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Abstract. Information integration and retrieval are useful tasks in
many information systems. In these systems, it is far from an easy task
to directly integrate information from natural language (NL) sources, be-
cause precisely capturing NL semantics is not a trivial issue in the first
place. In this paper, we choose the botanical domain to investigate this
issue. While most existing systems in this domain support only keyword-
based search, this paper introduces an ontology-based approach to pro-
cess parallel colour descriptions from botanical documents. Based on a
semantic model, it takes advantage of ontologies so as to represent the
semantics of colour descriptions precisely, to integrate parallel descrip-
tions according to their semantic distances, and to answer colour-related
species identification queries. To evaluate this approach, we implement
a colour reasoner based on the FaCT-DG Description Logic reasoner,
and present some results of our experiments on integrating parallel de-
scriptions and species identification queries. From this highly specialised
domain, we learn a set of more general methodological rules.

1 Introduction

Automatic information integration and retrieval have become desirable features
for many information systems. The information which these systems have to
process is often descriptive (written in natural language) and parallel (multiple
sources describing the same objects or phenomena). Parallel descriptions may
emphasise different aspects of the same object; they may represent the same
information in different ways, or they may plainly disagree with each other. It
is far from an easy task to directly integrate information from natural language
(NL) sources, because capturing NL semantics precisely is not a trivial task.

In this paper, we choose the botanical domain to investigate this issue. As one
of the premier descriptive sciences, botany offers a wealth of material on which
to test our methods. For instance, in our dataset, the species Origanum vulgare
(Marjoram) has four descriptions of its flowers’ colour:
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– “violet-purple” in Flora of the British Isles [1],
– “reddish-purple, rarely white” in New Flora of the British Isles [2],
– “white or purplish-red” in Flora Europaea [3],
– “purple-red to pale pink” in Gray’s Manual of Botany [4].

It has been demonstrated by Wood et. al. [5] that extracting and collecting
parallel information from different sources can produce more complete results.
Some current projects, such as eFloras1 and the PLANTS database,2 attempt
to store knowledge from natural language documents in electronic form. These
projects generally allow keyword-based queries but fail to process information
directly based on their semantics.

This paper makes the following contributions towards semantically processing
parallel colour descriptions:

1. It introduces an ontology-based approach to processing parallel colour de-
scriptions from botanical documents. Ideally, an ontology captures a shared
understanding of certain aspects of a domain: it provides a common vocab-
ulary, including important concepts, properties and their definitions, and
constraints regarding the intended meaning of the vocabulary, sometimes
referred to as background assumptions. One of the main advantages of us-
ing ontologies is that parallel information can be extracted and represented
in a uniform ontology. The explicitly written information can be accessed
easily and the implicit knowledge can also be deduced naturally by apply-
ing reasoning on the whole ontology. Some earlier work [6,7] has indicated
that an ontology could help in extracting, collecting and organising parallel
information.

2. It proposes to use a well known colour model, namely the Hue Saturation
Lightness (HSL) Model, to model basic colour terms. Based on this seman-
tic model, complex colour descriptions are precisely quantified by applying
common morpho-syntactic rules, including adjective modifiers, ranges, con-
junctions and disjunctions indicated by NL constructions (see Section 3 for
more details). It should be noted that our approach is a general one, and
using the HSL model is just one example of a semantic model that can be
applied to our approach.

3. It proposes to use the OWL-Eu ontology language [8] to represent the quan-
titative semantics in the model. OWL-Eu is an extension of the W3C OWL
DL [9] standard with unary datatype expressions, which can be used, e.g., to
capture the intended quantitative semantics in the HSL Model. The formal
representation brings computational and reasoning benefits [10]. For exam-
ple, subsumption reasoning of the OWL-Eu language can be used to check
if one colour description is more general than another one.

4. It presents a framework to support species identification queries. It substan-
tially extends our previous conference paper [11] with the following aspects:
(1) For the first time, it proposes two distance functions to calculate dis-
tances between parallel information (e.g., the distance between “light blue

1 http://www.efloras.org
2 http://plants.usda.gov/
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to purple” and “violet-blue to pink”). The first distance function d1 is based
on the hue dimension only, and the second distance function d3 is based on all
three HSL dimensions. The main advantage of these two distance functions is
that they are designed for measuring distances between ranges, while exist-
ing distance functions can only measure distances between points. These are
on the one hand not precise enough to capture the semantic colour model
and on the other hand not expressive enough to capture the distance be-
tween colour descriptions. (2) Based on the distance functions, an algorithm
is provided for integrating parallel colour descriptions. (3) the OWL-Eu sub-
sumption reasoning service can then be used to query the integrated colour
descriptions, and the distance functions can be used to rank the answers to
such queries.

5. Most importantly, it presents our colour reasoner, which is based on the
FaCT-DG DL reasoner, and experiments on species identification queries,
including comparing our semantic query with existing keyword-based search.
The colour reasoner provides the following functionalities: (1) with the help
of a NL parser, it transforms the semantics of colour descriptions into their
ontological representations; (2) it collaborates with the FaCT-DG reasoner to
answer colour-related species identification queries; (3) it calculates distances
of parallel information for integration and also infers some probabilistic con-
clusions. Furthermore, we present some results of our experiments with the
colour reasoner on integrating parallel descriptions and species identification
queries (see Section 6 and 8 for more details).

We argue that the ontology-based approach is effective in the colour domain,
and we have been investigating its applicability to other domains. We believe that
it can also be successfully applied to other domains, as long as an appropriate
semantic model is chosen and the domain-dependent aspects are well studied.

