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Abstract
It is well known that a program execution exhibits time-varying behavior, i.e., a

program typically goes through a number of phases during its execution with each phase
exhibiting relatively homogeneous behavior within a phase and distinct behavior across
phases. In fact, several recent research studies have been exploiting this time-varying
behavior for various purposes.

This paper proposes phase complexity surfaces to characterize a computer pro-
gram’s phase behavior across various time scales in an intuitive manner. The phase
complexity surfaces incorporate metrics that characterize phase behavior in terms of the
number of phases, its predictability, the degree of variability within and across phases,
and the phase behavior’s dependence on the time scale granularity.

1 Introduction

Understanding program behavior is at the foundation of computer system design and
optimization. Deep insight into inherent program properties drive software and hard-
ware research and development. A program property that has gained increased inter-
est over the past few years, is time-varying program behavior. Time-varying program
behavior refers to the observation that a computer program typically goes through a
number of phases at run-time with relatively stable behavior within a phase and dis-
tinct behavior across phases. Various research studies have been done towards exploit-
ing program phase behavior, for example for simulation acceleration [9,26], hardware
adaptation for energy consumption reduction [1,6,7,27], program profiling and opti-
mization [11,21], etc.

This paper concerns characterizing a program’s phase behavior. To identify phases,
we divide a program execution into non-overlapping intervals. An interval is a contigu-
ous sequence of instructions from a program’s dynamic instruction stream. A phase is a
set of intervals within a program’s execution that exhibit similar behavior irrespective of
temporal adjacency, i.e., a program execution may go through the same phase multiple
times.

Basically, there are four properties that characterize a program’s phase behavior.

– The first property is the time scale at which time-varying program behavior is being
observed. Some programs exhibit phase behavior at a small time granularity while
other programs only exhibit phase behavior at a coarse granularity; and yet other
programs may exhibit phase behavior at various time scales, and the phase behavior



may be hierarchical, i.e., a phase at one time scale may consist of multiple phases
at a finer time scale.

– The second property is the number of phases a program goes through at run-time.
Some programs repeatedly stay in the same phase, for example when executing
the same piece of code over and over again; other programs may go through many
distinct phases.

– The third property concerns the variability within phases versus the variability
across phases. The premise of phase behavior is that there is less variability within
a phase than across phases, i.e., the variability in behavior for intervals belonging
to a given phase is fairly small compared to intervals belonging to different phases.

– The fourth and final property relates to the predictability of the program phase
behavior. For some programs, its time-varying behavior is very regular and by con-
sequence very predictable. For other programs on the other hand, time-varying be-
havior is rather complex, irregular and hard to predict.

Obviously, all four properties are related to each other. More in particular, the time
scale determines the number of phases to be found with a given degree of homogeneity
within each phase; the phases found, in their turn, affect the predictability of the phase
behavior. By consequence, getting a good understanding of a program’s phase behavior
requires all four properties be characterized simultaneously.

This paper presents phase complexity surfaces as a way to characterize program
phase behavior. The important benefit over prior work in characterizing program phase
behavior is that phase complexity surfaces capture all of the four properties mentioned
above in a unified and intuitive way while enabling the reasoning in terms of these four
properties individually.

As a subsequent step, we use these phase complexity surfaces to characterize and
classify programs in terms of their phase behavior. Within SPEC CPU2000 we identify
a number of prominent groups of programs with similar phase behavior. Researchers
can use this classification to select benchmarks for their studies in exploiting program
phase behavior.

2 Related Work

There exists a large body of related work on program phase behavior. In this section,
we only discuss the issues covered in prior work that relate most closely to this paper.

Granularity. The granularity at which time-varying behavior is studied and exploited
varies widely. Some researchers look for program phase behavior at the 100K instruc-
tion interval size [1,6,7]; others look for program phase behavior at the 1M or 10M in-
struction interval granilarity [23]; and yet others identify phase behavior at yet a larger
granularity of 100M or even 1B instructions [22,26]. The granularity chosen obviously
depends on the purpose of the phase-level optimization. The advantage of a small time
scale is that the optimization can potentially achieve better performance because the
optimization can be applied more aggressively. A larger time scale on the other hand
has the advantage that the overhead of exploiting the phase behavior can be amortized
more easily.



