 : B ∆, x2 : A2 − N2 : B

∆ − (caseM of ι1(x1).N1 | ι2(x2).N2) : B
(LT-Case)



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 11

The reduction of λ→ terms consists of standard β-reduction

(λx :A.M1)M2 −→ [M2/x]M1

πi(〈M1, M2〉) −→ Mi

(case ιi(M)of ι1(x1).M1 | ι2(x2).M2) −→ [M/xi]Mi

and the following commutative conversion.

(x1, x2 6∈ FV(M ′))

(caseM of ι1(x1).M1 | ι2(x2).M2)M ′ −→ caseM of ι1(x1).M1 M ′ | ι2(x2).M2 M ′

(i ∈ {1, 2})

πi(caseM of ι1(x1).M1 | ι2(x2).M2) −→ caseM of ι1(x1).πi(M1) | ι2(x2).πi(M2)

(x1, x2 6∈ FV(M ′
1) ∪ FV(M ′

2))

case (caseM of ι1(x1).M1 | ι2(x2).M2)of ι1(y1).M
′
1 | ι2(y2).M

′
2

−→ caseM of ι1(x1).(caseM1 of ι1(y1).M
′
1 | ι2(y2).M

′
2)

| ι2(x2).(caseM2 of ι1(y1).M
′
1 | ι2(y2).M

′
2)

As in λ[ ], the reduction for λ→ is full, too. Here, we write FV(M) for the set of free
variables in M . In what follows, we use V for normal forms. For example, by the first and
second commutative conversion rules,

λz :unit + unit . πi((case z of ι1(x1).y1 | ι2(x2).y2)z)

−→ λz :unit + unit . πi((case z of ι1(x1).y1z | ι2(x2).y2z))

−→ λz :unit + unit . (case z of ι1(x1).πi(y1z) | ι2(x2).πi(y2z)),

which is a normal form.
The resulting calculus (with commutative conversion) satisfies the standard proper-

ties of subject reduction, Church-Rosser, and strong normalization [2]. We say (the type
derivation ∆ − M : A of) a term satisfies the subformula property when any type in the
derivation is a subexpression of either A or a type occurring in ∆. Then, any well typed
term can reduce to the one that satisfies the subformula property as in the theorem below,
which makes it easy to ensure the fullness of the translation.

Theorem 3.1 (Subformula Property). If ∆ − M : A, then there exists a normal form V
such that M −→∗ V and ∆ − V : A, which satisfies the subformula property. Also, all the

subderivations satisfy the subformula property.

Remark 3.2. Commutative conversion is necessary for the above theorem to hold. Without
commutative conversion,

λx :unit + unit . ((case xof ι1(x1).λy :unit . () | ι2(x2).λy :unit . ())) ()

of type unit + unit → unit would be a normal form, which does not satisfy the subformula
property, because a subterm λy :unit . () has type unit → unit , which does not occur in
unit +unit → unit . This theorem also requires full reduction, which allows any redex (even
under λ) to reduce.



12 N. SHIKUMA AND A. IGARASHI

As mentioned above, we will view terms of type αℓ as keys. What really matters in
the development below is whether any key of a given type exists or not and it is is not
significant what kind of keys exist. Thus we identify all keys by introducing a (typed)
equivalence relation ∆ − M1 ≡ M2 : A.

Definition 3.3. The relation ∆ − M1 ≡ M2 : A is defined as the least relation closed under
the rules below:

∆ − M1 : αℓ ∆ − M2 : αℓ

∆ − M1 ≡ M2 : αℓ

(A-Key)

∆, x : A − x ≡ x : A (A-Var)

∆ − () ≡ () : unit (A-Unit)

∆, x : A1 − M ≡ M ′ : A2

∆ − λx :A1.M ≡ λx :A1.M
′ : A1 → A2

(A-Abs)

∆ − M1 ≡ M ′
1 : A1 → A2 ∆ − M2 ≡ M ′

2 : A1

∆ − M1 M2 ≡ M ′
1 M ′

2 : A2
(A-App)

∆ − M1 ≡ M ′
1 : A1 ∆ − M2 ≡ M ′

2 : A2

∆ − 〈M1, M2〉 ≡ 〈M ′
1, M ′

2〉 : A1 × A2
(A-Pair)

∆ − M ≡ M ′ : A1 × A2 i ∈ {1, 2}

∆ − πi(M) ≡ πi(M
′) : Ai

(A-Proj)

∆ − M ≡ M ′ : Ai i ∈ {1, 2}

∆ − ιi(M) ≡ ιi(M
′) : A1 + A2

(A-Inj)

∆ − M ≡ M ′ : A1 + A2 ∆, x1 : A1 − M1 ≡ M ′
1 : A ∆, x2 : A2 − M2 ≡ M ′

2 : A

∆ − (caseM of ι1(x1).M1 | ι2(x2).M2) ≡ (caseM ′ of ι1(x1).M
′
1 | ι2(x2).M

′
2) : A

(A-Case)

The rule (A-Key) signifies that all keys are identified. Clearly, ∆ − M ≡ M : A is
equivalent to ∆ − M : A .

Lemma 3.4 (≡ is Equivalence). Given ∆ and A, the binary relation ∆ − · ≡ · : A on

terms is an equivalence relation, that is, reflexive, symmetric, and transitive.

Proof. Easy.

The following lemma says that two terms which differ only in subterms of type αℓ are
equivalent via ≡.

Lemma 3.5. Assume that ∆ − M : A . Take an occurrence M1 of type αℓ in M . Suppose

that M1 freely occurs in M , that is, no free variable of M1 is bound in the occurrence.

If ∆ − M2 : αℓ , then ∆ − M ≡ [M2/M1]M : A, where [M2/M1]M is a result of

capture avoiding replacement of the occurrence M1 in M by M2. In general, this holds for

simultaneous replacing too.

Proof. By induction on the derivation of ∆ − M : A.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 13

3.2. Logical Relations for λ→. We define syntactic logical relations for λ→ in the stan-
dard manner. As for λ[ ], there are relations for (this time, possibly open) terms and normal
forms, written ∆ − M1 ≈ M2 : A (read “terms M1 and M2 of type A are logically related
under context ∆”) and ∆ − V1 ∼ V2 : A (read similarly), respectively. We assume that
∆ − Mi : A and ∆ − Vi : A for i = 1, 2.

Definition 3.6 (Logical Relations for λ→). The relations ∆ − M1 ≈ M2 : A and ∆ −
V1 ∼ V2 : A are the least relation closed under the following rules:

∆ − () ∼ () : unit (LL-Unit)

∆ − V1 ∼ V2 : αℓ (LL-KT)

∆ − V11 ∼ V21 : A1 ∆ − V12 ∼ V22 : A2

∆ − 〈V11, V12〉 ∼ 〈V21, V22〉 : A1 × A2
(LL-Pair)

∆ − V1 ∼ V2 : Ai i ∈ {1, 2}

∆ − ιi(V1) ∼ ιi(V2) : A1 + A2
(LL-Inj)

∀(∆ − M1 ≈ M2 : A1).∆ − V1 M1 ≈ V2 M2 : A2

∆ − V1 ∼ V2 : A1 → A2
(LL-Fun)

M1 −→∗ V1 M2 −→∗ V2 ∆ − V1 ∼ V2 : A

∆ − M1 ≈ M2 : A
(LL-Term)

The rule (LL-KT) corresponds to (A-Key) and means that the number of keys to
open a sealing with ℓ is at most one. Although we could give a more general definition of
syntactic logical relations, where the relation for type αℓ is parameterized, and prove the
basic lemma for them below, but, in this paper, we do not need such general settings and
just take the restricted version above for simplicity.

Example 3.7. Take Mi such that k : αL − Mi : αH → bool (i = 1, 2). They have
normal forms by Strong Normalization. Since there is no “key”, that is, term of αH under this
variable context, we cannot apply Mi to any terms of αH, so k : αL − M1 ≈ M2 : αH → bool

by (LL-Term) and (LL-Fun). This example almost corresponds to Example 2.15. In fact,
we will translate [bool]H and the observer level H, respectively, to αH → bool and k : αH,
in Section 4.

We write δ for a simultaneous substitution of λ→ terms for variables and ∆′ − δ1 ≈ δ2 :
∆ if dom(δ1) = dom(δ2) = dom(∆) and for any x ∈ dom(δ1), ∆′ − δ1(x) ≈ δ2(x) : ∆(x).
Then, the basic lemma is as follows:

Lemma 3.8 (Basic Lemma). If ∆ − M : A and ∆′ − δ1 ≈ δ2 : ∆, then ∆′ − δ1(M) ≈
δ2(M) : A.

For later use, we will prove a little generalized lemma as below, from which the basic
lemma above follows by reflexivity of ≡ (Lemma 3.4).

Lemma 3.9. If ∆ − M1 ≡ M2 : A and ∆′ − δ1 ≈ δ2 : ∆, then ∆′ − δ1(M1) ≈ δ2(M2) : A.



