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Summary. Exploding growth in computational systems forces us to gradually re-
place rigid design and control with decentralization and autonomy. Information
technologies will progress, instead, by“meta-designing” mechanisms of system self-
assembly, self-regulation and evolution. Nature offers a great variety of efficient
complex systems, in which numerous small elements form large-scale, adaptive pat-
terns. The new engineering challenge is to recreate this self-organization and let it
freely generate innovative designs under guidance. This article presents an original
model of artificial system growth inspired by embryogenesis. A virtual organism is a
lattice of cells that proliferate, migrate and self-pattern into differentiated domains.
Each cell’s fate is controlled by an internal gene regulatory network. Embryomorphic
engineering emphasizes hyperdistributed architectures, and their development as a
prerequisite of evolutionary design.
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8.1 Introduction: designing complexity

8.1.1 Toward decentralized, autonomous systems

Today’s information and communication systems are characterized by explod-
ing growth in the number of components and complexity of their interactions.
Systems engineers are confronted with an insatiable demand for functional
innovation, robustness, scalability and security. This upward trend is acceler-
ating at all levels of organization, whether hardware (integrated components),
software (program modules) or networks (applications and users). Famously
anticipated by Moore’s law, the number of transistors on a microprocessor has
climbed five orders of magnitude in the past 35 years. Similarly, operating sys-
tems and other very large computer programs commonly contain hundreds of
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millions of source lines of code (SLOC). Over one billion people routinely use
the Internet, which connects half a billion hosts. In sum, an increasing num-
ber of users with greater mobility are constantly requiring more sophisticated
functionality from larger applications running on faster architectures.

Consequently, computer scientists and engineers are gradually led to re-
think the traditional perspective on systems design, i.e., the dogma of a total-
istic act of creation imposing order and organization exogenously. The growth
in complexity has already been accompanied by a de facto segmentation and
distribution of the traditionally centralized control over systems design. This
march toward decentralization is somewhat discernible in the fields of inte-
grated circuit design and software development, where engineers collaborate
in large teams around relatively independent components and modules. It
has become even more apparent with the advent of leaderless open source
communities, and most striking in the spontaneous growth of the Internet
and World-Wide Web. To some degree, information architects and engineers
are already beginning to lose grip on their creation, which exceeds the ca-
pacity of a single human mind. Therefore, rather than insisting on rigidly
designing computational systems or system parts in every detail, the trend
should be to “step back” even further and concentrate more on establishing
the generic conditions that will allow and encourage those systems to self-
assemble, self-regulate and evolve. In fact, future progress in information and
communication technologies could ultimately depend on our ability to foster
systems that endogenously grow, function, repair themselves and, more im-
portantly, adapt and improve. This need is probably most acute in software
development, which is currently less an exact science than a skillful art — the
accumulation by trial and error of a corpus of design patterns and numerical
recipes. Ironically, machines that are perfectly logical and regular still rely
entirely on intuitive and fallible human instructions. The burden is fully on
the side of our human cognitive system to instruct artificial systems, but this
ability is now reaching its limits with very large architectures, as attested by
the extremely high cost (in effort, time and money) devoted to source code
development, maintenance and debugging.

A major challenge will thus be for information systems to step beyond
their current state of heteronomy, where they are fully subjected to a de-
signer, toward states of increasing organizational and functional autonomy.
Biological organisms, which might give the illusion of deliberate design, are in
fact the product of undesigned evolution through random variation and non-
random natural selection, excluding the need to invoke any form of intelligent
design for them (which would also necessarily be, by recursive reasoning, of
a supernatural kind). By contrast, artificial structures will always possess a
causal design link originating from their human makers, while at the same
time this link promises to become less and less clear or direct. In the design
versus evolution spectrum (figure 8.1), classical engineering is currently set on
the “intelligent design” (ID) notch, with the opposite end occupied by biology
under “undesigned evolution” (UE). The expectation is that the engineering
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Fig. 8.1. Four stops and one brick wall on the design-evolution line (see text).

paradigm should progressively shift in the direction of biology through inter-
mediate stages, but without fully reaching UE. In a first stage that we could
refer to as “intelligent meta-design” (IMD), designers will focus on creating
generative mechanisms rather than the systems themselves (Table 8.1). If we
metaphorically imagined, on the contrary, biology drifting toward more de-
sign, ID would be the equivalent of directly assembling an animal’s organs
and limbs together, whereas IMD would correspond to creating the laws of
cellular development, preparing the zygote’s DNA and let it grow. Still closer
to UE, in a stage we could call “evolutionary meta-design” (EMD), an even
more disengaged meta-architect could also create the laws of variation and
selection, prepare some primitive ancestor system (in the reverse biological
metaphor, a prokaryote, for example) and step back to let evolution invent
the rest. Applied to artificial systems, this paradigm shift is the inspiration of
the present work. It emphasizes the importance of constituting fundamental
laws of development and developmental variations in the IMD stage, before
these variations can be selected upon in the EMD stage. In the framework of
genetic algorithms and evolutionary computation, this means an indirect or
implicit mapping (as opposed to direct or explicit) from genotype to pheno-
type.

8.1.2 Harnessing complex systems

Looking around, we observe an abundance of autonomous, emergent systems
in the environment, whether in nature (geological patterns, biological cells,
organisms, animal societies, ecosystems) or spontaneously emerging human
super-structures (cities, markets, the Internet). Naturally decentralized, un-
planned systems are robust and efficient, and constitute the overwhelming
majority of system types. It is our artificially centralized and planned systems
that are fragile, costly to build and rare, as they require a higher intelligence
to arise. Our cognitive viewpoint, accustomed to the illusion of a central con-
sciousness, traditionally refers to such decentralized systems as “complex”,
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systems design systems “meta-design”

heteronomous order autonomous order

centralized control decentralized control

manual, extensional design automated, intentional design

the engineer as a micromanager the engineer as a lawmaker

rigidly placing components allowing fuzzy self-placement

tightly optimized systems hyperdistributed and redundant systems

sensitive to part failures insensitive to part failures

need to control prepare to adapt and self-regulate

need to redesign prepare to learn and evolve

Table 8.1. Some contrastive features of systems design and “meta-design”.

whereas in fact they might be simpler than our familiar contraptions with
their uniquely hierarchical arrangement.

Complex systems are composed of a great number of small, repeated ele-
ments that interact locally and produce collective behavior at a macroscopic
scale. They are characterized by a high degree of decentralization and self-
organization, exhibiting spontaneous pattern formation (self-assembly) and
homeostatic autonomy (self-regulation). Most complex systems are also adap-
tive, in the sense that they are able to learn and/or evolve through feedback
from their external fitness to their internal architecture. The elements com-
posing the system are themselves often internally structured as networks of
smaller entities at a finer scale. For example, one cell can be modeled as a self-
regulatory network of genetic switches, one social agent (insect) as a network
of decision rules, or one neural unit as a local assembly of neurons (oscillator
system). Conversely, agents can also interact collectively at the level of clusters
or subnetworks (organs, assemblies, cliques) to combine in a modular fashion
and form larger collectives. Thus, from both perspectives, complex systems
can often be described as “networks of networks” on several hierarchical lev-
els. The higher levels connecting elements or clusters of elements are generally
spatially extended (cell tissues, cortical areas, ant colonies), whereas the lower
levels inside elements are generally nonspatial (gene nets, neurons, rule sets).
Elements follow the dynamics dictated by their inner networks and also in-
fluence neighboring elements through the emission and reception of signals
(chemical, electrical). The attractors of the internal dynamics are fixed-point
states or limit cycles, and the behavior of the whole connected system can
be rephrased in terms of synchronization among autonomous dynamical sub-
systems. The work presented in this chapter is an instance of this paradigm
based on a 2-D lattice of coupled gene regulatory networks.

Such natural adaptive systems, biological or social, could become a new
and powerful source of inspiration for emerging information and communica-
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tion technologies in their transition toward autonomous systems. This joins
recent trends advocating and announcing the convergence of four scientific
disciplines: nanoscience, biotechnology, information technology and cognitive
science. Called NBIC in the US [2], these fields of investigation combine all
the components of bio-inspired complex systems engineering, i.e., swarms of
small components (Nano), biological complexity (Bio), systems design (Info)
and artificial intelligence (Cogno). Also described by the Future and Emerg-
ing Technologies (FET) program of the European Union [5], this scientific
perspective is close to several other initiatives, such as organic computing
([37], and this volume, in particular chapters 1 and 2), amorphous computing
[1, 25, 41], natural computation, e.g., [28], complex systems engineering [23],
ambient intelligence, and pervasive or ubiquitous computing [40].