Some researchers study phase behavior at different time scales simultaneously. Wavelets
for example provide a natural way of characterizing phase behavior at various time
scales [4,13,24], and Lau et al. [17] identify a hierarchy of phase behavior.

Fixed-length versus variable-length phases. Various researchers aim at detecting
phase behavior by looking into fixed-length instruction intervals [1,6,7]. The potential
problem with the fixed-length interval approach though is that in some cases it may be
hard to identify phase behavior because of the effect of dissonance between the fixed-
length interval and the natural period of the phase behavior. In case the length of the
fixed-length interval is slightly smaller or bigger than the period of the phase behavior,
the observation made will be out of sync with the natural phase behavior. To address
this issue, some researchers advocate identifying phases using variable-length inter-
vals. Lau et al. [17] use pattern matching to find variable-length intervals, and in their
follow-on work [16] they identify program phases by looking into a program’s control
flow structure consisting of loops, and methods calls and returns. Huang et al. [12] de-
tect (variable-length) phases at method entry and exit points by tracking method calls
via a call stack.

Microarchitecture-dependent versus microarchitecture-independent characteriza-
tion. Identifying phases can be done in a number of ways. Some identify program phase
behavior by inspecting microarchitecture-dependent program behavior, i.e., they infer
phase behavior from inspecting time-varying microarchitecture performance numbers.
For example, Balasubramonian et al. [1] collect CPI and cache miss rates. Duester-
wald et al. [8] collect IPC numbers, cache miss rates and branch misprediction rates.
Isci and Martonosi [14] infer phase behavior from power vectors. A concern with
microarchitecture-dependent based phase detection is that once phase behavior is being
exploited, it may affect the microarchitecture-dependent metrics being measured; this
potentially leads to the problem where it is unclear whether the observed time-varying
behavior is a result of natural program behavior or is a consequence of exploiting the
observed phase behavior.

An alternative approach is to measure microarchitecture-independent metrics to in-
fer phase behavior from. Dhodapkar and Smith [7,6] for example keep track of a pro-
gram’s working set; when the working set changes, they infer that the program transi-
tions to another phase. Sherwood et al. [26] use Basic Block Vectors (BBVs) to keep
track of the basic blocks executed — BBVs are shown to correlate well with perfor-
mance in [18]. Other microarchitecture-independent metrics are for example memory
addresses [13] and data reuse distances [24], a program’s control flow structure such as
loops and methods [11,12,16], a collection of program characteristics such as instruc-
tion mix, ILP, memory access patterns, etc. [9,19].

Phase classification. Different researchers have come up with different approaches to
partitioning instruction intervals into phases. Some use threshold clustering [6,7,27];
others use machine learning techniques such as k-means clustering [26], pattern match-
ing [17,24]; yet others use frequency analysis through wavelets [4,5,13,24].



Phase prediction. An important aspect to exploiting phase behavior is to be able to
predict and anticipate future phase behavior. Sherwood et al. [27] proposed last phase,
RLE and Markov phase predictors. In their follow-on work [20], they added confidence
counters to the phase predictors. Vandeputte et al. [28] proposed conditional update
which only updates the phase predictor at the lowest confidence level.

Relation to this paper. In this paper, we characterize program phase behavior at differ-
ent time scale granularities. To this end, we consider fixed-length intervals, use BBVs
to identify phase behavior, use threshold clustering for phase classification, and use a
theoretical predictor to study phase predictability. We will go in more detail about our
phase characterization approach in the next section.