14 N. SHIKUMA AND A. IGARASHI

Proof. By induction on the derivation of ∆ − M1 ≡ M2 : A. We show only the main
cases. Below, we write δ′1 ⊎ δ′2 for the union of two disjoint substitutions δ′1 and δ′2 such
that dom(δ′1) ∩ dom(δ′2) = ∅: dom(δ′1 ⊎ δ′2) = dom(δ′1) ∪ dom(δ′2) and (δ′1 ⊎ δ′2)(x) = δ′

i
(x) if

x ∈ dom(δ′
i
).

Case (the last rule of the derivation is (A-Key)). Then, the last step of the derivation has
a form

∆ − M1 : αℓ ∆ − M2 : αℓ

∆ − M1 ≡ M2 : αℓ

and A = αℓ. By Substitution Property, Strong Normalization and Subject Reduction, there
exists Vi such that δi(Mi) →

∗ Vi and ∆′ − Vi : αℓ (i = 1, 2). So, since ∆′ − V1 ∼ V2 : αℓ

by (LL-KT), we get ∆′ − δ1(M1) ≈ δ2(M2) : αℓ by (LL-Term).

Case (the last rule of the derivation is (A-Abs)). Then, the last step of the derivation has
a form

∆, x : A1 − M ′
1 ≡ M ′

2 : A2

∆ − λx :A1.M
′
1 ≡ λx :A1.M

′
2 : A1 → A2.

and Mi = λx :A1.M
′
i

(i = 1, 2) and A = A1 → A2. By Strong Normalization, there
exist Vi such that δi(Mi) −→∗ Vi (i = 1, 2). Take arbitrary M ′′

i
(i = 1, 2) such that

∆′ − M ′′
1 ≈ M ′′

2 : A1, then ∆′ − δ1 ⊎ [M ′′
1 /x] ≈ δ2 ⊎ [M ′′

2 /x] : ∆ ∪ {x : A1}. By the
induction hypothesis, ∆′ − (δ1⊎ [M ′′

1 /x])(M ′
1) ≈ (δ2⊎ [M ′′

2 /x])(M ′
2) : A2. Since Vi M ′′

i
have

the same normal forms as (δi⊎[M ′′
i
/x])(M ′

i
) for i = 1, 2, we have ∆′ − V1 M ′′

1 ≈ V2 M ′′
2 : A2,

and hence ∆′ − V1 ∼ V2 : A1 → A2, so ∆′ − δ1(M1) ≈ δ2(M2) : A1 → A2.

Case (the last rule of the derivation is (A-App)). Then, the last step of the derivation has
a form

∆ − M ′
1 ≡ M ′

2 : A1 → A2 ∆ − M ′′
1 ≡ M ′′

2 : A1

∆ − M ′
1 M ′′

1 ≡ M ′
2 M ′′

2 : A2

By the induction hypotheses, ∆′ − δ1(M
′
1) ≈ δ2(M

′
2) : A1 → A2 and ∆′ − δ1(M

′′
1 ) ≈

δ2(M
′′
2 ) : A1. By definition, there exist Vi such that δi(M

′
i
) −→∗ Vi (i = 1, 2) and ∆′ −

V1 ∼ V2 : A1 → A2, and hence ∆′ − V1 δ1(M
′′
1 ) ≈ V2 δ2(M

′′
2 ) : A2. Since δi(M

′
i
M ′′

i
) have the

same normal forms as Vi δi(M
′′
i
) for i = 1, 2, we have ∆′ − δ1(M

′
1 M ′′

1 ) ≈ δ2(M
′
2 M ′′

2 ) : A2.

Remark 3.10. Although the above logical relations for λ→ are not reflexive in general (for
example x : A + A 6− x ≈ x : A + A), we have ∆ − M ≈ M : A if all the types in ∆
are of forms A1 → A2 → · · · → An → αℓ. This is derived from Lemma 3.8 and the fact
that ∆ − x ≈ x : ∆(x) if ∆(x) = A1 → A2 → · · · → An → αℓ, which can be proved by
induction on n.

4. Translation

In this section, we define a formal translation from λ[ ] to λ→ and its inverse. Both
translations are shown to preserve typing.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 15

4.1. From λ[ ] to λ→. One of the main ideas of the translation, which closely follows Tse
and Zdancewic’s translation from DCC to System F [22, 23], is to translate sealing of type
[t]ℓ to a function from the base type αℓ, which corresponds to ℓ. The sealed value can be
extracted by passing a term of αℓ as an argument. Intuitively, the term of αℓ serves as a
“key” for unsealing.

Definition 4.1 (Translation of Types and Contexts). (·)† is a function from λ[ ] types to
λ→ types, defined by:

unit† = unit (t1 op t2)
† = t†

1
op t†

2
([t]ℓ)

† = αℓ → t†

where op stands for →,×, or +. (·)† is extended pointwise to contexts by: Γ† = {x : t† |x :
t ∈ Γ}.

Before describing the details of the translation, we give an example for readers to grasp
its intuition.

Example 4.2. We translate the λ[ ] judgment x : [bool]L ; H − xL : bool to:

x : αL → bool, cLL : αL → αL, cHH : αH → αH, cHL : αH → αL, kH : αH − x (cHL kH) : bool.

The first and last variable declarations are respectively translated results of x : [bool]L and
the observer level H. The unsealing xL is translated into the application of x to cHL kH which
corresponds to a key for the unsealing, and where cHL coerces the key kH for the observer
level H to that for L. This coercion is declared at the second last variable declaration. The
other variables cLL and cHH are trivial coercions.

Let c be an injective partial map from pairs of levels to variables such that cℓ2 ℓ1 is
defined if and only if ℓ1 ⊑ ℓ2. We take a finite mapping C⊑ = {cℓ2 ℓ1 : αℓ2 → αℓ1 | ℓ1 ⊑ ℓ2}
from variables to types, which corresponds to the variable declarations

cLL : αL → αL, cHH : αH → αH, cHL : αH → αL

in Example 4.2. Each variable cℓ2 ℓ1 represents a function to coerce a key for a higher level
to that for a lower. As like above, C⊑ will be included in a variable context for typing the
translated terms. Note that, if we let L be infinite, the domain of C⊑ would be so, too, and
hence we would have to extend the type judgments of λ→to allow an infinite context. Such
an extension would be easy since only a finite number of variables can be used in a term.

The translation of λ[ ] to λ→ is represented by Γ;σ − e : t ց M , read “λ[ ] term e of type
t is translated to M under Γ and σ,” where σ is an injective finite map from data levels to
variables. In the example above, σ is {H 7→ kH}. This mapping σ, whose domain represents

the observer level at which the λ[ ] term is typed, records correspondence between the data
levels included in the observer level and variables that are used as keys. When typing the
translated term in λ→, those variables are declared in the variable context (e.g., kH : αH in
Example 4.2), and hence, from usual conventions of λ→, we assume that the range of σ and
the domains of Γ and C⊑ are pairwise disjoint and that we can implicitly rename variables
in the range of σ, so that choices for key names do not matter.

Definition 4.3 (Translation of Terms). The relation Γ;σ − e : t ց M is defined as the
least relation closed under the following rules:

Γ;σ − x : t ց x (Tr-Var)

Γ;σ − () : unit ց () (Tr-Unit)



16 N. SHIKUMA AND A. IGARASHI

Γ, x : t1;σ − e : t2 ց M

Γ;σ − λx :t1. e : t1 → t2 ց λx :t†1.M
(Tr-Abs)

Γ;σ − e : t1 → t2 ց M Γ;σ − e′ : t1 ց M ′

Γ;σ − e e′ : t2 ց M M ′ (Tr-App)

Γ;σ − e1 : t1 ց M1 Γ;σ − e2 : t2 ց M2

Γ;σ − 〈e1, e2〉 : t1 × t2 ց 〈M1, M2〉
(Tr-Pair)

Γ;σ − e : t1 × t2 ց M i ∈ {1, 2}

Γ;σ − πi(e) : ti ց πi(M)
(Tr-Proj)

Γ;σ − e : ti ց M i ∈ {1, 2}

Γ;σ − ιi(e) : t1 + t2 ց ιi(M)
(Tr-Inj)

Γ;σ − e : t1 + t2 ց M Γ, x1 : t1;σ − e1 : t ց M1 Γ, x2 : t2;σ − e2 : t ց M2

Γ;σ − (case eof ι1(x1).e1 | ι2(x2).e2) : t ց (caseM of ι1(x1).M1 | ι2(x2).M2)
(Tr-Case)

Γ;σ{ℓ 7→ k} − e : t ց M k fresh

Γ;σ − [e]ℓ : [t]ℓ ց λk :αℓ.M
(Tr-Seal)

Γ;σ − e : [t]ℓ ց M ℓ′ ∈ dom(σ) ℓ ⊑ ℓ′

Γ;σ − eℓ : t ց M (cℓ′ ℓ σ(ℓ′))
(Tr-Unseal)

Here, we write σ{ℓ 7→ k} for a mapping from dom(σ) ∪ {ℓ} to variables defined by: σ{ℓ 7→
k}(ℓ) = k; and σ{ℓ 7→ k}(ℓ′) = σ(ℓ′) if ℓ 6= ℓ′. Note that ℓ may occur in the domain of σ.