As indicated above, however, a major difference with biological systems is
that human-made systems will (and hopefully should), by definition, always
remain under the guidance of a human designer to some degree, never breaking
the barrier to the absolute UE stage that characterizes biology (figure 8.1).
While we want to achieve meta-designing artificial systems that can grow
(IMD stage) and evolve (EMD stage), it is obviously our intent to keep a
partially “visible hand” on these systems, i.e., (a) some meta-control over
their execution and (b) certain requirements about their structure or function.
The important questions of control and optimization of complexity will be
respectively addressed in sections 8.3 and 8.4 below.

8.1.3 Artificial development

The field of Artificial Life (AL) is chiefly concerned with the simulation of
life-like or organismal processes through computer programs or robotic de-
vices that generally are of a distributed nature and operate on a multitude
of interacting components. Researchers in AL attempt to design and con-
struct systems that have the characteristic of living organisms or societies of
organisms out of non-living parts, whether virtual (software agents) or phys-
ical (electromechanical components, chemical materials). AL is, therefore, a
“bottom up” attempt to recreate or synthesize biological phenomena with
the goal of producing adaptive and intelligent systems. In this sense, it can
be contrasted with the traditional “top down” analytical approach of Artifi-
cial Intelligence based on symbolic systems. Although not all AL systems are
“complex”, in the sense of a multitude of elements, AL is one of the most
important and rapidly developing domains within the federation of complex
systems research. In particular, it actively promotes biology-inspired engineer-
ing as a new paradigm complementing or replacing classical physics-based
engineering.

AL opens entirely new perspectives in software, robotic, electrical, mechan-
ical or even civil engineering. Can a sophisticated device or building architec-
ture construct itself from a large reservoir of small components? Can a robot
rearrange its parts and evolve toward better performance without explicit
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instructions? Can a swarm of software agents self-organize and collectively
innovate in problem-solving tasks? Among the great variety of biological sys-
tems that inspire and guide AL research, three broad areas can be identified
according to the scale of their elementary components: (a) molecular or cel-
lular systems, (b) anatomical or functional systems, and (c) individual or so-
cietal systems. Artificial molecular and cellular models find inspiration in the
spontaneous organization of complex chemical and organic structures, such as
protein self-assembly or organism development (e.g., [22], and chapter 9 of this
volume). Applications are linked to nanotechnologies for biomedical or inte-
grated electronic purposes (“smart materials”, mems). On the anatomical and
functional level, robotic parts (limbs, sensors, actuators) and local behavioral
modules are integrated and put in interaction to produce emergent action in a
single autonomous device, aiming toward adaptivity and nonsymbolic intelli-
gence. This is the scope of “reactive” or “embodied” robotics, exemplified by
insect-like robots and evolving mechanical morphologies (e.g., [20]). Finally,
entire colonies of virtual or robotic creatures also constitute important objects
of interest because of their unique properties of collective self-organization
and diversity-inducing evolution (e.g., [41]). Generically termed “swarm in-
telligence”, new methodologies such as ant colony optimization or particle
swarm optimization are derived from the observation of animal societies and
applied to problem-solving tasks.

The preferred computational tools of AL are cellular automata, multi-
agent networks and genetic algorithms. Complex networks form the natu-
ral structural backbone of AL models. Their topology can vary from regular
lattices with nearest neighbor connectivity (cellular automata) to irregular
graphs (random, small-world) containing long-range interactions. The first
kind is spatially extended, in 2-D or 3-D, while the second generally does
not rely on a background notion of space or Euclidean distance. This chapter
presents an original AL study of the spatially explicit kind. With respect to the
above classification, it addresses level (a) of system organization, specifically
the computational modeling and simulation of the fundamental principles of
self-patterning and self-assembly during embryogenesis. The development of
an entire organism from a single cell is the most striking example of self-
organization guided by information — in this case, genetic. In the present
model, a virtual organism is represented by a mass of cells that proliferate,
migrate and self-pattern into differentiated domains. Each cell contains an in-
ternal gene regulatory network and acquires a specific expression identity by
interaction with positional information transmitted through neighboring cells.
Different identities trigger different cell behaviors, which in turn induce new
identities. In sum, development is driven by only a few fundamental laws of
cell division and movement, propagation of genetic expression and positional
information. The final architecture of the organism depends on the detailed
interplay between the various rates of these processes.

Ultimately, on this score of “theme and variations” (laws and parame-
ters), evolution is the player. Most importantly, the link between the genetic
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parameters and the morphological features of the system is not arbitrary, as is
generally the case in many evolutionary algorithm techniques, but expresses
itself through a genuine developmental approach at the microscopic cellular
level. The phenotype is a macroscopic emergence of the unfolding genotype,
not an ad hoc one-to-one mapping. Possible future hardware applications of
this model include systems in which nano-units containing the same instruc-
tions are mass-produced at low cost and mixed in a homogeneous material,
where they self-organize without the need for reliability or precise arrange-
ment as in traditional VLSI [1, 25]. Software or network applications (servers,
security) could involve a swarm of small-footprint software agents that diver-
sify and self-deploy to achieve a desired level of functionality. In all cases,
embryo-inspired architectures suggest a “fine-grain” approach to systems de-
sign, i.e., one based on hyperdistributed collectives of a great number of very
simple and relatively ignorant, cloned elements. This approach is called here
embryomorphic engineering.

The remainder of the chapter is organized as follows. After preliminary
remarks on the genetic causality of biological development in section 8.2, a
virtual embryogenesis model, “the organic canvas”, is described in section 8.3
in four incremental steps. Section 8.3.1, “the self-painting canvas”, introduces
the concept of genetically guided self-patterning. Section 8.3.2, “the growing
canvas”, adds a multiscale and modular dimension to this pattern forma-
tion process. Section 8.3.3, “the deformable canvas”, brings in self-assembly
through three critical mechanisms of cell movement: adhesion, division and
migration. Finally, section 8.3.4, “the excitable canvas”, briefly explores the
possible computing capabilities of a fully developed organism. The purpose of
section 8.3 is, thus, to lay out the IMD foundations of the model, by showing
an example of lawmaking of artificial system development with inspiration
from biology. Section 8.4 then discusses the transition to the EMD stage, i.e.,
the role that evolution could play in shaping the genome at the basis of the
developmental process, and inventing new architectures. Specifically, it ad-
dresses the paradox of “planning the autonomy” at the center of the complex
systems engineering enterprise.

8.2 The genetic causality of biological development

8.2.1 Free versus guided morphogenesis

Complex patterns produced by nature have always been a source of great
fascination for philosophers and scientists. Ripples in sand dunes, spots in
animal coats, geometric figures in plants, and a multitude of meanders, spi-
rals, branches, lattices, and others, can be observed everywhere. Whether
inanimate structures or living organisms, all these processes are instances of
decentralized morphological self-organization and, as such, were not easily
amenable to analysis and explanation. For a long time, in fact, the old cross-
disciplinary and abstract problem of the “form” was deemed non-objective
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by mainstream physics and relegated to the phenomenological realm of ex-
perience. Only relatively recently was it revived as a valid object of scientific
inquiry, under rising needs for a better understanding, prediction and con-
trol of geophysical and biological systems. New computer technologies and
numerical simulations created dramatic new advances in the understanding of
objectively measurable complex forms and their emergent properties of order
and chaos.