The important difference between this paper compared to prior work is that the
explicit goal of this paper is to characterize the complexity of a program’s phase be-
havior in an intuitively understandable way. Most of this prior work on the other hand
concerned exploiting program phase behavior. The work mostly closely related to this
paper probably is the work done by Cho and Li [4,5]. They use wavelets to characterize
the complexity of a program’s phase behavior by looking at different time scales. This
complexity measure intermingles the four phase behavior properties mentioned in the
introduction; phase complexity surfaces on the other hand provide a more intuitive view
on a program’s phase behavior by factoring out all four properties.

3 Phase Complexity Surfaces

As mentioned in the introduction, there are four properties that characterize the pro-
gram’s overall phase behavior: (i) the time scale, (ii) the number of phases, (iii) the
within and across phase variability, and (iv) phase sequence and transition predictabil-
ity. The phase behavior characterization surfaces proposed in this paper capture all four
properties in a unified way. There are three forms of surfaces: the phase count sur-
face, the phase predictability surface and the phase complexity surface. This section
discusses all three surfaces which give an overall view of the complexity of a program’s
time-varying behavior. Before doing so, we first need to define a Basic Block Vector
(BBV) and discuss how to classify instruction intervals into phases using BBVs.

3.1 Basic Block Vector (BBV)

In this paper, we use the Basic Block Vector (BBV) proposed by Sherwood et al. [25]
to capture a program’s time-varying behavior. A basic block is a linear sequence of
instructions with one entry and one exit point. A Basic Block Vector (BBV) is a one-
dimensional array with one element per static basic block in the program binary. Each
BBV element captures how many times its corresponding basic block has been exe-
cuted. This is done on an interval basis, i.e., we compute one BBV per interval. Each
BBV element is also multiplied with the number of instructions in the corresponding
basic block. This gives a higher weight to basic blocks containing more instructions.
A BBV thus provides a picture of what portions of code are executed and also how
frequently those portions of code are executed.



We use a BBV to identify a program’s time-varying behavior because it is a micro-
architecture-independent metric and by consequence gives an accurate picture of a
program’s time-varying behavior across microarchitectures. Previous work by Lau et
al. [18] has shown that there exists a strong correlation between the code being exe-
cuted — this is what a BBV captures — and actual performance. The intuition is that if
two instruction intervals execute roughly the same code, and if the frequency of the por-
tions of code executed is roughly the same, these two intervals should exhibit roughly
the same performance.

3.2 Phase classification

Once we have a BBV per instruction interval, we now need to classify intervals into
phases. As suggested above, and intuitively speaking, this is done by comparing BBVs
to find similarities. Intervals with similar BBVs are considered belonging to the same
program phase.

Classifying instruction intervals into phases can be done in a number of ways. We
view it as a clustering problem. There exist a number of clustering algorithms, such as
linkage clustering, k-means clustering, threshold clustering, and many others. In this
paper, we use threshold clustering because it provides a natural way of bounding the
variability within a phase. As will become clear later, the advantage of using threshold
clustering is that, by construction, it builds phases for which the variability (in terms
of BBV behavior) is limited to a threshold θ. Classifying intervals into phases using
threshold clustering works in an iterative way. It selects an instruction interval as a
cluster center and then computes the distance with all the other instruction intervals. If
the distance measure is smaller than a given threshold θ, the instruction interval is con-
sidered to be part of the same cluster/phase. Out of all remaining instruction intervals
(not part of previously formed clusters), another interval is selected as a cluster center
and the above process is repeated. This iterative process continues until all instruction
intervals are assigned to a cluster/phase.

In our clustering approach we scan all instruction intervals once from the beginning
until the end of the dynamic instruction stream. This means that the clustering algorithm
has a complexity of O(kN) with N the number of instruction intervals and k clusters
(k << N ), which is much more efficient than the iterative approach as described above
which has an O(N2) computational complexity.