The translation of terms is easily derived from the translation rules for types. In the
last rule (Tr-Unseal), a key for opening the sealing is obtained from σ and a coercion—if
eℓ is well typed at the observer level represented by dom(σ), then ℓ should be lower than
dom(σ) and hence a coercion function should exist in C⊑ to provide a key of ℓ.

Example 4.4. Let L and H1 and H2 be data levels and suppose that L is strictly lower than
both H1 and H2. We can translate x : [bool]L ; H1, H2 − [xL]H1 : [bool]H1 as follows:

x : [bool]L; {H1 7→ k1, H2 7→ k2} − [xL]H1 : [bool]H1 ց λk′
1 :αH1 → bool. xK

where K is cH2 L k2 or cH1 L k′
1, but not cH1 L k1 because of the side condition of (Tr-Seal).

The resulting λ→ terms have type αH1 → bool(= [bool]†
H1

) under context

∆0
def
= x : αL → bool, C⊑, k1 : H1, k2 : H2 .

Well typed λ[ ] terms can be translated to well typed λ→ terms as in the theorem below.
Here, we write σ† for the context defined by: {σ(ℓ) : αℓ | ℓ ∈ dom(σ)}.

Theorem 4.5 (Translation Preserves Typing). If Γ ; π − e : t and dom(σ) = π, then

there exists a λ→ term M such that Γ;σ − e : t ց M , and that Γ†, C⊑, σ† − M : t†.

Proof. By induction on the derivation of Γ ; π − e : t. We show only the main cases:



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 17

Case (the last rule of the derivation is (ST-Seal)). Then, e = [e0]ℓ and t = [t0]ℓ for
some e0 and t0. Take a fresh variable k such that ran(σ{ℓ 7→ k}) ∩ dom(Γ) = ∅. By
the induction hypothesis, there exists M0 such that Γ;σ{ℓ 7→ k} − e0 : t0 ց M0 and

Γ†, C⊑, (σ{ℓ 7→ k})† − M0 : t†0. Note that (σ{ℓ 7→ k})† = σ†\{σ(ℓ) : αℓ} ∪ {k : αℓ}.

Hence, Γ;σ − [e0]ℓ : [t0]ℓ ց λk :αℓ.M0 and Γ†, C⊑, σ† − λk :αℓ.M0 : t†0 by (LT-Abs)
and weakening.

Case (the last rule of the derivation is (ST-Unseal)). Then, e = eℓ
0 for some e0. By the

induction hypothesis, there exists M0 such that Γ;σ − e0 : [t]ℓ ց M0 and Γ†, C⊑, σ† −
M0 : αℓ → t†. Note that ℓ ⊑ ℓ′ ∈ π = dom(σ), so Γ;σ − eℓ

0 : t ց M0 (cℓ′ ℓ σ(ℓ′)) and
Γ†, C⊑, σ† − M (cℓ′ ℓ σ(ℓ′)) : t†.

The other cases are similar.

Note that, as we have seen in Example 4.4, the translation result might not be unique
since there might be many keys to be coerced to one for some observer level in applying
(Tr-Unseal). In fact, if we can translate an unsealing term with some key included in
σ, where another higher key exists, then, another translation is also possible by using the
latter key instead of the former one, which may be removed from σ. This fact is generalized
as follows.

Lemma 4.6. Assume that Γ;σ{ℓ1 7→ k1} − e : t ց M and that ℓ1 ⊑ ℓ2 ∈ dom(σ).
Then, there exists M ′ such that Γ;σ − e : t ց M ′ and, if Γ†, C⊑, σ† − M1 : αℓ1, then

Γ†, C⊑, σ† − [M1/k1]M ≡ M ′ : t† . The sizes of the derivations of the translations are the

same.

Proof. By induction on the size of the derivation of Γ;σ{ℓ1 7→ k1} − e : t ց M. Note that
every occurrence of k1 in M appears as cℓ1 ℓ k1 for some ℓ, since k1 is always introduced by
(Tr-Unseal). Because σ has the higher key of αℓ2 than k1, we can replace all the cℓ1 ℓ k1

and remove all the occurrences of k1. The last equivalence follows from (A-Key).

4.2. From λ→ to λ[ ]. We define the inverse translation, represented by Γ;σ − M ր e : t.
It is read “λ→ term M of type t† under Γ† and C⊑ and σ† is translated back to a λ[ ] term
e.”

Definition 4.7 (Inverse Translation). The relation Γ;σ − M ր e : t is defined as the least
relation closed by the following rules:

Γ;σ − x ր x : t (ITr-Var)

Γ;σ − () ր () : unit (ITr-Unit)

Γ, x : t1;σ − M ր e : t2

Γ;σ − λx :t†1.M ր λx :t1. e : t1 → t2
(ITr-Abs)

Γ;σ − M ր e : t1 → t2 Γ;σ − M ′ ր e′ : t1

Γ;σ − M M ′ ր e e′ : t2
(ITr-App)

Γ;σ − M1 ր e1 : t1 Γ;σ − M2 ր e2 : t2

Γ;σ − 〈M1, M2〉 ր 〈e1, e2〉 : t1 × t2
(ITr-Pair)



18 N. SHIKUMA AND A. IGARASHI

Γ;σ − M ր e : t1 × t2 i ∈ {1, 2}

Γ;σ − πi(M) ր πi(e) : ti
(ITr-Proj)

Γ;σ − M ր e : ti i ∈ {1, 2}

Γ;σ − ιi(M) ր ιi(e) : t1 + t2
(ITr-Inj)

Γ;σ − M ր e : t1 + t2 Γ, x1 : t1;σ − M1 ր e1 : t Γ, x2 : t2;σ − M2 ր e2 : t

Γ;σ − (caseM of ι1(x1).M1 | ι2(x2).M2) ր (case eof ι1(x1).e1 | ι2(x2).e2) : t
(ITr-Case)

ℓ 6∈ dom(σ) Γ;σ{ℓ 7→ k} − M ր e : t

Γ;σ − λk :αℓ.M ր [e]ℓ : [t]ℓ
(ITr-Seal1)

ℓ ∈ dom(σ) Γ;σ{ℓ 7→ k} − [k/σ(ℓ)]M ր e : t

Γ;σ − λk :αℓ.M ր [e]ℓ : [t]ℓ
(ITr-Seal2)

Γ;σ − M ր e : [t]ℓ Γ†, C⊑, σ† − M ′ : αℓ

Γ;σ − M M ′ ր eℓ : t
(ITr-Unseal)

In the rule (ITr-Seal2), since we equate keys for the same data level by (A-Key) and
(LL-KT), we can replace the key σ(ℓ) by another k. Note that, even if Γ†, C⊑, σ† − M : t†,
the inverse translation of M is not always possible. However, we can give a sufficient
condition for the inverse translation to exist and show that the inverse translation also
preserves typing:

Theorem 4.8 (Inverse Translation Preserves Typing). If all the subderivations of Γ†, C⊑, σ†

− M : t† satisfy SUbformula Property, then there exists a λ[ ] term e such that Γ ; dom(σ) −
e : t and Γ;σ − M ր e : t.

Proof. By induction on the size of the derivation of Γ†, C⊑, σ† − M : t†. We show only
the main cases:

Case (the last rule of the derivation is (LT-Abs)). Then, the last step of the derivation
has a form

Γ†, C⊑, σ†, x : A1 − M0 : A2

Γ†, C⊑, σ† − λx :A1.M0 : A1 → A2,

and t† = A1 → A2 and M = λx :A1.M0. We have three subcases:

Subcase (t = t1 → t2). Then, t†
i

= Ai(i = 1, 2) and Γ†, x : t†1, C⊑, σ† − M0 : t†2 , all the
subderivations of which also satisfy Subformula Property. So, by the induction hypothesis,
there exists e0 such that Γ, x : t1 ; dom(σ) − e0 : t2 and Γ, x : t1;σ − M0 ր e0 : t2.
Hence, Γ ; dom(σ) − λx :t1. e0 : t1 → t2 and Γ;σ − λx :A1.M0 ր λx :t1. e0 : t1 → t2.

Subcase (t = [t0]ℓ and ℓ 6∈ dom(σ)). Then, A1 = αℓ and A2 = t†0 and (σ{ℓ 7→ x})† =

σ† ∪ {x : αℓ} and Γ†, C⊑, (σ{ℓ 7→ x})† − M0 : t†0 , all the subderivations of which also
satisfy Subformula Property. So, by the induction hypothesis, there exists e0 such that
Γ ; dom(σ{ℓ 7→ x}) − e0 : t0 and Γ;σ{ℓ 7→ x} − M0 ր e0 : t0. Since ℓ 6∈ dom(σ) and
dom(σ{ℓ 7→ x}) = dom(σ) ∪ {ℓ}, it follows that Γ ; dom(σ) − [e0]ℓ : [t0]ℓ by (ST-Seal)
and Γ;σ − λx :αℓ.M0 ր [e0]ℓ : [t0]ℓ by (ITr-Seal1).