A taxonomy of all emergent patterns would contain many dimensions: in-
ert vs. living, natural vs. human-induced, small-scale vs. large-scale, and so
on. The present study focuses on a major distinction between what will be
referred to as “free forms” and “guided forms” (figure 8.2). Free forms es-
sentially result from the amplification of unstable fluctuations, as proposed
by Turing in his now classical reaction-diffusion model of morphogenesis [35],
which was further developed and popularized by Gierer and Meinhardt [14]. A
pigmented medium, such as an animal coat, undergoes a symmetry-breaking
due to positive feedback based on the short-range diffusion of an activator
substance, reacting with negative feedback based on the long-range diffusion
of an inhibitor substance [44]. In 2-D domains, this typically generates spots
or stripes of alternating color (figure 8.2a-b). Setting aside questions about
the actual existence of activator and inhibitor “morphogen” agents, it remains
that the pattern formation phenomena covered by this model are fundamen-
tally random and unpredictable. Are there going to be four, five, or six spots?
Although the patterns are often statistically homogeneous and can be de-
scribed by a characteristic scale or order parameter (diameter of the spots,
width of the stripes), morphological details such as position, orientation and
number are not invariants of the system. Another example of free patterning
is given by convection cells in a heated fluid, such as the ones observed in the
well-known Rayleigh-Bénard instability. Given the temperature gradient and
other parameters of the fluid, it is possible to calculate the typical size of the
polygonal convection domains but, again, not their precise shape and spatial
arrangement.

Turing-like reaction-diffusion principles might be able to account for some
pattern formation effects in biological development, such as mammal coat [44],
butterfly wing spots [26], angelfish stripes [18], or seashell motifs [21], yet
these effects seem only secondary — literally “superficial” — compared to the
overall form of an organism. The precisely arranged body shape of animals,
made of articulated segments and subparts (figure 8.2c-d), is not the result of
free-forming random instabilities. It is a fundamentally guided morphogenesis
process that plays out under deterministic control from the genome. Except
for very rare cases of malformation, all members of a pentadactyl mammalian
species reliably develop five digits, not sometimes four or sometimes six. All
healthy embryos of Drosophila exhibit exactly seven bands of differentiated
gene expression along the anteroposterior axis, which then give rise to 14 seg-
ments. Each one of these mammal digits or insect segments is independently
controlled by a specific combination of genes. At every time step in the de-
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Fig. 8.2. Free vs. guided morphogenesis. A simple activator-inhibitor cellular au-
tomata model, such as Young’s [44], creates stripes (a) and spots (b) in variable
positions and unpredictable numbers. By contrast, the stripes (c) and spots (d) of
developing animal segments are tightly controlled by multiple sets of genes, leaving
very little room for chance arrangements.

velopment of an embryo, a homogeneous region of the overall embryo pattern
is defined as a local group of cells that have the same gene expression profile,
i.e., the same dynamic regime of RNA and protein concentrations.

In summary, biological forms are not statistically uniform. They are rich in
morphological information and cannot be reduced to one characteristic scale
like reaction-diffusion patterns. Some free pattern motifs (spots, stripes) can
be embedded in a guided form (leopard, angelfish). Conversely, a guided form
can be duplicated and distributed in free patterns (e.g., hundreds of copies
of the same flower shape on the branches of one tree). Biological forms can
thus combine a little free patterning with a lot of guided morphogenesis. It is
the latter kind that the present work aims at modeling and reproducing as a
possible paradigm of information-driven systems growth.

8.2.2 Development: the missing link of the modern synthesis

Darwin discovered the evolution of species, based on random variation and
nonrandom natural selection, and established it as a central fact of biology.
During the same period, Mendel brought to light the laws of inheritance of
traits. In the twentieth century, his work was rediscovered and became the
foundation of the science of genetics, which culminated with the revelation of
DNA’s role in heredity by Avery and its double-helix structure by Watson and
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Crick. By integrating evolution and genetics together, the “modern synthe-
sis” of biology has demonstrated the existence of a fundamental correlation
between genotype and phenotype. Mutation in the first is causally related to
variation in the second. Yet, 150 years after Darwin’s and Mendel’s era, the
nature of the link from genes to organismal forms, i.e., the actual molecular
and cellular basis of the mechanisms of development, are still unclear. To
quote Kirschner and Gerhart [16, page ix]:

“When Charles Darwin proposed his theory of evolution by varia-
tion and selection, explaining selection was his great achievement. He
could not explain variation. That was Darwin’s dilemma [. . . ] To un-
derstand novelty in evolution, we need to understand organisms down
to their individual building blocks, down to their deepest components,
for these are what undergo change.”

Understanding variation by comparing the actual developmental processes
of different species is the primary concern of the field of evolutionary develop-
ment biology, or “evo-devo”. The genotype-phenotype link cannot remain an
abstraction if we want to unravel the generative laws of development and evo-
lution. The goal is to unify what Darwin called the “endless forms most beau-
tiful” of nature [7], and reduce them to variants around a common theme [39].
The variants are the specifics of genetic information; the common theme is
the developmental dynamics that this information guides. Modern synthesis
postulates this reduction in principle but has never truly explained it physi-
cally.

How does a static, nonspatial genome dynamically unfold in time and 3-D
space [13]? How are morphological changes correlated with genetic changes?
Looking at the full evolutionary and developmental picture should also be a
primary concern of systems engineering and computer science when ventur-
ing in the new arena of autonomous architectures. Optimization techniques
inspired by biology in its traditional modern synthesis form have principally
focused on evolution, giving rise to evolutionary computation and genetic
algorithms based on metaphorical “genes”, “reproduction”, “mutation” and
“selection”. However, the great majority of these approaches rely on a direct
mapping from artificial genomes to artificial phenotypes, which includes very
few or no elements of morphodynamics. The present work’s ambition is to con-
tribute to restore the balance between evo and devo by shifting the emphasis
on developmental meta-design as a prerequisite of evolutionary meta-design.

8.3 Description of the model: the organic canvas

This part describes a model of embryomorphic system development partly
introduced in [11].
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8.3.1 The self-painting canvas: gene-guided patterning

8.3.1.1 Gene regulatory networks

The central dogma of molecular biology states that a segment of DNA repre-
senting a gene is transcribed into messenger RNA, and then mRNA is trans-
lated into proteins by ribosomes and transfer RNA. The present model adopts
a highly simplified one-to-one view of the gene-protein processing chain, ig-
noring additional effects such as post-transcriptional RNA splicing or post-
translational protein modifications. However, it still retains and places at its
core the concept of gene regulation. DNA contains non-coding sequences that
play a critical regulatory role in the expression of genes. Various proteins can
selectively bind to regions of the DNA strand upstream of a gene domain and
interfere, positively or negatively, with the RNA polymerase responsible for
gene transcription. The two main classes of transcription factors are “activa-
tors” and “inhibitors” that respectively encourage and hinder gene expression.
In a binary view, the regulatory sites are “switches” that literally turn genes
on and off. Regulatory proteins bind to regulatory sites as keys fit into locks,
which can cluster and combine to form complex regulatory functions. Lock-key
pairs are reused for different genes or even the same gene at different times and
places of the developing organism. Since regulatory proteins are themselves
the product of gene expression, the cell’s total biosynthetic activity can be
approximately represented by a gene regulatory network (GRN), where pro-
teins are considered hidden variables (figure 8.3a,b,e). In sum, gene expression
is controlled by regulatory switches, which are themselves controlled by gene
expression.

8.3.1.2 Patterning from gene regulation in embryo space

How does this complex web of many-to-many regulatory interactions unfold in
3-D space and time to create pattern formation? The pattern domains of em-
bryogenesis are differentiated regions of gene expression, or identity domains.
They represent the “hidden geography” of the embryo [9]; at any period of its
development, the organism is segmented into multiple compartments of ap-
proximately homogeneous gene expression levels (see figure 8.4 for a preview).
These compartments can be visualized, for example, by in situ hybridization
methods (i.e., complementary RNA strands that recognize specific mRNA
and are labeled with fluorescent or radioactive compounds). Based on these
facts, simple recursive reasoning yields the following patterning rule. First, it
is assumed that gene expression levels in each cell (or, equivalently, mRNA
or protein concentration levels) can be represented by quasi-static variables,
because their reaction kinetics quickly converges to constant attractor val-
ues. Then, the combined regulatory action of three genes A, B, and C upon
one gene I can be denoted by I = f(A,B,C), where I, A, B, and C rep-
resent the stable expression levels of those four genes within a given time
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interval (figure 8.3b). Denoting by r = (x, y, z) the coordinates of a cell, I(r)
represents the spatial landscape of gene I’s expression level across the em-
bryonic cell population. Therefore, through the dependency in f , the basic
patterning rule states that a gene landscape I(r) results from a geometric
interaction between several earlier gene landscapes A(r), B(r), and C(r) (fig-
ure 8.3c,d,g). Typically, in a simplified binary format, gene levels are coded
by two values, 1 for “high” and 0 for “low”, and I(r) defines a geometrical
domain DI such that r ∈ DI ⇔ I(r) = 1. In this case, function f has a
logical type, e.g., I = (¬A ∧B ∧ C) = (1− A)BC, and the domain of high I
expression is simply the intersection of high B, high C and low A expression,
i.e., DI = (D −DA) ∩DB ∩DC , where D denotes the entire domain of the
organism.