We use the Manhattan distance as our distance metric between two BBVs:

d =

D∑

i=1

‖Ai − Bi‖,

with A and B being two BBVs and Ai being the i-th element of BBV A; the dimen-
sionality of the BBV, or the number of basic blocks in the program binary, equals D.
The advantage of the Manhattan distance over the Euclidean distance is that it weighs
differences more heavily. Assuming that the BBVs are normalized — the sum over all
BBV elements equals one — the Manhattan distance varies between 0 (both BBVs are
identical) and 2 (maximum possible difference between two BBVs). The θ threshold is



expressed as a percentage of the maximum possible Manhattan distance between two
instruction intervals.

After having applied threshold clustering, there are typically a number of clusters
that represent only a small fraction of the total program execution, i.e., clusters with a
small number of cluster members. We group all the smallest clusters to form a single
cluster, the so called transition phase [20]. The transition phase accounts for no more
than 5% of the total program execution.

3.3 Phase count surfaces

Having discussed how to measure behavioral similarity across instruction intervals us-
ing BBVs and how to group similar instruction intervals into phases through threshold
clustering, we can now describe what a phase count surface looks like. A phase count
surface shows the number of program phases as a function of intra-phase variability
across different time scales, i.e., each point on a phase count surface shows the number
of program phases at a given time scale at a given intra-phase variability threshold. The
time scale is represented as the instruction interval length, and the per-phase variability
is represented by θ used to drive the threshold clustering.

3.4 Phase Predictability Surfaces

As a result of the threshold clustering step discussed in the previous section, we can now
assign phase IDs to all the instruction intervals. In other words, the dynamic instruction
stream can be represented as a sequence of phase IDs with one phase ID per instruction
interval in the dynamic instruction stream. We are now concerned with the regularity
or predictability of the phase ID sequence. This is what a phase predictability surface
characterizes.

Prediction by Partial Matching. We use the Prediction by Partial Matching (PPM)
technique proposed by Chen et al. [3] to characterize phase predictability. The reason
for choosing the PPM predictor is that it is a universal compression/prediction technique
which presents a theoretical basis for phase prediction, and is not tied to a particular
implementation.

A PPM predictor is built on the notion of a Markov predictor. A Markov predictor
of order k predicts the next phase ID based upon k preceding phase IDs. Each entry in
the Markov predictor records the number of phase IDs for the given history. To pre-
dict the next phase ID, the Markov predictor outputs the most likely phase ID for the
given k-length history. An m-order PPM predictor consists of (m+1) Markov predictors
of orders 0 up to m. The PPM predictor uses the m-bit history to index the mth order
Markov predictor. If the search succeeds, i.e., the history of phase IDs occurred pre-
viously, the PPM predictor outputs the prediction by the mth order Markov predictor.
If the search does not succeed, the PPM predictor uses the (m-1)-bit history to index
the (m-1)th order Markov predictor. In case the search misses again, the PPM predictor
indexes the (m-2)th order Markov predictor, etc. Updating the PPM predictor is done by
updating the Markov predictor that makes the prediction and all its higher order Markov
predictors. In our setup, we consider a 32-order PPM phase predictor.



Predictability surfaces. A phase predictability surface shows the relationship be-
tween phase predictability and intra-phase variability across different time scales. Each
point on a phase predictability surface shows the phase predictability as a function of
time scale (quantified by the instruction interval granularity) and intra-phase variability
(quantified by the θ parameter used during threshold clustering). Phase predictability
itself is measured through the PPM predictor, i.e., for a given θ threshold and a given
time scale, we report the prediction accuracy by the PPM predictor to predict phase IDs.

3.5 Phase Complexity Surfaces

Having discussed both the phase count surface as well as the phase predictability sur-
face, we can now combine both surfaces to form a so called phase complexity surface.
A phase complexity surface shows phase count versus phase predictability across dif-
ferent time scales. A phase complexity surface is easily derived from the phase count
and predictability surfaces by factoring out the θ threshold. In other words, each point
on the phase complexity surface corresponds to a particular θ threshold which deter-
mines phase count and predictability at a given time scale. The motivation for the phase
complexity surface is to represent an easy-to-grasp intuitive view on a program’s phase
behavior through a single graph.