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 19

Subcase (t = [t0]ℓ and ℓ ∈ dom(σ)). Then, A1 = αℓ and A2 = t†0 and (σ{ℓ 7→ x})† =

σ†\{σ(ℓ) : αℓ} ∪ {x : αℓ} and Γ†, C⊑, σ†, x : αℓ − M0 : t†0. By Substitution Property for

λ→, Γ†, C⊑, (σ{ℓ 7→ x})† − [x/σ(ℓ)]M0 : t†0 without changing the size of the derivation,
all the subderivations of which also satisfy Subformula Property. So, by the induction
hypothesis, there exists a e0 such that Γ ; dom(σ{ℓ 7→ x}) − e0 : t0 and Γ;σ{ℓ 7→ x} −
[x/σ(ℓ)]M0 ր e0 : t0. Since dom(σ{ℓ 7→ x}) = dom(σ) ∪ {ℓ} and ℓ ∈ dom(σ), it follows
that Γ ; dom(σ) − [e0]ℓ : [t0]ℓ by (ST-Seal) and Γ;σ − λx :αℓ.M0 ր [e0]ℓ : [t0]ℓ by
(ITr-Seal2).

Case (the last rule of the derivation is (LT-App)). Then, the last step of the derivation
has a form

Γ†, C⊑, σ† − M1 : A1 → A2 Γ†, C⊑, σ† − M2 : A1

Γ†, C⊑, σ† − M1 M2 : A2

and t† = A2 and M = M1 M2. By Subformula Property, A1 and A1 → A2 appear in

Γ† ∪ C⊑ ∪ σ† ∪ t†, hence, we have two cases about A1: A1 = αℓ or A1 = t†0 for some t0.

Subcase (A1 = αℓ). Then, A1 → A2 = ([t]ℓ)
†, by the induction hypothesis, there exists

e such that Γ ; dom(σ) − e : [t]ℓ and Γ;σ − M1 ր e : [t]ℓ. Note that ℓ ⊑ dom(σ) since
Γ†, C⊑, σ† − M2 : αℓ. So, it follows that Γ ; dom(σ) − eℓ : t and Γ;σ − M1 M2 ր eℓ : t
by (ST-Unseal) and (ITr-Unseal).

Subcase (A1 = t†0). Then, A1 → A2 = (t0 → t1)
†. By the induction hypotheses, we can

easily show the conclusion.

For the cases where the last rule of the derivation is an elimination of a product or sum
type, the proof is similar to the case of application. The rest of the proof is easy.

Remark 4.9. In the above theorem, Subformula Property gives a sufficient condition to
exclude “junk” terms such as (λx :αℓ → αℓ. ())(λk :αℓ. k). Since λk :αℓ. k has type αℓ → αℓ,
no rules of inverse translation can be applied and the inverse translation will fail. Its
derivation, however, does not satisfy Subformula Property, so this is not a counterexample
for the theorem above. (In fact, its normal form can be translated back to a λ[ ] term.)

Example 4.10. We use the same settings as Example 4.4.

x : [bool]L; {H1 7→ k1, H2 7→ k2} − λk′
1 :αH1 → bool. xK ր [xL]H1 : [bool]H1

where K can be any term of type αL under context ∆0, k′
1 : αH1 → bool, e.g, cH2 L k2 or

cH1 L k′
1 or cH1 L k1.

5. Proof of Noninterference via Preservation of Logical Relations

In this section, we give an indirect proof of the noninterference theorem, which is
obtained as an easy corollary of the theorem that the translation is sound and complete,
that is, the logical relation for λ[ ] is preserved and reflected by the translation to λ→. The
properties we would expect are

If ·;σ − ei : t ց Mi for i = 1, 2 and e1 ≈dom(σ) e2 : t, then C⊑, σ† − M1 ≈

M2 : t†,

and its converse



20 N. SHIKUMA AND A. IGARASHI

If ·;σ − ei : t ց Mi for i = 1, 2 and C⊑, σ† − M1 ≈ M2 : t†, then

e1 ≈dom(σ) e2 : t.

It is not very easy, however, to prove them directly because logical relations are de-
fined by induction on types whereas the translations are not. Thus, following Tse and
Zdancewic [21, 22, 23], we introduce another logical relation (called logical correspondence)

e ❀
❀σ M : t over terms of λ[ ] and λ→, then prove that it includes (the graphs of) the

translations of both directions (Theorems 5.4 and 5.6). Then, after showing that the logical
correspondence is full (Corollary 5.7), we finally prove preservation of logical relations by
logical correspondence and reduce the noninterference theorem to Basic Lemma (Lemma
3.8).

5.1. Logical Correspondence and Its Fullness.

Definition 5.1 (Logical Correspondence). The relations e ❀
❀σ M : t and v ❀σ V : t,

where we assume that · ; dom(σ) − e : t and · ; dom(σ) − v : t and C⊑, σ† − M : t† and
C⊑, σ† − V : t†, are defined as the least relation closed under the following rules:

() ❀σ () : unit (C-Unit)

∀(e ❀
❀σ M : t1). v e ❀

❀σ V M : t2

v ❀σ V : t1 → t2
(C-Fun)

v1 ❀σ V1 : t1 v2 ❀σ V2 : t2

〈v1, v2〉 ❀σ 〈V1, V2〉 : t1 × t2
(C-Pair)

v ❀σ V : ti i ∈ {1, 2}

ιi(v) ❀σ ιi(V ) : t1 + t2
(C-Inj)

∀(C⊑, σ† − M : αℓ). v ❀
❀σ V M : t

[v]ℓ ❀σ V : [t]ℓ
(C-Seal)

e −→∗ v M −→∗ V v ❀σ V : t

e ❀
❀σ M : t

(C-Term)

Intuitively, e ❀
❀σ M : t means that e and M exhibit the same behavior from the

viewpoint of an observer at dom(σ). The rule (C-Seal) for [t]ℓ expresses the fact that the
existence of well typed M of αℓ under C⊑ and σ† is equivalent to the fact that the level ℓ is
lower than dom(σ). In other words, if ℓ is not lower than dom(σ), the premise is vacuously
true, representing that the observer cannot distinguish anything.

Example 5.2. Take λ[ ] term e and λ→ term M such that · ; L − e : [bool]H and
C⊑, k : αL − M : αH → bool . By (C-Term) and (C-Seal), e ❀

❀{L7→k} M : [bool]H
because there is no term of type αH under C⊑, k : αL. Compare this example with Exam-
ples 2.15 and 3.7.

Theorem 5.3 below shows that the logical correspondences are closed under the com-
position with the logical relations in λ→.

Theorem 5.3. If e ❀
❀σ M1 : t and C⊑, σ† − M1 ≈ M2 : t†, then e ❀

❀σ M2 : t.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 21

Proof. By induction on the structure of t. We show only the main cases:

Case (t = t1 → t2). By definition, there exist v and Vi such that e −→∗ v and Mi −→
∗ Vi

(i = 1, 2) and v ❀σ V1 : t1 → t2 and C⊑, σ† − V1 ∼ V2 : t†1 → t†2. Take arbitrary e0 and
M0 such that e0 ❀

❀σ M0 : t1. By definition, v e0 ❀
❀σ V1 M0 : t2. Also, by Lemma 3.8 (with

Remark 3.10), C⊑, σ† − M0 ≈ M0 : t†1, so, by definition, C⊑, σ† − V1 M0 ≈ V2 M0 : t†2.

Applying the induction hypothesis for t2, we have v e0 ❀
❀σ V2 M0 : t†2 and hence v ❀σ V2 :

t1 → t2, so e ❀
❀σ M2 : t1 → t2.

Case (t = [t1]ℓ). By definition, there exist v and Vi such that e −→∗ [v]ℓ and Mi −→
∗ Vi

(i = 1, 2) and [v]ℓ ❀σ V1 : [t1]ℓ and C⊑, σ† − V1 ≈ V2 : αℓ → t†1. Take arbitrary M0 such
that C⊑, σ† − M0 : αℓ. By definition, v ❀

❀σ V1 M0 : t1 and C⊑, σ† − M0 ≈ M0 : αℓ,

so, C⊑, σ† − V1 M0 ≈ V2 M0 : t†1. Applying the induction hypothesis for t1, we have
v ❀

❀σ V2 M0 : t1 and hence [v]ℓ ❀σ V2 : [t1]ℓ, so, e ❀
❀σ M2 : [t1]ℓ.

The next theorem shows that these logical correspondences include the graphs of the
translation to λ→. We write γ ❀

❀σ δ : Γ if dom(γ) = dom(δ) = dom(Γ) and γ(x) ❀
❀σ δ(x) :

Γ(x) for any x ∈ dom(Γ).

Theorem 5.4 (Inclusion of Translation). If Γ ; dom(σ) − e : t and Γ;σ − e : t ց M and

γ ❀
❀σ δ : Γ, then γ(e) ❀

❀σ δ(M) : t.