Thus, combinations of switches can create new patterns by union and inter-
section of precursor patterns. This principle was demonstrated in the periodic
striping of the Drosophila embryo along its anteroposterior (A/P) axis. The
dorsoventral (D/V) and proximodistal (P/D) axes are also segmented into
distinct bands or layers and, by intersection with the A/P stripes, give rise
to smaller domains such as the organ primordia and “imaginal discs”. These
groups of cells mark the location and identity of the fly’s future appendages
(legs, wings, antennae). Going back in time, the whole process starts with
the establishment of concentration gradients due to the diffusion of various
maternal proteins across the initial cluster of cell nuclei, the syncytium. These
gradients are the functional equivalent of a coordinate system. The particular
combination of protein concentration in each point becomes the first regula-
tory trigger in a cascade of gene expression. Let X, Y and Z represent the
concentration levels of three hypothetical proteins that vary anisotropically
along the three dimensions of an abstract embryo. For example, assuming uni-
form gradients ∇X = (α, 0, 0), ∇Y = (0, β, 0) and ∇Z = (0, 0, γ), we obtain
three linear concentration landscapes X(r) = α(x − x0), Y (r) = β(y − y0)
and Z(r) = γ(z − z0). The first set of genes will be expressed in domains
defined by regulatory functions of the type A(r) = g(X(r), Y (r), Z(r)), and
B(r) = h(X(r), Y (r), Z(r)), etc. Then, these primary domains will intersect to
give rise to secondary domains such as I(r) = f(A(r), B(r), C(r)), etc., as ex-
plained above. In summary, embryogenesis consists of a cascade of morphologi-
cal refinements supported by a cascade of gene regulation reactions. Molecular
gradients provide positional information [43] that is integrated along several
spatial dimensions, in each cell nucleus, through a chain reaction of keys and
locks.

8.3.1.3 The positional-boundary-identity gene network model

The principle of recursive morphological refinement suggests that, despite nu-
merous feedback loops and an overall complex topology, developmental GRNs
seem to be broadly organized in successive gene groups that correspond to
successive growth stages and anatomical modules of the embryo. The early
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Fig. 8.3. Principles of spatial patterning from a lattice of positional-boundary-
identity (PBI) gene networks. (a) Schematic top-down view of gene regulatory in-
teractions on DNA strands. Proteins X and Y combine to promote the transcription
of genes A and B by binding to their upstream regulatory sites, which produces pro-
teins A and B (assuming a simple one gene-one protein relationship). Thereafter,
A promotes, but B represses, the synthesis of I. (b) Formal bottom-up view of the
same GRN. (c) Variation of expression levels on one spatial axis, construed as a
chain of GRNs. The concentration of X follows a gradient created by diffusion. This
gradient triggers a gain response in A and B at two different thresholds, thus creates
boundaries at two different x coordinates (for a given Y level). These domains in
turn define the domain of identity gene I, where A levels are high but B levels are
low. (d) Same spatial view in 2-D. The domain of I covers the intersection between
high A and low B. (e) Same type of PBI gene regulatory network as (a-b) with more
nodes, denoted by G. (f) Detailed view of the architecture underlying the 2-D pat-
terning of (d). Network G is repeated inside every cell of a lattice. (g) Local coupling
of positional nodes creates gradients that create patterning. While G’s structure and
weights are cloned, node activities vary from cell to cell.
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Fig. 8.4. Checkered self-patterning (top right) created by a simple 2P-3B-6I gene
regulatory network G (as in figure 8.3b) in a 200-cell oval-shaped embryo. Each
embryo view is selectively “dyed” for the expression map of one of the 11 genes, or
a partial combination of these genes. With X = x/xmax, Y = y/ymax, weights are
such that: B1 = σ(Y −1/2), B2 = σ(X−1/3), B3 = σ(X−2/3); I5 = B1B2(1−B3),
I6 = B1B3, etc.

striping process of Drosophila is controlled by such a regulatory hierarchy
containing five main tiers of genes [8]. The present model relies on a three-tier
caricature of the same idea, the positional-boundary-identity (PBI) network
(figure 8.3b,e). In a 2-D virtual embryo, the bottom layer contains two “po-
sitional” nodes, X and Y ; the middle layer, n “boundary” nodes {Bi}i=1...n;
and the top layer, m identity nodes {Ik}k=1...m. Variables X, Y , Bi and Ik

denote the gene expression levels of each of the 2 + n + m nodes. First, the
positional activities follow gradients across the embryo, e.g., X(r) = α(x−x0)
and Y (r) = β(y − y0) as above. Then, in each cell, the boundary nodes com-
pute linear discriminant functions of these positional nodes through the equa-
tion Bi = σ(Li(X, Y )) = σ(wixX + wiyY − θi), where {wix, wiy}i=1...n are
the regulatory weights from X and Y to Bi, parameter θi is Bi’s threshold
value, and sigmoid function σ is defined by σ(u) = 1/(1 + e−λu). The ef-
fect of a boundary node is, thus, to diagonally segment the embryo’s plane
into two half-planes of strong and weak expression levels (1 and 0). Finally,
the identity gene levels are given by logical combinations of the near-binary
expression levels of the boundary genes, for example, by calculating the prod-
ucts Ik =

∏
i
|w′

ki|(w′
kiBi + (1− w′

ki)/2), where w′
ki ∈ {−1, 0,+1} represent

ternary weights from Bi to Ik. Thus, the contributing factor coming from Bi

can take three possible values: (1−Bi), 0, or Bi. In the PBI model, the “iden-
tity domains”, i.e., the regions of high I expression, are made of polygons at
the intersection of multiple straight boundary lines (figures 8.3g and 8.4).
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8.3.1.4 A lattice of gene regulatory networks

The full architecture of the virtual embryo is a network of networks. It con-
sists of a lattice of cells, where each cell contains a gene regulatory network
(GRN) [24, 30, 36] that can be, for example, of the PBI type just described
(figure 8.3f). This lattice, however, is not necessarily rectangular or even reg-
ular. In the most general case, it is a swarm of nodes c = 1 . . . N representing
the cells’ nuclei, with arbitrary coordinates {rc}c=1...N , where rc = (xc, yc)
for an embryo in 2-D space or rc = (xc, yc, zc) for one in 3-D space. The
nuclei are connected by edges that represent neighborhood relationships and
dynamic coupling between GRNs (figure 8.8). The existence of an edge be-
tween two nodes c and d is established with respect to their Euclidean distance
‖rc − rd‖, typically using a nearest-neighbor rule or the Delaunay triangula-
tion that avoids gaps and crossings. The cell membranes can be either round
or defined by their Voronoi region; in this model, no difference is made be-
tween a full cell volume and its nucleus. Denoting by Gc the GRN of cell c, a
macroscopic edge c↔ d generally represents a complex coupling link between
multiple gene nodes of Gc and Gd. In the experiments presented here, the
embryo is a 2-D quasi-hexagonal Delaunay lattice and Gc is a PBI network.
Intercellular coupling is restricted to X and Y positional nodes, where cou-
pling strength between concentration levels Xc and Xd is symmetrical and
depends on only |xc−xd|, and similarly for Y and y. As described above, this
causes protein X to anisotropically diffuse on the x axis, following a gradient
X(rc) ∼= α(xc − x0), which is interpreted by the B and I layer inside each
cell c and creates a pattern of gene expression {Ik(rc)c=1...N}k=1...m on the
lattice (figure 8.3g). In the binary approximation, where Ik is a product of
near-binary Bi activities, the pattern consists of a patchwork of polygonal
domains {DIk}k=1...m that can be partially overlapping. The embryo’s parti-
tioning into DIk territories is similar to the colorful compartments between
lead cames in stained-glass works.