3.6 Discussion

Time complexity. The time complexity for computing phase complexity surfaces is
linear as all of the four steps have a linear-time complexity. The first step computes
the BBVs at the smallest interval granularity of interest. This requires a functional sim-
ulation or instrumentation run of the complete benchmark execution; the overhead is
limited though. The second step computes BBVs at larger interval granularities by ag-
gregating the BBVs from the previous step. This step is linear in the number of smallest-
granularity intervals. The third step applies threshold clustering at all interval granulari-
ties. As mentioned in the paper, the basic approach to threshold clustering is an iterative
process, our approach though makes a linear scan over the BBVs. Once the phase IDs
are determined through the clustering step, the fourth step then determines the phase
predictability by predicting next phase IDs — again, this is linear-time complexity.

Applications. The phase complexity surfaces provide a number of potential appli-
cations. One is to select representative benchmarks for performance analysis based on
their inherent program phase behavior. A set of benchmarks that represent diverse phase
behaviors can capture a representative picture of the benchmark suite’s phase behavior;
this will be illustrated further in section 6. Second, phase complexity surfaces are also
useful in determining an appropriate interval size for optimization. For example, reduc-
ing energy consumption can be done by downscaling hardware resources on a per-phase
basis [1,6,7,27]. An important criterion for good energy saving and limited performance
penalty, is to limit the number of phases (in order to limit the training time at run time
of finding a good per-phase hardware setting) and to achieve good phase predictability
(in order to limit the number of phase mispredictions which may be costly in terms of
missed energy saving opportunities and/or performance penalty).
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Fig. 1. Phase count surfaces (left column) and phase predictability surfaces (right column) for
gcc-200 (top) and gzip-source (bottom).

4 Experimental Setup

We use all the SPEC CPU2000 integer and floating-point benchmarks, use reference in-
puts for all benchmarks and run all benchmarks to completion. We use the SimpleScalar
Tool Set [2] for collecting BBVs on an interval basis.

5 Program Phase Characterization

Due to space constraints, it is impossible to present phase complexity curves for all
benchmarks. Instead we present and discuss typical example phase complexity surfaces
that we observed during our study. Example surfaces are shown in Figures 1 and 2: Fig-
ure 1 shows phase count and predictability surfaces for gcc-200 and gzip-source,
and Figure 2 shows surfaces for bzip2-graphic and fma3d. As mentioned before,
a phase count surface shows the (logarithm of the) number of phases on the Z-axis
versus the clustering threshold (which is a measure for intra-phase variability) and the
interval size (which is a measure of time granularity) on the X and Y axes; the phase
predictability surface shows phase predictability on the Z-axis versus clustering thresh-
old and interval size. The θ clustering threshold is varied from 0.05 up to 0.5 in 0.05
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fma3d :: phase count fma3d :: phase predictability
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Fig. 2. Phase count surfaces (left column) and phase predictability surfaces (right column) for
bzip2-graphic (top) and fma3d (bottom).

increments — the smaller the threshold, the smaller the intra-phase variability; interval
size is varied from 1M up to 1G — note the labels are shown as log2 of the interval size.

There are basically two types of phase count surfaces. The first type shows a de-
creasing number of program phases at larger time granularities. This is illustrated in
Figure 1. The second type shows an increasing number of program phases at larger
time granularities and a decreasing number of program phases at a yet larger time gran-
ularity, see Figure 2.

The first type of phase count surface can be explained by the observation that phase
behavior at a small time granularity gets averaged out at a larger time granularity. As
a result, more and more portions of the program execution start looking similar which
is reflected in a decreasing number of program phases. The second type of phase count
surface appears for programs with obvious phase behavior, however, this obvious phase
behavior seems to be difficult to capture over a range of time scales. This can occur
in case the period of the inherent phase behavior is not a multiple of a given time
granularity. For the purpose of illustration, consider the following example of a phase ID
sequence: ‘AAABBAAABBAAABB...’ with ‘A’ and ‘B’ being phase IDs. The number
of phases at time granularity 1 equals 2, namely ‘A’ and ‘B’. At the time granularity
of 2, there are 3 phases observed, namely ‘AA’, ‘AB’ (or ‘BA’) and ‘BB’. At the time
granularity of 4, there are only 2 phases observed: ‘AAAB’ and ‘AABB’. In some sense
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gzip-program gap
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Fig. 3. Phase complexity surfaces for gcc-scilab (top left), eon-kajiya (top right),
gzip-program (bottom left) and gap (bottom right).