Proof. By induction on the size of the derivation of Γ;σ − e : t ց M . We show only the
main cases:

Case (the last translation rule of the derivation is (Tr-Abs)). Then, the last step of the
derivation has a form

Γ, x : t1;σ − e0 : t2 ց M0

Γ;σ − λx :t1. e0 : t1 → t2 ց λx :t†1.M0.

Take arbitrary e1 and M1 such that e1 ❀
❀σ M1 : t1, then, γ ⊎ [e1/x] ❀

❀σ δ ⊎ [M1/x] :
Γ∪{x : t1}. By the induction hypothesis, (γ ⊎ [e1/x])(e0) ❀

❀σ (δ⊎ [M1/x])(M0) : t2. Since

γ(λx :t1. e0) e1 and δ(λx :t†1.M0) M1 have the same normal forms as (γ ⊎ [e1/x])(e0) and

(δ⊎ [M1/x])(M0), respectively, we have γ(λx :t1. e0) e1 ❀
❀σ δ(λx :t†1.M0) M1 : t2, and hence

γ(λx :t1. e0) ❀
❀σ δ(λx :t†1.M0) : t1 → t2.

Case (the last translation rule of the derivation is (Tr-App)). Then, the last step of the
derivation has a form

Γ;σ − e1 : t1 → t2 ց M1 Γ;σ − e2 : t1 ց M2

Γ;σ − e1 e2 : t2 ց M1 M2 .

By the induction hypotheses, γ(e1) ❀
❀σ δ(M1) : t1 → t2 and γ(e2) ❀

❀σ δ(M2) : t1. By
Strong Normalization, γ(e1) and δ(M1) respectively have the unique normal forms v and V
such that v ❀σ V : t1 → t2. By definition, we have v γ(e2) ❀

❀σ V δ(M2) : t2 and hence
γ(e1 e2) ❀

❀σ δ(M1 M2) : t2.

Case (the last translation rule of the derivation is (Tr-Seal)). Then, the last step of the
derivation has a form

Γ;σ{ℓ 7→ k} − e0 : t0 ց M0 k fresh

Γ;σ − [e0]ℓ : [t0]ℓ ց λk :αℓ.M0 .



22 N. SHIKUMA AND A. IGARASHI

Then, there exist v and V such that γ(e0) −→
∗ v and δ(λk :αℓ.M0) −→

∗ V . Take arbitrary
M1 such that C⊑, σ† − M1 : αℓ. Then there exists ℓ′ ∈ dom(σ) such that ℓ ⊑ ℓ′ and,
by Lemma 4.6, there exists M ′

0 such that Γ;σ − e0 : t0 ց M ′
0 and Γ†, C⊑, σ† − M ′

0 ≡

[M1/k]M0 : t†0 . So, by the induction hypothesis, γ(e0) ❀
❀σ δ(M ′

0) : t0 . Also, by Lemma 3.9,

we have C⊑, σ† − δ(M ′
0) ≈ δ([M1/k]M0) : t†0. Since δ([M1/k]M0) and δ(λk :αℓ.M0)M1 have

the same normal form, C⊑, σ† − δ(M ′
0) ≈ δ(λk :αℓ.M0)M1 : t†0, and, applying Theorem

5.3, we get γ(e0) ❀
❀σ δ(λk :αℓ.M0) M1 : t0, hence v ❀

❀σ V M1 : t0, so [v]ℓ ❀σ V : [t0]ℓ.
Therefore γ([e0]ℓ) ❀

❀σ δ(λk :αℓ.M0) : [t0]ℓ.

Case (the last translation rule of the derivation is (Tr-Unseal)). Assume that the last
step of the derivation has a form

Γ;σ − e1 : [t1]ℓ ց M1 ℓ′ ∈ dom(σ) ℓ ⊑ ℓ′

Γ;σ − eℓ
1 : t1 ց M1 (cℓ′ ℓ σ(ℓ′)) .

By the induction hypothesis, γ(e1) ❀
❀σ δ(M1) : [t1]ℓ. By definition, there exist v and V such

that γ(e1) −→
∗ [v]ℓ and δ(M1) −→

∗ V and [v]ℓ ❀σ V : [t1]ℓ, and hence v ❀
❀σ V (cℓ′ ℓ σ(ℓ′)) :

[t1]ℓ. Since γ(eℓ
1) and δ(M1 (cℓ′ ℓ σ(ℓ′))) respectively have the same normal forms as v and

V (cℓ′ ℓ σ(ℓ′)), we conclude γ(eℓ
1) ❀

❀σ δ(M1 (cℓ′ ℓ σ(ℓ′))) : t1.

It is slightly harder to show that the logical correspondence includes the graphs of
the inverse translation, since the inverse translation is not quite a (right) inverse of the
translation to λ→: The inverse translation followed by the forward translation may yield a
term different from the original (see Examples 4.4 and 4.10). Fortunately, the difference is
only slight: They differ only in subterms of base types αℓ and are equivalent via ≡, thus
logically related by Lemma 3.9.

Lemma 5.5. If Γ†, C⊑, σ† − M : t† and Γ;σ − M ր e : t and Γ;σ − e : t ց M ′, then

Γ†, C⊑, σ† − M ≡ M ′ : t†.

Proof. By induction on the derivation of Γ;σ − M ր e : t. We show only the main cases:

Case (e = [e1]ℓ and ℓ 6∈ dom(σ)). Then, we can assume that the last steps of the translation
and the inverse respectively have the following forms:

Γ;σ{ℓ 7→ k} − M1 ր e1 : t1 ℓ 6∈ dom(σ)

Γ;σ − λk :αℓ.M1 ր [e1]ℓ : [t1]ℓ

Γ;σ{ℓ 7→ k0} − e1 : t1 ց M2 k0 fresh

Γ;σ − [e1]ℓ : [t1]ℓ ց λk0 :αℓ.M2 .

By renaming the bound variables, we can also take k as k0. Hence, by the induction

hypothesis, Γ†, C⊑, σ†, k : αℓ − M1 ≡ M2 : t†1, so Γ†, C⊑, σ† − λk :αℓ.M1 ≡ λk :αℓ.M2 :

αℓ → t†1.

Case (e = [e1]ℓ and ℓ ∈ dom(σ)). Then, we can assume that the last steps of the translation
and the inverse respectively have the following forms:

Γ;σ{ℓ 7→ k} − [k/σ(ℓ)]M1 ր e1 : t1 ℓ ∈ dom(σ)

Γ;σ − λk :αℓ.M1 ր [e1]ℓ : [t1]ℓ

Γ;σ{ℓ 7→ k0} − e1 : t1 ց M2 k0 fresh

Γ;σ − [e1]ℓ : [t1]ℓ ց λk0 :αℓ.M2 .



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 23

By renaming the bound variables, we can also take k as k0. Hence, by the induction

hypothesis, Γ†, C⊑, σ†\{σ(ℓ) : αℓ}, k : αℓ − [k/σ(ℓ)]M1 ≡ M2 : t†1. Since k = k0 and k0

is fresh, k 6= σ(ℓ), so, by weakening, Γ†, C⊑, σ†, k : αℓ − [k/σ(ℓ)]M1 ≡ M2 : t†1. Applying

Lemma 3.5 and the transitivity of ≡, we have Γ†, C⊑, σ†, k : αℓ − M1 ≡ M2 : t†1, and

hence Γ†, C⊑, σ† − λk :αℓ.M1 ≡ λk :αℓ.M2 : αℓ → t†1.

Case (e = eℓ
1). Then, we can assume that the last steps of the translation and the inverse

respectively have the following forms:

Γ;σ − M1 ր e1 : [t1]ℓ Γ†, C⊑, σ† − M0 : αℓ

Γ;σ − M1 M0 ր eℓ
1 : t1

Γ;σ − e1 : [t1]ℓ ց M2 ℓ′ ∈ dom(σ) ℓ ⊑ ℓ′

Γ;σ − eℓ
1 : t1 ց M2 (cℓ′ ℓ σ(ℓ′)) .

Hence, by the induction hypothesis, Γ†, C⊑, σ† − M1 ≡ M2 : αℓ → t†1. Also, by definition,

Γ†, C⊑, σ† − M0 ≡ cℓ′ ℓ σ(ℓ′) : αℓ. Hence Γ†, C⊑, σ† − M1 M0 ≡ M2 (cℓ′ ℓ σ(ℓ′)) : t†1.

Then, we can show the following theorem:

Theorem 5.6 (Inclusion of Inverse Translation). If Γ;σ − M ր e : t and γ ❀
❀σ δ : Γ, then

γ(e) ❀
❀σ δ(M) : t.

Proof. By Theorem 4.5, there exists M ′ such that Γ;σ − e : t ց M ′. Then, by Lemma 5.5,
Γ†, C⊑, σ† − M ≡ M ′ : t†. Since C⊑, σ† − δ ≈ δ : Γ† (using Remark 3.10), C⊑, σ† −
δ(M) ≈ δ(M ′) : t† by Lemma 3.9. Then, by Theorem 5.4, γ(e) ❀

❀σ δ(M ′) : t and, by
Theorem 5.3 and the symmetricity of the logical relation for λ→, γ(e) ❀

❀σ δ(M) : t.