8.3.1.5 The feed-forward dynamics of gene network topology

In summary, under the simple feed-forward hypothesis, developmental genes
are roughly organized in tiers, or “generations”. Earlier genes map the way
for later genes, and gene expression propagates in a directed fashion. First,
positional morphogens create half-plane domains, and then domains intersect.
Naturally, this is a crude caricature of real developmental GRNs. Although bi-
ological research has not fully unraveled the complex webs of regulatory gene-
protein-gene interactions in any species, two important topological features of
these webs have long been recognized, namely: (1) the existence of recurrent
loops [15] and (2) gene multivalence. These features are not taken into account
in the feed-forward network model, but small improvements should suffice to
accommodate them. Concerning feature (1), recurrent loops and “feedback”
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interactions can be added within each layer, while keeping the general multi-
layered architecture and prohibiting feedback from a higher layer to a lower
layer. Feature (2) means that the same developmental genes can be reused
at different periods and locations in the organism. Such genes, also called
“toolkit genes”, are in fact triggered by different switch combinations (mul-
tiple clusters of upstream regulatory sites on the DNA). Therefore, they can
be formally represented by duplicate nodes placed in different tiers of the
feed-forward network. In graph topological formalism, toolkit genes look like
“hub” nodes that receive and send out numerous links. From the dynamical
and activity propagation viewpoint, however, this resemblance disappears by
segregating specific functional combinations of incoming and outgoing links
from each other and duplicating the node. This suggests that developmental
GRNs might not be so “complex” after all, in the scale-free [4] or small-world
sense [38], but might essentially retain a directed acyclic graph (DAG) topol-
ogy at the macroscopic level, filled with smaller cliques of recurrently con-
nected nodes at a finer level. A longer discussion about the realism of GRN
topology will not be pursued here. The main thrust of the present study is to
motivate new ways of designing artificial systems by drawing inspiration from
biological development, not to give a faithful account of biological reality.

8.3.2 The growing canvas: multiscale, recursive patterning

8.3.2.1 Hierarchical subpatterning

The primitive PBI network architecture used here is similar to the multilay-
ered “perceptron” model of artificial neural networks. Its generalization power,
i.e., ability to generate a wide variety of patterns, is problematic. A three-tier
perceptron is theoretically universal, as it can produce any desired segmenta-
tion of the input space — here, the 2-D space of the input nodes X and Y ,
respectively, equivalent to coordinates x and y. This is in contrast to a two-
tier PB perceptron without hidden layer, which can accomplish only linear
partitions. In 2-D, again by analogy with stained-glass techniques, it means
that any scene motif or embryo map in principle can be completely delineated
by boundary lines (the “hidden units”), however fine its details may be. The
homogeneous identity domains I (the “classes”) then appear at the intersec-
tion of the half-planes defined by the B lines. Additionally, other types of B
contours than straight lines can be employed; instead of the linear kernel Li

in Bi = σ(Li(X, Y )), the boundary discriminant functions can be polynomial
kernels Bi = σ(Pi(X, Y )) or other kernel types. However, an important ques-
tion remains about the cost of this versatility. How many boundary nodes
are necessary and sufficient to cover all the components of a segmentation
pattern? As long as the different identity domains are not too numerous and
remain reasonably connected, only a few B nodes are needed. On the other
hand, as the identity domains become smaller and more fragmented, the num-
ber of B nodes increases rapidly, eventually tending to infinity in the limit of
discontinuous points.
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Thus, although theoretically versatile, the PBI network is in practice lim-
ited by scaling. As discussed earlier, biological embryo patterns develop in
numerous incremental stages. An adult organism is produced through gradual
morphological refinement, following a cascade of gene expression regulation
from precursor gene tiers to secondary gene tiers, from secondary gene tiers
to tertiary gene tiers, and so on. To account for this effect, the present model
GRN is extended to include a pyramidal hierarchy of PBI networks, referred
to as H-PBI (figure 8.5) and denoted by Γ. A pattern is now generated in a
recursive fashion. First, the base PBI network G0 at the root of Γ establishes
the largest pre-identity domains (figure 8.5b). Then, in the next stage, another
set of PBI subnetworks G1, G2, etc., partition these pre-identity domains into
smaller identity compartments at a finer scale (figure 8.5c), and so on. The on-
set of a later PBI subnetwork Gµ′ = {X ′, Y ′, B′

i′ , I
′
k′} is always controlled by

one or several of the I nodes of an earlier PBI subnetwork Gµ = {X, Y,Bi, Ik}.
Formally, this can be written: X ′(r) = α′(x − x′0)Ik(r), and same for Y ′. It
means that X ′ and Y ′ follow local gradients only inside, precisely, the domain
DIk delimited by one of the identity nodes Ik = 1, and that they are zero
everywhere else. This causal relationship is similar to the imaginal discs of
Drosophila; once a territory DIk has been marked to be the future site of a
leg or a wing (high Ik activity), a local coordinate system arises inside DIk in
the form of gradients (such as X ′ and Y ′), which then trigger the formation
of a new subpattern {I ′k′}k′=1...m′ inside this territory, and so on [8]. Form
details are added in a hierarchical or “fractal” fashion, analogous to the local
inclusion of small stained glass motifs into bigger ones. Fractal patterning has
also been explored in “map L-systems” [32], but using symbolic rules in an
explicit geometrical representation.

8.3.2.2 Expansion

Simultaneously, the embryo grows as cells continue to divide and proliferate
(figure 8.5a’-c’). Hence, multiscale patterning actually consists of two fun-
damental processes playing out in parallel: (1) the partitioning of identity
domains into smaller identity domains, and (2) the continuous expansion of
identity domains. During cell division or mitosis, the two daughter cells in-
herit the current expression state of the mother cell. Biologically, this state
corresponds to mRNA, protein and metabolic concentrations; in the present
model, it is represented by the set of values of the GRN nodes. Domains thus
preserve their identity during expansion (the I nodes of G0), while they are
also occupied by new local gradients of positional information, i.e., new re-
gional coordinate systems (X ′, Y ′) that activate the next PBI module in the
hierarchy (G1 or G2) Biologically, these new local gradients might emerge
from a diffusion process similar to the original diffusion of the global coordi-
nates X, Y . For example, during proliferation a small number of daughter cells
asymmetrically inherit more signaling proteins than their siblings, and then
these proteins start diffusing from one border of the domain where the cells



184 René Doursat

Fig. 8.5. Static and growing multiscale canvas. On a 32 × 32 hexagonal lattice of
cells, an H-PBI gene network Γ gives rise to a “fractal” pattern in two steps: first,
the base subnet G0 (5B-12I) marks 12 rectangular segments (a) as in figure 8.4;
then, two secondary subnets G1 and G2 (3B-6I) triggered by I1 and I2 create local
gradients in two of those segments (b), subsegmenting them into six smaller domains
(c). An equivalent pattern is obtained by a cell mass uniformly expanding from 8×8
(a’) to 16× 16 (a”-b’) to 32× 32 cells (b”-c’), while patterns continue to form and
gradients continue to diffuse, as above.

gathered. However, in the present version, the gradients of P node activity are
not modeled as diffusion processes but directly calculated from the geometri-
cal shape of the identity domain boundaries according to X ′(r) = α′(x− x′0)
and Y ′(r) = β′(y − y′0). This shortcut is a slight violation of the localized
dynamics, and is only aimed at replacing the lengthy convergence process of
heat-like diffusion with its already-known final state (an approximately linear
gradient, depending on the boundaries).

In this section, it is also assumed that all cells divide equally and simulta-
neously, i.e., the medium expands uniformly according to a geometrical law.
For example, in a regular planar hexagonal lattice containing N cells, there
is an average of 3N intercellular edges. At each expansion step, one new cell
is added in the center of every c ↔ d edge, and edge lengths are doubled to
restore the original intercellular distance. The result is a new regular hexag-
onal lattice that has 4N cells and a surface area four times larger, but still
has the same shape as the previous lattice (figure 8.5a”, b”). Note that, since
the medium is expanding, at the same time as new gradients emerge and finer
details are added, the typical scale of patterning is not diminishing but in fact
remains approximately constant, being on the order of magnitude of an aver-
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age cell size. Following an artistic metaphor, the “growing canvas” continues
to paint itself using the same “brush size” [9].