this could be viewed of as a consequence of our choice for fixed-length intervals in our
phase-level characterization, however, we observe the large number of phases across a
range of time granularities. This seems to suggest that this phase behavior has a fairly
long period, and that variable-length intervals (which are tied to some notion of time
granularity as well) may not completely solve the problem.

It is also interesting to observe that for both types of phase count surfaces, phase
predictability can be high or low. For example, the predictability is low for gcc-200,
gzip-source and bzip2-graphic and is very high for fma3d. For some bench-
marks, phase predictability correlates inversely with the number of phases, see for ex-
ample gzip-source: the higher the number of phases, the lower their predictability.
For other benchmarks on the other hand, the opposite seems to be true: phase pre-
dictability decreases with a decreasing number of phases, see for example gcc-200.

Figure 3 shows the phase complexity surfaces for gcc-scilab, eon-kajiya,
gzip-program and gap which combine the phase count and predictability surfaces.
These examples clearly show two extreme phase behaviors. The phase behavior for
eon-kajiya is much less complex than for gcc-scilab: eon-kajiya has fewer
program phases and shows very good phase predictability; gcc-scilab on the other
hand, exhibits a large number of phases and in addition, phase predictability is very
poor.



6 Classifying Benchmarks

Having characterized all the benchmarks in terms of their phase behavior using phase
complexity surfaces, we can now categorize benchmarks according to their phase be-
havior. To this end we employ the methodology proposed by Eeckhout et al. [10] to find
similarities across benchmarks.

6.1 Methodology

As input to this methodology we provide a number of characteristics per benchmark:
we provide phase predictability and (the logarithm of) the number of phases at three
threshold values (θ = 5%, θ = 10% and θ = 25%) at four time scales (1M, 8M, 64M
and 512M) — there are 24 characteristics in total. Intuitively speaking, we sample the
phase complexity surface. This yields a data matrix with the rows being the benchmark-
input pairs and the columns being the 24 phase characteristics.

This data matrix serves as input to Principal Components Analysis (PCA) [15] —
the goal of PCA is (i) to remove correlation from the data set and (ii) to reduce the
dimensionality. PCA computes new dimensions, called principal components, which
are linear combinations of the original phase characteristics. In other words, PCA tran-
forms the p = 24 phase characteristics X1, X2, . . . , Xp into p principal components
Z1, Z2, . . . , Zp with Zi =

∑p

j=1
aijXj . This transformation has the properties (i)

V ar[Z1] ≥ V ar[Z2] ≥ . . . ≥ V ar[Zp] — this means Z1 contains the most information
and Zp the least; and (ii) Cov[Zi, Zj ] = 0, ∀i 6= j — this means there is no information
overlap between the principal components. Some principal components have a higher
variance than others. By removing the principal components with the lowest variance
from the analysis, we reduce the dimensionality of the data set while controlling the
amount of information that is thrown away. On our data set we retain 3 principal com-
ponents that collectively explain 87.4% of the total variance in the original data set.
Note that prior to PCA we normalize the data matrix (the columns have a zero mean
and variance of one) to put all characteristics on a common scale; also after PCA, we
normalize the principal components to give equal weight to the underlying mechanisms
extracted by PCA.