As a corollary, the logical correspondences is shown to be full.

Corollary 5.7 (Fullness of Logical Correspondences). If C⊑, σ† − M : t†, then there

exists a λ[ ] term e such that e ❀
❀σ M : t.

Proof. By Theorem 3.1, there exists V such that M −→∗ V and all the subderivations of
C⊑, σ† − V : t† satisfy Subformula Property. Applying Theorem 4.8, we get the inverse e
of V such that ·;σ − V ր e : t. So, from Theorem 5.6, e ❀

❀σ V : t, and hence e ❀
❀σ M : t.

5.2. Preservation of Logical Relations. By using the logical correspondence introduced
above, we prove that the logical relations are preserved by the logical correspondence.

Theorem 5.8 (Preservation of Equivalences).

(1) If ei
❀
❀σ Mi : t for i = 1, 2 and e1 ≈dom(σ) e2 : t, then C⊑, σ† − M1 ≈ M2 : t†.

(2) Symmetrically, if ei
❀
❀σ Mi : t for i = 1, 2 and C⊑, σ† − M1 ≈ M2 : t†, then

e1 ≈dom(σ) e2 : t.

Proof. We prove both simultaneously by induction on the structure of t. We show only the
main cases:

Case (t = t1 → t2). To show (1), take arbitrary M ′
1 and M ′

2 such that C⊑, σ† − M ′
1 ≈

M ′
2 : t†1. By fullness (Corollary 5.7), there exist e′

i
such that e′

i
❀
❀σ M ′

i
: t1 (i = 1, 2), and

by the induction hypothesis (2) for t1, we have e′1 ≈dom(σ) e′2 : t1. Then, by definition,
there exist vi and Vi such that ei −→∗ vi and Mi −→∗ Vi and vi e

′
i

❀
❀σ Vi M

′
i

: t2 for



24 N. SHIKUMA AND A. IGARASHI

i = 1, 2, and v1 e′1 ≈dom(σ) v2 e′2 : t2. Applying the induction hypothesis (1) for t2 to them,

C⊑, σ† − V1 M ′
1 ≈ V2 M ′

2 : t†2. So we have C⊑, σ† − V1 ∼ V2 : t†1 → t†2, and hence

C⊑, σ† − M1 ≈ M2 : t†1 → t†2. The statement (2) can be shown similarly, without the
fullness.

Case (t = [t1]ℓ). To show (2), we have two subcases: ℓ ⊑ dom(σ) or not. If ℓ ⊑ ℓ′ ∈ dom(σ)
for some ℓ′, then, by definition, C⊑, σ† − cℓ′ ℓ σ(ℓ′) ≈ cℓ′ ℓ σ(ℓ′) : αℓ. Also, by definition,
there exist vi and Vi such that ei −→∗ [vi]ℓ and Mi −→∗ Vi and vi

❀
❀σ Vi (cℓ′ ℓ σ(ℓ′)) : t1

for i = 1, 2, and C⊑, σ† − V1 (cℓ′ ℓ σ(ℓ′)) ≈ V2 (cℓ′ ℓ σ(ℓ′)) : t†1. Applying the induction
hypothesis (2) for t1, we have v1 ≈dom(σ) v2 : t1, which is equivalent to v1 ∼dom(σ) v2 : t1,

so e1 ≈dom(σ) e2 : [t1]ℓ. The case ℓ 6⊑ dom(σ) is trivial. Showing (1) is easy since C⊑, σ† −
M ′ : αℓ is equivalent to ℓ ⊑ dom(σ).

5.3. Noninterference. Then, we prove the noninterference theorem by reducing it to
Lemma 3.8.

Corollary 5.9 (Noninterference). If Γ ; π − e : t and γ1 ≈π γ2 : Γ, then γ1(e) ≈π γ2(e) : t.

Proof. Choose an arbitrary σ such that dom(σ) = π and ran(σ)∩dom(Γ) = ∅. By Theorem
4.5, Γ;σ − e : t ց M and Γ†, C⊑, σ† − M : t† for some M . Similarly, for any x ∈ dom(γi)
(i = 1, 2), there exists Mxi such that ·;σ − γi(x) : Γ(x) ց Mxi and Γ†, C⊑, σ† − Mxi :
(Γ(x))†. Define δi (i = 1, 2) as a simultaneous substitution such that dom(δi) = dom(γi)
and δi(x) = Mxi for x ∈ dom(δi). Then, by Theorem 5.4, γi

❀
❀σ δi : Γ for i = 1, 2

and so γi(e) ❀
❀σ δi(M) : t for i = 1, 2. By applying Theorem 5.8(1) to the assumption

γ1 ≈π γ2 : Γ, we have C⊑, σ† − δ1 ≈ δ2 : Γ†. Thus, by Lemma 3.8 (with Remark 3.10),
C⊑, σ† − δ1(M) ≈ δ2(M) : t†. Finally, by Theorem 5.8(2), γ1(e) ≈π γ2(e) : t.

6. Comparison of DCC with λ[ ]

In this section, we briefly review DCC [1] and discuss why the translation from DCC
to System F given by Tse and Zdancewic [22, 23] is neither full nor even sound. Then, we
discuss an extension DCCpc of DCC, which was proposed also by Tse and Zdancewic in
order to make the translation full [21, 22, 23]. Finally, we show that DCCpc is equivalent

to λ[ ] by giving translations between the two.

6.1. DCC and Tse–Zdancewic’s translation to System F. DCC is an extension of
the computational λ-calculus [12] and uses monads indexed by dependency levels (e.g.,
security levels, binding times) in order to control the dependencies between computations.

The dependency levels are partially ordered by ⊑2 as in λ[ ]; computation and data at a
higher level are permitted to depend on those at lower levels, but the other direction of
dependencies is forbidden. Here, we briefly sketch a simplified version of DCC [22, 23] (we
call it simply DCC), in which pointed types and recursion are omitted.

2In fact, the dependency levels were assumed be a lattice [1] but we do not need meets and joins in the
following development.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 25

The syntax of DCC is defined as follows:

t ::= unit | t → t | t × t | t + t | Tℓ t

e ::= x | () | λx :t. e | e e | 〈e, e〉 | π1(e) | π2(e) | ι1(e) | ι2(e)

| (case eof ι1(x1).e | ι2(x2).e) | ηℓ e | bind x = e in e

Roughly speaking, a monadic type Tℓ t, the monadic unit ηℓ e, and the bind operation
bind x = e1 in e2 correspond to sealing types [t]ℓ, sealing terms [e]ℓ, and unsealing terms
eℓ, respectively. The typing rule for ηℓ is as follows:

Γ − e : t

Γ − ηℓ e : Tℓ t

Note that a type judgment of DCC lacks an observer level; instead, the notion of protected
types is introduced to prevent information leakage and plays a key role in the following
typing rule for bind:

Γ − e1 : Tℓ t1 Γ, x : t1 − e2 : t2 ℓ � t2

Γ − bind x = e1 in e2 : t2

ℓ � unit
ℓ � t1 ℓ � t2

ℓ � t1 × t2

ℓ � t2
ℓ � t1 → t2

ℓ 6⊑ ℓ′ ℓ � t

ℓ � Tℓ′ t

ℓ ⊑ ℓ′

ℓ � Tℓ′ t

Here, judgment ℓ � t is read as “t is protected at ℓ”. Intuitively, this judgment means that
observers only at a level equal to or higher than ℓ can obtain some bits of information from
the value of t.

So, this rule ensures that the value of the whole term cannot be examined at unrelated
levels. However, bind is restrictive in the sense that ηℓ must be placed within the scope of
x to make t2 protected. For example, the term λy : Tℓ bool.bind x = y in ηℓ x is given
type (Tℓ bool) → (Tℓ bool) while the term λy : Tℓ bool.ηℓ (bind x = y in x) cannot. We
will see that this restriction is a source of the failure of fullness of the translation by Tse
and Zdancewic. The other typing rules are the same as λ→.

The reduction rule for bind is bind x = ηℓ e1 in e2 −→ [e1/x]e2. The other reduction

rules and the logical relations are essentially the same as λ[ ] except for the change from
[t]ℓ to Tℓ t. The logical relations are indexed by an observer level (that is, a finite set of
data levels) rather than a single data level as in Tse and Zdancewic [22, 23, 21]. Although
our definition is a straightforward extension of theirs, this seems more natural for DCCpc

below, for the domains of the relations are terms that are well typed at a given observer
level.

A main idea of the translation by Tse and Zdancewic, which we have followed in this
paper, is to translate monadic types Tℓ t into function types αℓ → t. (Otherwise, type
translation is the same as ours.) Term translation, the details for which we refer to [22, 23],
is more involved than our translation, due to the complexity of bind and protected types—
we will see how they are expressed in terms of our unsealing in the next section.