8.3.2.3 Modularity

Ordering genes in a multiscale hierarchy of the H-PBI type is a convenient
way to guide self-patterning. Instead of trying to render all morphological
details at once, these details arise in successive waves of expression from the
broadest territories down to the finest patches. However, an even greater ben-
efit intrinsic to a hierarchical network is modularity. As soon as layers and
subnetworks have been defined, they can be reused as units of local computa-
tion. Modularity is a fundamental principle of genotype-phenotype economics
in development and evolution [31]. Biological organisms often contain numer-
ous repeated or “serially homologous” parts in their body plan [8]. This is
most striking in the segments of arthropods (several hundreds in millipedes)
or the vertebrae, teeth and digits of vertebrates. After duplication, these parts
tend to diversify and evolve more specialized structures (lumbar vs. cervical
vertebrae, canines vs. molars). Homology exists not only within individuals
but also between different species, as classically shown by comparing the fore-
limbs of tetrapods from the bat to the whale. Recently, genetic sequencing
has revealed that many stretches of DNA are in fact identical or highly sim-
ilar. This came to support the idea that homology is the evolutionary result
of duplication followed by divergence through mutation (and, sometimes, loss
again).

Beyond biology, modularity is also a pervasive trait of many other natural
complex systems [6]. In systems engineering, it means not only copying and
reusing a partial design in different locations of an architecture, but also being
able to independently modify these copies. In the present H-PBI model, this
corresponds to connecting several identity genes I1 . . . Ik of a base network G0

to a unique subnetwork G1 (figure 8.6a) or, alternatively, multiple copies of
the same subnetwork G1, G2, etc. (figure 8.6d). In the first case, the local pat-
tern generated by G1 is always identical in all primary domains DI1 . . . DIk,
whether appearing in its original form (the eight +-shaped subdivisions in
figure 8.6b) or in a mutated form (X-shaped subdivisions in figure 8.6c). In
the second case, the local pattern can be initially identical (as in figure 8.6b-
c), but then it has the possibility of evolving independently in each location
and produce dissimilar variants of itself (the miscellaneous inclination angles
θ of figure 8.6e). Additional mutations in the base network G0 can change the
whole body map (thinner center row d and thicker borders of figure 8.6f) with-
out affecting the individual motifs G1, G2, etc. Modularity therefore plays at
all levels of the GRN. The demonstration of figure 8.6 is similar to the “arthro-
morph” program [10] that generates chains of limbed segments representing
artificial arthropods. In that simulation, “genes” control mutations at three
levels: globally (same variation in all segments), in groups (same variation
in a few adjacent segments only) or individually (distinct variation in every
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Fig. 8.6. Modularity in a segmented embryo (see text). A cell mass uniformly grows
from 12×32 (inset) to 24×64 to 48×128. (a)-(c) A mutation in the unique subnet-
work G1 generates the same angle in all eight “limb” patterns. (d)-(e) Independent
mutations in duplicated subnetworks G1 . . . G8 create different angles. (f) A mu-
tation in the base network G0 modifies the limbs’ height, without affecting their
internal patterns.

segment). However, the virtual genes of arthromorphs code directly and arbi-
trarily for their macroscopic geometrical features. The example of figure 8.6
achieves a similar effect through the decentralized emergence of a myriad of
microscopic states in a multicellular developmental model.

8.3.3 The deformable canvas: cell adhesion, division and migration

The growing canvas model based on the hierarchical gene regulation network
H-PBI (section 8.3.2) is more powerful in generating a wide range of patterned
images than the fixed canvas using a single three-tier PBI (section 8.3.1).
With a growing canvas, it should be possible to meta-design a generative
algorithm that could reconstruct any given image in a multiscale, fractal-
like fashion. Such an algorithm would automatically “reverse compile” an
image to produce the correct pyramidal GRN to be placed in every cell of
the expanding lattice (figure 8.7). However, this is not the primary object of
this work. What was achieved so far is only a model of genetically guided
patterning, not morphogenesis in the sense of shape formation. The canvas’
growth presented in the previous section is geometrically homothetic, i.e.,
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Fig. 8.7. The universal growing canvas (conceptual illustration, not actual sim-
ulation). As in figure 8.5, a generalized hierarchical GRN (a) could in principle
reconstruct any image in a multiscale iterative fashion, in a fixed (b) or uniformly
expanding (b’) mass of cells (self-portrait metaphor after [9]).

an initial rectangular sheet of cells in 2-D remains roughly rectangular, even
though its internal patterning can become very intricate.

Continuing to explore the principles of multicellular development as an
inspiration for the self-organization of artificial systems, the model will be
further improved to incorporate elements of cellular biomechanics. What is
missing from the previous homothetic canvas is a topological deformation
dynamics, or “morphodynamics”, that can confer a nontrivial shape to the
organic system. To this purpose, three principles are added in schematic for-
mulations: (1) elastic cell rearrangement under differential adhesion, (2) in-
homogeneous cell division, and (3) tropic cell migration. Practically for the
model, all these mechanistic principles have the effect of varying the cells’ co-
ordinates in 2-D or 3-D space. Lastly and more importantly, we need to add
a rule that relates those principles to the original self-patterning process. In
this new “deformable canvas” model, a critical part of our meta-design effort
is the establishment of a functional dependency between cell identities and
mechanical cell behaviors. Just as the identity nodes Ik can propagate gene
expression activity into subordinate PBI modules to create local segmentation
patterns, the same Ik nodes now also trigger behavioral changes of the above
(1), (2), (3) types in the cells where they are highly active.

8.3.3.1 Differential cell adhesion and elasticity

Lattice edges connecting cell centers are modeled as springs with force con-
stant k and length r0. Viscous resistance is also included with coefficient η.
Thus, the equation of movement reads

m · r̈cd = −k

(
1− r0

‖rcd‖

)
rcd − ηṙcd . (8.1)
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Fig. 8.8. Cell adhesion and elasticity. A simple mesh model illustrates the biome-
chanical behavior of a growing cell mass. No genetic network is used here; cells
have arbitrary colors. Lattice edges and polygons result from a Delaunay-Voronoi
tessellation (corrected on the periphery). (a) Isotropic “blob” of identical type-I
cells dividing at 1% rate, in which nearby daughter cells rearrange under elastic
forces (see text). (b) Anisotropic “limb” growth: from the initial 2-type cell sheet,
only the center domain DI2 and its offspring divide (upward stretch modeled by
2x:y anisotropic rescaling). The eight lateral cells have different identity I1 and no
adhesion to the I2 lineage.

Neglecting the effect of inertia, the coordinate update rule at each time step
∆t = 1 becomes:

∆rc = −∆rd =
∆rcd

2
= − k

2η

(
1− r0

‖rcd‖

)
rcd . (8.2)

Under this simple model of elastic rearrangement, each cell tends to optimize
the distance ‖rcd‖ with its neighbors’ nuclei to reach r0, i.e., occupy a convex
volume of typical diameter r0 (figure 8.8). Biological cells also stick to each
other by means of adhesion proteins that cover their membrane. The great
diversity of adhesion proteins gives them the ability to selectively recognize
each other, thereby modulating the intercellular adhesion force or “stickiness”.
Some cells slide along one another without attaching, while other form tight,
dense clumps. In the elastic force model, differential adhesion can be modeled
by allowing the spring constant to vary from edge to edge, which means re-
placing k with kcd in the above equation. For the limb-like growth illustrated
in figure 8.8b), there is no adhesion between domains DI1 and DI2, so kcd = 0
between any cell c of identity I1 and any cell d of identity I2. In figure 8.9c’-d’,
adhesion is zero between either DI1 or DI2 and the rest of the embryo.
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8.3.3.2 Inhomogeneous cell division

This mechanism is similar to cell proliferation at the basis of the homothetic
expansion seen in section 8.3.2.2. The new aspect here is that cells divide ac-
cording to a non-uniform probability that essentially depends on their genetic
identity, i.e., the DI domains to which they belong (figure 8.9). This means
that the probability of division of cell c located in rc, denoted by p(rc), de-
pends at any time only on the current state of activity of the I nodes in the
cell’s H-PBI gene network: p(rc) = p(I1(rc), I2(rc), . . .).

Two daughter cells c and d resulting from the division of cell c under this
probability are initially positioned next to each other at a small distance δ
and a cleavage angle θ, also drawn at random (possibly from a non-uniform
distribution in the case of anisotropic proliferation). By denoting rcd = rc−rd

the vector on directed edge c← d, this means rcd = (δ cos θ, δ sin θ). Then, the
positions of c, d and the cells in their neighborhood are rearranged under elas-
tic constraints implemented by the edges (explained in the previous section).
Differential proliferation rates based on genetic identities produce bulges and
deformations in the embryo shape, as some compartments expand faster than
others (figure 8.9a-d), resembling organogenesis. Using anisotropic cleavage
planes and anisotropic rescaling transformation x : y → ax : by, this model
can also generate directional offshoot akin to limb development (figures 8.8b
and 8.9a’-d’).