We now have a reduced data matrix, i.e., we are left with three principal component
values for all benchmark-input pairs. This reduced data set now serves as input to clus-
ter analysis which groups benchmark-input pairs that exhibit similar phase behavior.
We use linkage clustering here because it allows to visualize the clustering through a
dendrogram. Linkage clustering starts with a matrix of distances between the bench-
marks. As a starting point for the algorithm, each benchmark is considered as a group.
In each iteration of the algorithm, groups that are closest to each other are merged and
groups are gradually merged until we are left with a single group. This can be repre-
sented in a so called dendrogram, which graphically represents the linkage distance for
each group merge at each iteration of the algorithm. Having obtained a dendrogram,
it is up to the user to decide how many clusters to take. This decision can be made
based on the linkage distance. Indeed, small linkage distances imply strong clustering
while large linkage distances imply weak clustering. There exist several methods for
calculating the distance between clusters. In this paper we use the weighted pair-group
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Fig. 4. Dendrogram visualizing the clustering.

ID benchmarks
1 gcc-200, gcc-scilab, gcc-expr, gcc-integrate, parser, mcf
2 eon-kajiya, eon-rush, mesa, twolf, sixtrack, wupwise, perl-make, vpr-place
3 crafty, vpr-route, eon-cook, gzip-program, gzip-source, gzip-graphic,

gzip-random,art, perl-diff, vortex
4 bzip2, gcc-166, gzip-log, perl-split, ammp, gap, lucas, apsi, galgel,

facerec, mgrid, applu, equake, fma3d, swim
Table 1. Classifying benchmarks in terms of their phase behavior; cluster representatives are
shown in bold.

average method which computes the distance between two clusters as the weighted av-
erage distance between all pairs of program-input points in the two different clusters.
The weighting of the average is done by considering the cluster size, i.e., the number of
program-input points in the cluster.

6.2 Results

Figure 4 shows the dendrogram obtained from clustering the benchmarks based on
their phase behavior. Classifying the benchmarks using this dendrogram with a criti-
cal threshold of 2.5, results in four major clusters representing the most diverse phase
behaviors across the SPEC CPU2000 benchmarks, see also Table 1. Note that in case a
more fine-grained distinction needs to be made among the benchmarks in terms of their
phase behavior, the critical threshold should be made smaller; this will result in more



fine-grained types of phase behavior. We observe the following key phase characteris-
tics in each of the four major clusters:

– cluster 1 :: very poor phase predictability and a very large number of phases
– cluster 2 :: very small number of phases and very good phase predictability;
– cluster 3 :: a relatively poor predictability and a high number of phases at small

time granularities, in combination with relatively better predictability and relatively
fewer phases at large time granularities;

– cluster 4 :: a moderate number of phases across all time granularities, and mostly
good to excellent predictability.

In summary, cluster 2 exhibits the simplest phase behavior. Clusters 3 and 4 show
moderately complex phase behaviors, with cluster 3 showing poorer phase predictabil-
ity at small time granularities. Cluster 1 represents the most complex phase behav-
iors observed across the SPEC CPU2000 benchmark suite. Referring back to Figure 3,
the phase complexity surfaces shown represent an example benchmark from each of
these groups: eon-kajiya as an example for the simple phase behavior in cluster 2;
gzip-program and gap as examples for the moderately complex phase behaviors in
clusters 3 and 4, respectively; and gcc-scilab as an example for the very complex
phase behavior in cluster 1.

Researchers exploiting program phase behavior can use this classification to select
benchmarks for their experiments. A performance analyst should pick benchmarks from
all groups in order to have a representative set of program phase behaviors.

7 Conclusion

Program phase behavior is a well-known program characteristic that is subject to many
optimizations both in software and hardware. In order to get a good understanding in a
program’s phase behavior, it is important to have a way of characterizing a program’s
time-varying behavior. This paper proposed phase complexity surfaces which character-
ize a program’s phase behavior in terms of its four key properties: time scale, number of
phases, phase predictability and intra- versus inter-phase predictability. Phase complex-
ity surfaces provide a good intuitive and unified view of a program’s phase behavior.
These complexity surfaces can be used to classify benchmarks in terms of their inherent
phase behavior.
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