26 N. SHIKUMA AND A. IGARASHI

6.2. Failure of Fullness and Soundness. Now we explain why their translation is neither
full nor sound.

Consider the DCC type t = Tℓ((Tℓ bool) → bool). Then, any DCC terms of this type
is equivalent to (sealed) constant functions ηℓ(λx : Tℓ bool.c) where c is either true or
false. Note, in particular, that the term e = ηℓ(λy : Tℓ bool.bind x = y in x) is ill typed

due to the restriction of the typing rule of bind. As a result, the two terms

e1 = λf.bind f ′ = f in ηℓ (f ′ (ηℓ true))

and
e2 = λf.bind f ′ = f in ηℓ (f ′ (ηℓ false))

are logically related at the type (Tℓ((Tℓ bool) → bool)) → (Tℓ bool) and level ℓ since
all we can pass to these functions are the constant functions above and we cannot pass
non-constant functions such as e.

In System F, however, the translations of e1 and e2 are not logically related at type
αℓ → ((αℓ → bool) → bool), which corresponds to the DCC type t above! This is because
they can be distinguished by applying them to the term M = λk : αℓ.λf : αℓ → bool.fk,
which would correspond to e.

In short, there is no well typed DCC term that corresponds to M (failure of fullness)
and, as a result, the equivalence of e1 and e2 is not preserved through the translation (failure
of soundness).

6.3. Tse and Zdancewic’s Extension of DCC. Interestingly, Tse and Zdancewic also
noticed the restriction of the typing for bind in DCC and proposed an extension of DCC
by introducing the notion of protection contexts (as a set of data levels) to type judgments.
The typing rules for ηℓ and bind are changed as follows:

Γ ; π ∪ {ℓ} − e : t

Γ ; π − η ℓ e : Tℓ t
(D-Eta)

Γ ; π − e : Tℓ t Γ, x : t ; π − e′ : t′ ℓ ⊑ π

Γ ; π − bind x = e in e′ : t′
(D-Bind1)

Γ ; π − e : Tℓ t Γ, x : t ; π − e′ : t′ ℓ 6⊑ π ℓ � t′

Γ ; π − bind x = e in e′ : t′
(D-Bind2)

Γ ; π ∪ {ℓ} − e : t ℓ 6⊑ π ℓ � t

Γ ; π − e : t
(D-Protected)

The rule (D-Bind1) is essential and just corresponds to the rule (ST-Unseal) of λ[ ]. The
rule (D-Protected) means that a term of a type protected by ℓ can be used by a user
which does not have ℓ. This extension allows terms like λy : Tℓ bool.ηℓ(bind x = y in x)
and ηℓ(λy : Tℓ bool.bind x = y in x) to be well typed. The rest of the typing rules are

the same as λ[ ]. The definitions of the reduction rules and the logical relations are the same
as DCC.

In the next subsection, we will show the three rules (D-Bind1), (D-Bind2), and (D-

Protected) are in fact derived forms in the sense that DCCpc and λ[ ] are equivalent.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 27

Remark 6.1. DCCpc was proposed [22, 23] and simplified later by Tse and Zdancewic [21].
In this paper, we use the simplified version with the following changes:

• We split the single typing rule for bind into the two rules.
• We add the rule (D-Protected) above for the subject reduction property, which

does not really hold in the original formulation, due to the reduction of bind.

6.4. Isomorphisms between λ[ ] and DCCpc. We show correspondence between λ[ ] and

DCCpc by giving a translation (·)• from λ[ ] to DCCpc and its inverse (·)◦ and showing
that both preserve logical equivalences. The inverse translation is inspired by Tse and
Zdancewic’s translation from DCC to System F [22, 23]: We obtain the inverse translation

by comparing theirs with our full complete translation from λ[ ] to λ→. In what follows, we
add subscripts “λ[ ]” and “DCCpc” to distinguish typing judgments of the two calculi.

At the type level, both translations are easy—they just exchange [·]ℓ and Tℓ:

([t]ℓ)
• def

= Tℓ (t•) (Tℓ t)◦
def
= [t◦]ℓ

(For other type constructors, both translations are trivial.) At the term level, (·)• is
obvious—sealing and unsealing can be straightforwardly expressed by ηℓ and bind, re-
spectively:

([e]ℓ)
• def

= ηℓ (e•)

(eℓ)•
def
= bind x = e• in x.

The translation (·)◦ for terms is more involved. A main difficulty is in the bind operator.
At first one might think bind x = e1 in e2 can be expressed by (λx.e◦2) (e◦1)

ℓ, but, if
Γ ; π −DCCpc bind x = e1 in e2 : t2 is derived by (D-Bind2), where ℓ 6⊑ π and ℓ � t2,

then (e◦1)
ℓ is typable only at π ∪ {ℓ}, which is strictly higher than π; so is (λx.e◦2) (e◦1)

ℓ.
Thus, this naive translation does not quite preserve typing.

This problem is solved by observing that t2 is protected at ℓ (i.e., ℓ � t2). First, we
can seal (λx.e◦2) (e◦1)

ℓ and derive Γ◦ ; π −
λ[ ] [(λx.e◦2) (e◦1)

ℓ]ℓ : [t◦2]ℓ. Here, this sealing with
ℓ is redundant since t2 is already protected by ℓ. In fact, we can always eliminate such a
sealing by applying an anti-protection combinator, defined below, of type [t2]ℓ → t2.

Definition 6.2 (Anti-Protection Combinators). The set of closed terms Pℓ� t indexed by
protected types is inductively defined as follows:

Pℓ� unit = λx : [unit ]ℓ. ()

Pℓ� t1×t2 = λx : [t1 × t2]ℓ. 〈Pℓ� t1 [π1(x
ℓ)]ℓ, Pℓ� t2 [π2(x

ℓ)]ℓ〉

Pℓ� t1→t2 = λx : [t1 → t2]ℓ. λy :t1. Pℓ� t2 [xℓ y]ℓ

Pℓ�T
ℓ′ t = λx : [[t]ℓ′ ]ℓ. [(x

ℓ)ℓ
′

]ℓ′ if ℓ ⊑ ℓ′

Pℓ�T
ℓ′ t = λx : [[t]ℓ′ ]ℓ. [Pℓ� t [(xℓ)ℓ

′

]ℓ]ℓ′ if ℓ 6⊑ ℓ′ and ℓ � t

These combinators intuitively mean that, for any λ[ ] term e of type t◦ such that ℓ � t,
the sealing term [e]ℓ can be unsealed at any observer level. This intuition is justified by the
following proposition:

Proposition 6.3. The following properties hold:



28 N. SHIKUMA AND A. IGARASHI

(1) If ℓ � t and ℓ ⊑ π, then Pℓ� t ≈π λx : [t◦]ℓ. x
ℓ : [t◦]ℓ → t◦.

(2) If ℓ � t and ℓ 6⊑ π, then e1 ≈π e2 : t◦ for any λ[ ] terms ei such that · ; π −
λ[ ] ei : t◦

(i = 1, 2). In particular, under the same assumptions, it follows that Pℓ� t ≈π f :
[t◦]ℓ → t◦ for any function f such that · ; π −

λ[ ] f : [t◦]ℓ → t◦.

Proof. By induction of the derivation of ℓ � t.

The second clause means that no term of a protected type illegally leak any information.
A corresponding property has been proved for DCC [1].

Now we return to defining (·)◦. For the bind operator, we have two cases. (Strictly
speaking, (·)◦ is defined by induction on the type derivation as in Section 4.) If the last
typing rule is (D-Bind1), the definition is just

(bind x = e1 in e2)
◦ def

= (λx. e◦2) (e◦1)
ℓ,

where e1 and e2 have types Tℓ t1 and t2, respectively. If it is (D-Bind2), we can assume
ℓ � t2 and

(bind x = e1 in e2)
◦ def

= Pℓ� t2 [(λx. e◦2) (e◦1)
ℓ]ℓ.

Another interesting case is when the last step of the type derivation is

Γ ; π ∪ {ℓ} −DCCpc e : t ℓ 6⊑ π ℓ � t

Γ ; π −DCCpc e : t
(D-Protected)

The situation is similar to the case for (D-Bind2): the DCCpc type t is already protected at
ℓ and so ℓ in the context of the premise is redundant. So, we obtain Pℓ� t [e◦]ℓ, in which e◦

is the translation from Γ ; π ∪ {ℓ} −DCCpc e : t. For the other typing rules, the translation
is trivial. For example,

(ηℓ e)◦
def
= [e◦]ℓ.

Clearly, both translations preserve typing. The following theorem ensures that the
translations preserve the logical relations, showing DCCpc and λ[ ] are equivalent.

Theorem 6.4 (Preservation of Equivalences). e1 ≈π e2 : t in DCCpc iff e◦1 ≈π e◦2 : t◦ in

λ[ ]. Also, e•1 ≈π e•2 : t• in DCCpc iff e1 ≈π e2 : t in λ[ ].