8.3.3.3 Tropic cell migration

A specificity of animal development, largely absent from plant development, is
cell migration. Individual cells or groups of cells burrow their way through the
cellular mass and extracellular matrix to colonize remote locations of the de-
veloping embryo. Depending on the adhesion properties of the migrating cells,
they can either globally preserve their neighborhood relationships by “flock-
ing” together or, on the contrary, detach from their immediate surroundings to
create new intercellular bonds elsewhere. In the first case, migration happens
en masse and takes the aspect of elastic sheet deformation. The most striking
example of collective crowd movement is gastrulation, a complex folding event
that forms the fundamental germ layers of the embryo in its earliest stages.
The second case is best illustrated by neural crest cells that leave the dorsal
neural tube to form other structures far from their source. However, it is of-
ten unclear which type of migration is predominant and most biomechanical
deformation processes involve a mix of collective and individual dynamics.
Often, an “active” group of cells entrains a more “passive” mass in its tra-
jectory, like a locomotive. The existence of cells that act like singularities
makes especially difficult a description purely based on continuous surfaces
and differential geometry and requires discrete multi-agent simulations. The
locomotion mechanisms responsible for cell migration are not fully under-
stood. Generally, a cell is motivated to migrate by attraction toward specific
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Fig. 8.9. “Organogenesis” by non-uniform cell proliferation. As in figure 8.5, a
checkered embryo emerges from an H-PBI gene regulatory network Γ. Here, new
cellular behavioral rules are added. Cells with high levels of identity genes I1 and I2

are prompted to further divide at the rate of 1% (c) (while others have stopped), be-
fore expressing subpatterns G1 and G2 in their newly formed anterior and posterior
territories (d). Different weights in base module G′

0 of Γ′ make a thicker central row
and place DI′1 and DI′2 on the dorsal and ventral sides (b’). Moreover, different
values of cleavage angles, anisotropic rescaling and adhesion coefficients (kcd = 0
between DI′1,2 and the rest) provoke I ′1 and I ′2 cells to grow “limbs” (c’), which are
also subpatterned by G′

1 and G′
2 (d’).
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Fig. 8.10. Cell migration. Using the same gene regulatory network Γ as figure 8.9,
the behavioral parameters of cells I1 are replaced with a migration rule. Before
proliferating, these cells push their way across the embryo toward increasing X
concentration (here, eastward). This is modeled by adding to ∆r a bias u that
depends on genetic identity.

chemical signals that it recognizes (“chemotaxis”). These signals trigger its
motion and guide it on its route toward its target. In the present model,
this behavior can be simply implemented by adding an identity-dependent
bias vector uc = uc(I1(rc), I2(rc), . . .) to the ∆rc equation of section 8.3.3.1
(figure 8.10).

8.3.4 The excitable canvas: organic computing

Meta-designing laws of artificial development with inspiration from biology,
as the present model attempts to demonstrate, is a challenging engineering
task. It combines schematic modeling of natural complex systems, such as
embryogenesis, and departure from the natural model toward free invention.
Yet, developmental modeling is only the first half of the IMD effort. Another
important problem is functional meta-design. Once an “organic system” is
mature, what could be its computing capabilities? What do the artificial cells
and organs (identity domains) of an embryomorphic system represent in prac-
tice?

In biology, it is difficult to establish a distinction between a purely de-
velopmental and a purely physiological regime. Real cells are already “func-
tional” as soon as they are produced by mitosis and this function partakes in
development. For example, the bioelectrical signals endogenously generated
by neurons play a critical role in establishing synaptic contacts in the brain.
While connectivity obviously supports the exchange of activity, there also
exists an important feedback from activity to connectivity dynamics. Nodes
start communicating before edges are fully built, leading to self-structuring of
the network [12].

In artificial embryomorphic computing systems, it is conceivable to keep
these two phases relatively separate by distinguishing between “activity for
development” and “activity for function”. The intercellular transmission of
positional information by regulatory coupling between genes (figure 8.3b) rep-
resents activity-for-development. Beyond a certain degree of maturity of the
growing system, this type of activity would gradually or abruptly diminish
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and give way to the other type of activity, serving a different purpose toward
functional computing. It does not mean that the system would entirely stop
developing; the morphodynamics would still be active, mostly to fulfill im-
portant self-repair tasks and provide robustness to perturbations. If one or
several cellular components fail, they could be quickly replaced by the still-
active growth potential of their neighbors. (Self-repair properties have not
been verified yet in the current embryomorphic model.) Yet developmental
activity would be mostly dormant during functional maturity.

Now, after finishing the self-assembling stage and while constantly under
self-repairing mode, what type of computation could be carried out by the em-
bryomorphic system? As a speculative proposal, by its very 2D or 3D spatial
nature, the organism could become the substrate of excitable media dynamics.
After creating slow, quasi-static developmental patterns, cells could form fast
and transient dynamical patterns. Depending on their identity domain, local
groups of cells would synchronize in different ways and enter various regimes
of collective spatiotemporal order (figure 8.11). Computation in the organic
canvas would consist of emerging patches of moving and shimmering spots,
stripes, target or spiral waves. We find again the types of reaction-diffusion
patterns of figure 8.2a, which played only a limited role in development, now
appearing and disappearing on the short time scale, and on top of genetically
guided development. These phenomena are common in nonlinear chemical re-
actions or multicellular structures [42, 34], such as slime mold aggregation,
heart tissue activity, neural networks, etc. These systems all have in com-
mon the ability to position themselves in a critical state, from which they can
rapidly bifurcate between chaos and order. In this perspective, the “self-made
tapestry” [3] would become a self-made screen or “sensitive plate” of coupled
oscillatory units in the sense that certain external patterns of initial conditions
can quickly trigger internal patterns of collective response from the units.

This is already the case in neural computation. New spiking network mod-
els that take into account the fine temporal structure of neural signals have
revealed a great diversity of collective spatiotemporal regimes: synchroniza-
tion and phase locking, delayed correlations and traveling waves, rhythms and
chaos. Through recurrent (and plastic) synaptic connections, neural cells tran-
siently interact as dynamical subnetworks that promise an immense richness
of coding expression and computational power, combining the discrete and
the continuous. What could still be missing from the current embryomorphic
model are long-range connections. The inspiration from embryogenesis is cur-
rently limited to geometrical 2-D or 3-D lattices but might be complemented
with complex “N -D” networks arising in ways similar to neurogenesis and
synaptogenesis.
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Fig. 8.11. The excitable canvas. A hypothetical view of an embryomorphic
system in which genetic identity domains (colored patches) could support ex-
citable media (zoom-in square insets), through coupling between quasi-oscillatory
units (example of one temporal signal in the rectangle inset). Various regimes of
dynamical activity could emerge on these substrates. Such spatiotemporal pat-
terns might hold a great potential for representational and computing proper-
ties. (The square insets are snapshots of simulations run on Tim Tyler’s demo
applet http://texturegarden.com/java/rd, which implements the Gray-Scott model
described in [29] under various sets of parameters.)

8.4 Discussion: planning the autonomy

At the core of the complex systems engineering enterprise lie paradoxical
objectives: How can decentralization be controlled? How can autonomy be
planned? How can we expect specific characteristics from systems that are
otherwise free to invent themselves? The challenge is not only to allow self-
organization and emergence but, more importantly, to guide them. First, it
consists of preparing the conditions and mechanisms favorable to a robust
and reproducible — as opposed to random — pattern formation process, un-
der genetic control (IMD). Second, it consists of steering this process toward
desired goals, while simultaneously leaving the door open to the spontaneous
generation of innovative designs by evolution of the genes (EMD).

8.4.1 Growth, function, evolution

When meta-designing an embryomorphic artificial system, the engineer faces
three main tasks: IMD1: How does the system grow? IMD2: How does the
system function? EMD: How does the system evolve? The goal of the IMD
phases is to define the developmental and computing mechanisms. The goal
of the EMD phase is to define the rules of their evolution by variation and
selection (section 8.4.2).
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8.4.1.1 Developmental mechanisms

Growth results from a combination of elementary mechanisms, described and
elaborated in sections 8.2 and 8.3. At the microscopic level of the embryomor-
phic model, it is grounded in a repertoire of basic cellular behaviors: cells
change state (genetic expression), communicate (positional signals), cluster
or detach (differential adhesion), travel (migration), create offspring (mitosis)
or die (apoptosis). At the mesoscopic level of cell populations, several morpho-
genetic processes emerge: guided patterning through GRN-controlled expres-
sion maps, organogenesis through differential adhesion and domain-specific di-
vision rates, folding and deformation through elastic constraints and sculpting
through cell removal. Additionally, superficial free patterning (spots, stripes)
can also arise by reaction-diffusion (figure 8.2a). Starting from a single cell,
a complex and organized architecture develops through the repeated applica-
tion of a series of these principles, identically programmed inside each cell.
Task IMD1 consists of choosing among these principles and designing their
dynamics and parameters.

8.4.1.2 Functional mechanisms

Function roughly starts after growth (see section 8.3.4). Task IMD2 is about
defining the nature of the cells and the type of computation that they carry
out at the microscopic level. It also involves defining the range of macroscopic
abilities of the system and its input/output interfaces with the environment.
Do cells represent some kind of hardware components on a board, taking
part in global digital-analog electric or optical activity patterns? Are they
small modules of software logic that execute symbolic instructions on more
conventional architectures in a “virtual machine” fashion? Can they actually
be physical parts and blocks, joined together to support sensing, planning
and acting in a robot? Or are they even full-fledged robots that coordinate in
swarm formations for collective performance?

8.4.1.3 Evolutionary mechanisms

Evolution of both growth and function is the responsibility of the evolutionary
meta-designer (EMD), who must define how the system varies (randomly)
and how it is selected (nonrandomly). These points are discussed in the next
section.

8.4.2 Selection without expectations

Three degrees of constraints that drive the fitness criteria and the artificial
selection process can be identified, in decreasing intensity: (1) selecting for a
specific system architecture, (2) selecting for a specific system function, and
(3) selecting the unexpected.
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8.4.2.1 Selecting for architecture

On the first level, the EMD engineer imposes tight requirements to obtain par-
ticular organismal patterns and shapes from the development process. Here,
a reverse engineering problem must be addressed: Given a desired phenotype,
what should be the genotype that will reliably reproduce this phenotype? One
solution, if available, is the deterministic reverse compilation of the genotype
from the phenotype. This is what Nagpal [25] has achieved in her virtual
origami model. Given a macroscopic folding recipe (based on an ordered set
of lines), she can automatically generate the exact microscopic developmental
rules that each identical point of the medium must follow to reproduce the
shape (based on wave propagation and state change). It is possible that such
a method is also within reach in the present embryomorphic model, but this
has not been investigated to-date.

In most cases, however, it is safe to assume that no algorithm for the re-
verse compilation of the genotype from the phenotype is available. Depending
on the number of dimensions along which the system may vary, the search
in parameter space can then appear nearly impossible. In the embryomorphic
model presented in section 8.3, these parameters are the set of gene-to-gene
regulatory weights together with the local behavioral rates of division, mi-
gration, gradient diffusion, and so on. (typically, the Γ network of figure 8.9,
branching out like figure 8.7a). A naive fitness function rewarding only the
final shape would create one (or possibly several) “narrow” peaks limited
to local neighborhoods of those parameters, which would be unreachable for
all practical purposes. However, this is the fallacy of “Mount Improbable”
explained by Dawkins [10]. Biological evolution does not create complex or-
ganisms in one shot, but through a multitude of successive steps, randomly
generated and nonrandomly selected. Each favored step brings a small “im-
provement”, adding to the body plan a little more complexity, which gets
rewarded by successful interaction with the physical environment. A famous
example is how the eye has evolved multiple times from mere photosensitive
cells, through gradual inward curvature of the epithelial tissue, condensation
of the lens, etc. These changes were probably encouraged by an ever-increasing
quality of the projected image (hence, an increasing survival probability un-
der co-evolution pressure), as modeled by Nilsson and Pelger [27]. Behind the
daunting cliff of a high fitness peak, hides a long and gentle upward slope.

Similarly, in the artificial systems challenge, an evolutionary meta-designer
should also replace a jagged final-shape fitness landscape with a smooth
transitional-shape fitness landscape. The best method to accomplish this is
to define a score value or “distance” to the desired shape. This value must be
an increasing function of favorable mutations, i.e., mutations that bring the
developed system closer to the ideal template. It is conjectured here that this
well-known principle of gradual search might actually benefit, not suffer, from
the high parameter dimensionality offered by a true underlying embryomor-
phic model, such as the one presented in this chapter. A hierarchical gene



196 René Doursat

regulatory network of the H-PBI type hyperdistributed in a large cell mass
might be in a better position to provide the necessary fine-grain mutations re-
quired by the gentle slope approach than the more direct genotype-phenotype
mapping of traditional genetic algorithms.

8.4.2.2 Selecting for functionality

Why make the effort to devise a sophisticated self-organizing system only
to force this system to produce a specific shape? Why not directly build
the final shape in the first place? One important benefit would be robust-
ness through homeostasis. Even though the final plan is known in advance,
a genuine developmental dynamics is also expected to be intrinsically “self-
repairing” (as mentioned in section 8.3.4). Nonetheless, requiring a specific
architecture somehow defeats the idea of “stepping back” and meta-designing.
Intervening in the microscopic placement of cells, whether by reverse compi-
lation or fine-tuning, literally reintroduces the micromanagement attitude of
classical systems design.

On the contrary, EMD engineers should abstract themselves even further
from structural details and concentrate on selecting for the functionality of
their system, otherwise leaving it complete freedom of morphology. Here, the
same gradual optimization strategy as described above can be employed, ex-
cept that the continuous distance quantity would not measure morphological
resemblance but rather the closeness of performance to predefined goals. Given
a task or repertoire of tasks to accomplish, it means ranking candidate systems
according to their partial success in fulfilling these tasks, then allowing the
most successful ones to reproduce faster and mutate, and so on. Afterwards,
it is always instructive for the meta-designer to open the “black box” of the
winning architectures and try to understand how they have come about and
which specific subsystems or modules related them to success. The solutions
“invented” by spontaneous evolution are often surprising and convoluted, in
other words, remote from what a human designer would have conventionally
designed.

Functional selection under free organization is the strategy adopted by
most evolutionary computation works that also contain elements of distributed
architectures or (small-size) complex systems. For example, this is the case of
the logical functions computed by randomly composed multi-instruction pro-
grams in Avida [19], the locomotion abilities created by randomly articulated
multi-segment robots in Golem [20] or Framsticks [17], or the shooting skills
of intelligent video game agents emerging from randomly assembled multi-
neuron networks in Nero [33]. Again, it is argued here, although not proven,
that an even larger number of agents, such as in multicellular embryogenesis,
would be even more favorable to a successful evolutionary search.
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8.4.2.3 Selecting the unexpected

The increase in system size, however, might also require the EMD engineer
to “let go” one step further and give up on specific selection requirements
altogether. In summary, it is likely that the ultimate reconciliation between
the antagonistic poles of planning and autonomy would be based on two com-
plementary aspects. In order for an evolutionary process to successfully find
“good” regions in systems state space, (a) the variation-by-mutation mecha-
nisms must be fine-grained and rich enough to offer a large number of search
paths (system size) and, at the same time, (b) the selection criteria must be
loose enough to allow a large number of fitness maxima (“letting go”). With
more search paths covering more fit regions, evolution is more likely to find
good matches. Point (a) concerns the intrinsic ability of complex systems to
create a solution-rich space [23] by combinatorial tinkering on highly redun-
dant parts. Variational power is the most critical aspect of evolutionary pro-
cesses; developmental systems made of a great number of small self-assembling
components have the unique ability among all systems to generate behavior-
rich variations. Point (b) concerns the ability of the meta-designers to relax
their specifications, within reasonable limits of what is permitted by the sys-
tem’s environment and the problem at hand, and accept to be surprised —
hopefully, in a pleasant way — by the outcome. Organic systems engineers
will probably need to learn how to greatly diversify their demands and rather
stand on the side, ready to harvest possibly “interesting” or “useful” organ-
isms from a free-range menagerie.
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