Proof. We just give a sketch, which is along a similar line as the proof of Theorem 5.8.
First, like Definition 5.1, we define logical correspondences e ❀

❀π e′ : t over terms of λ[ ]

and DCCpc indexed by observer levels π (instead of finite maps, since both λ[ ] and DCCpc

use the common poset of data levels). Then we show the inclusion of (·)◦ and (·)•, that is,
e ❀

❀π e◦ : t and e• ❀
❀π e : t (cf. Theorem 5.4 and 5.6). We use Proposition 6.3 to prove

the former. Finally, we show the preservation of the equivalences (cf. Theorem 5.8) and,
combining the inclusion of the translations, get the result.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 29

_ _ _ _ _ _ _ _ _ _ _ _ _�

�

�

�

�

�

_ _ _ _ _ _ _ _ _ _ _ _ _

DCC
protection
contexts

+3 DCCpc

(·)◦
//

λ[ ]

(·)•
oo

Figure 1: Relationship among DCC, DCCpc, and λ[ ].

7. Conclusion

We have formalized noninterference for a typed λ-calculus λ[ ] by logical relations and
proved it by reducing it to the basic lemma of logical relation for λ→ through a translation
of λ[ ] to λ→. Moreover, we have shown that λ[ ] is equivalent to DCCpc, an extension of
DCC with observer levels, as illustrated in Figure 1: a dotted double arrow stands for a
language extension and the two systems (except DCC) in the dashed box have sound and
fully complete translations into λ→. In those systems, dependency is captured by typability
in λ→ through the translations.

There have been presented many ways to prove noninterference theorems for type-
based dependency analyses for higher-order languages. For example, Heintze and Riecke [7]
and Abadi et al. [1] showed the noninterference theorem for SLam by using denotational
semantics. Pottier and Simonet [15] proved it for Core ML with non-standard operational
semantics. Miyamoto and Igarashi [10], in the study of a modal typed calculus λ✷

s , showed
that the noninterference theorem for certain types can be easily proved only by using a
simple nondeterministic reduction system, although this system does not include recursion
unlike the others mentioned here.

In comparison with these proofs, the proof technique presented in this paper might seem
overwhelming to show only noninterference. Nevertheless, we believe it is still theoretically
interesting since the translation shows that the notion of dependency can be captured only
in terms of simple types and makes a comparison between type-based dependency analyses
easier.

Practically, the translation might be a basis for implementing a language with sealing by
another language without it. However, our results rely on full reduction with commuting
conversions, or strong normalization, which cannot be assumed in real languages. So, it
would be interesting future work to investigate how this proof technique may be extended
to richer languages with, for example, recursion. To add recursion, several difficulties have
to be overcome. A first problem, as is already pointed out by Tse and Zdancewic [21, 22, 23],
is that a key of any data level can be “forged” by using recursion, which allows a term of
any type, and such forged keys enable any observer to extract a sealed value illegally. As
suggested also by Tse and Zdancewic, this problem may be solved by pointed types (or use
of Haskell’s seq). A second, more serious problem is that it would be much harder to give
an inverse translation: if the translation is extended in a straightforward manner, then there
will be “junk” terms, such as some divergent terms not in the image of the translation and,
as a result, fullness would be lost. We expect some more significant work will be needed to
solve these problems.



30 N. SHIKUMA AND A. IGARASHI

Acknowledgements

Comments from anonymous referees helped up improve the final presentation. We
thank Masahito Hasegawa, Eijiro Sumii, Stephen Tse, and Steve Zdancewic for discussions
on this subject. This work is supported in part by Grant-in-Aid for Scientific Research (B)
No. 17300003.

References

[1] Mart́ın Abadi, Anindya Banerjee, Nevin Heintze, and Jon G. Riecke. A core calculus of dependency. In
POPL ’99: Proceedings of 26th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, pages 147–160, New York, NY, USA, 1999. ACM Press.

[2] Philippe de Groote. On the strong normalisation of intuitionistic natural deduction with permutative-
conversions. Information and Computation, 178:441–464, August 2002.

[3] Dorothy. E. Denning and Peter J. Denning. Certification of programs for secure information flow.
Communications of the ACM, 20(7):504–513, July 1977.

[4] Jean-Yves Girard. Interprétation fonctionelle et élimination des coupures de l’arithmétique d’ordre
supérieur. PhD thesis, Université Paris VII, 1972. A summary appeared in the Proceedings of the
Second Scandinavian Logic Symposium (J.E. Fenstad, editor), North-Holland, 1971 (pp. 63–92).

[5] Joseph Goguen and José Meseguer. Security policies and security models. In Proceedings of IEEE
Symposium on Security and Privacy, pages 11–20, 1982.

[6] Masahito Hasegawa. Girard translation and logical predicates. Journal of Functional Programming,
10(1):77–89, January 2000.

[7] Nevin Heintze and Jon G. Riecke. The SLam calculus: programming with secrecy and integrity. In POPL
’98: Proceedings of ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 365–377, 1998.

[8] Neil D. Jones, Carsten K. Gomard, and Peter Sestoft. Partial Evaluation and Automatic Program
Generation. Prentice-Hall, 1993.

[9] John C. Mitchell. Foundations for Programming Languages. The MIT Press, 1996.
[10] Kenji Miyamoto and Atsushi Igarashi. A modal foundation for secure information flow. In FCS ’04:

Proceedings of Workshop on Foundations of Computer Security, pages 187–203, June 2004.
[11] Masaaki Mizuno and David A. Schmidt. A security flow control algorithm and its denotational semantics

correctness proof. Formal Aspects of Computing, 4(6A):727–754, 1992.
[12] Eugenio Moggi. Notions of computation and monads. Information and Computation, 1:55–92, 1991.
[13] Maxwell H. A. Newman. On theories with a combinatorial definition of “equivalence”. Annals of Math-

ematics, 43(2):223–243, 1942.
[14] Gordon D. Plotkin. Lambda-definability in the full type hierarchy. In To H.B.Curry: Essays on Com-

binatory Logic, Lambda Calculus and Formalism. Academic Press, 1980.
[15] François Pottier and Vincent Simonet. Information flow inference for ML. ACM Transactions on Pro-

gramming Languages and Systems, 25(1):117–158, 2003.
[16] John C. Reynolds. Towards a theory of type structure. In Proc. Colloque sur la Programmation, pages

408–425, New York, 1974. Springer-Verlag LNCS 19.
[17] John C. Reynolds. Types, abstraction and parametric polymorphism. In Proceedings of the IFIP 9th

World Computer Congress, pages 513–523, 1983.
[18] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE Journal On

Selected Areas In Communications, 21(1):5–19, 2003.
[19] Naokata Shikuma and Atsushi Igarashi. Proving noninterference by a fully complete translation to

the simply typed λ-calculus. In ASIAN ’06: Proceedings of the 11th Annual Asian Computing Science
Conference, volume 4435 of LNCS, pages 302–316. Springer-Verlag, December 2006.

[20] Yan Mei Tang and Pierre Jouvelot. Effect systems with subtyping. In Proceedings of ACM Symposium
on Partial Evaluation and Semantics-Based Program Manipulation (PEPM’95), pages 45–53, 1995.

[21] Stephen Tse and Steve Zdancewic. Translating dependency into parametricity. A draft accepted by
Journal of Functional Programming (JFP), January 2006. (Submitted, December 2004.) Available as
http://www.cis.upenn.edu/~stevez/stse-work/dccsysf/jfp.pdf.



PROVING NONINTERFERENCE BY A FULLY COMPLETE TRANSLATION 31

[22] Stephen Tse and Steve Zdancewic. Translating dependency into parametricity. In ICFP ’04: Proceedings
of 9th ACM International Conference on Functional Programming, pages 115–125, New York, NY, USA,
2004. ACM Press.

[23] Stephen Tse and Steve Zdancewic. Translating dependency into parametricity. Technical Report MIS-
CIS-04-01, University of Pennsylvania, 2004. Extended version of [22].

[24] Philip Wadler. Theorems for free! In FPCA ’89: Proceedings of the 4th International Conference on
Functional Programming Languages and Computer Architecture, pages 347–359. ACM, New York, NY,
USA, 1989.

This work is licensed under the Creative Commons Attribution-NoDerivs License. To view
a copy of this license, visit http://reativeommons.org/lienses/by-nd/2.0/ or send a
letter to Creative Commons, 559 Nathan Abbott Way, Stanford, California 94305, USA.


	1. Introduction
	2. DC
	2.1. Syntax
	2.2. Type System
	2.3. Reduction
	2.4. Basic Properties
	2.5. Contextual Equivalence, Noninterference, and Logical Relations

	3. The Simply Typed lambda-calculus
	3.1. Definition of STLC
	3.2. Logical Relations for STLC

	4. Translation
	4.1. From dc to STLC
	4.2. From STLC to dc

	5. Proof of Noninterference via Preservation of Logical Relations
	5.1. Logical Correspondence and Its Fullness
	5.2. Preservation of Logical Relations
	5.3. Noninterference

	6. Comparison of DCC with dc
	6.1. DCC and Tse–Zdancewic's translation to System F
	6.2. Failure of Fullness and Soundness
	6.3. Tse and Zdancewic's Extension of DCC
	6.4. Isomorphisms between dco and DCCpc

	7. Conclusion
	Acknowledgements
	References