The rest of the paper is structured as follows. Section 2 introduces some tech-
nical background knowledge of multi-dimensional colour models and the OWL-
Eu ontology language. Section 3 presents the morpho-syntactic rules that are
used to build complex colour descriptions. Section 4 describes how the seman-
tics of colour descriptions are represented in the OWL-Eu language. Section 5
investigates how to answer species identification queries. Section 6 gives primary
experimental results of such queries. Sections 7 and 8 introduce the collaboration
of distance measuring and DL reasoning, with some interesting integration re-
sults. Some related work is described in Section 9. Finally, Section 10 concludes
this paper and discusses some of our future work.

2 Technical Background

2.1 The Colour Model

Several colour representations using a multi-dimensional space (CIE XYZ,
L*a*b*, L*u*v*, RGB, CMYK, YIQ, HSV, HSL, etc.) have been employed
in computer graphics and image processing. Colours are quantified as points
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Fig. 1. HSL Colour Model

(or regions) in those spaces. Naming of physically represented colours has been
thoroughly investigated [12].

The HSL (Hue Saturation Lightness) model is psychologically based. It cor-
responds to human’s use of colour terms more naturally than machine-oriented
colour models, such as the RGB (Red Green Blue) model. In colour notation, it
is second only to natural language [13]. The HSL model was therefore chosen to
represent basic colour terms. Its colour space is a double cone (see Figure 1).

In the HSL model, a colour is represented by the following three parameters:

– Hue is a measure of the colour tint. In fact, it is a circle ranging from 0 (red)
to 100 (red again), passing through 16 (yellow), 33 (green), 50 (cyan), 66
(blue) and 83 (magenta).

– Saturation is a measure of the amount of colour present. A saturation of 0
is a total absence of colour (i.e. black, grey or white), a saturation of 100 is
a pure colour tint.

– Lightness (also Luminance or Luminosity) is the brightness of a colour. A
lightness of 0 is black, and 100 is white, between 0 and 100 are shades of
grey. A lightness of 50 is used to generate a pure colour.

Each basic colour term corresponds to a small space in the double cone whose
centre is the particular point representing its HSL value; that is, instead of a
point, we represent a colour term by a cuboid space, defined by a range triplet
(hueRange, satRange, ligRange). For instance, “purple” is normally defined as
the HSL point (83, 50, 25), but is represented by adding a certain range to each
parameter, as the region (78–88, 45–55, 20–30).3

2.2 OWL DL and Its Datatype Extension OWL-Eu

The OWL Web Ontology Language [15] is a W3C recommendation for express-
ing ontologies in the Semantic Web. OWL DL is a key sub-language of OWL.
Datatype support [16,17] is one of the most useful features that OWL is expected
to provide, and has brought extensive discussions in the RDF-Logic mailing
list [18] and Semantic Web Best Practices mailing list [19]. Although OWL pro-
vides considerable expressive power to the Semantic Web, the OWL datatype
3 Referring to the NBS/ISCC Color System [14], giving a 100-point hue scale, each

major hue is placed at the middle of its 10-point spread, or at division 5.
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formalism (or simply OWL datatyping) is much too weak for many applications.
In particular, OWL datatyping does not provide a general framework for cus-
tomised datatypes, such as XML Schema user-defined datatypes.

To solve the problem, Pan and Horrocks proposed OWL-Eu [8], a small
but necessary extension to OWL DL. OWL-Eu supports customised datatypes
through unary datatype expressions (or simply datatype expressions) based on
unary datatype groups. OWL-Eu extends OWL DL by extending datatype ex-
pressions with OWL data ranges.4 Let G be a unary datatype group. The set
of G-datatype expressions, Dexp(G), is inductively defined in abstract syntax as
follows [8]:

1. atomic expressions: if u is a datatype URIref, then u ∈ Dexp(G);
2. relativised negated expressions: if u is a datatype URIref, then not(u) ∈ Dexp(G);
3. enumerated datatypes: if l1, . . . , ln are literals, then oneOf(l1, . . . , ln) ∈ Dexp(G);

with arity 1, where {} is called the oneOf constructor;
4. conjunctive expressions: if {E1, . . . , En} ⊆ Dexp(G), then and(E1, . . . , En) ∈

Dexp(G);
5. disjunctive expressions: if {E1, . . . , En} ⊆ Dexp(G), then or(E1, . . . , En) ∈

Dexp(G).

For example, the following XML Schema user-defined datatype
<simpleType name = “HueRange”>

<restriction base = “xsd:integer”>
<minInclusive value = “0”/>
<maxInclusive value = “100”/>

</restriction>
</simpleType>

can be represented by the following conjunctive datatype expression:
and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100),

where xsdx:integerLessThanOrEqualTo100 is the URIrefs for the user-defined
datatype ≤100. Note that Uniform Resource Identifiers (URIs) are short strings
that identify Web resources [20]. A URI reference (or URIref) is a URI, together
with an optional fragment identifier at the end. In OWL, URIrefs are used as
symbols for classes, properties and datatypes, etc.

Similarly to an OWL DL ontology, an OWL-Eu ontology typically contains
a set of class axioms, property axioms and individual axioms. FaCT-DG, a
datatype group extension of the FaCT DL reasoner, supports OWL-Eu ontolo-
gies.5 In Section 5, we will use the FaCT-DG reasoner to help answering queries.

3 NL Processing

A close observation of the descriptions in floras shows that colour descriptions are
mostly complex phrases, so that they can cover the variations of plant individuals
in the field (see the example in Section 1). Complex colour descriptions are built

4 This is the only extension OWL-Eu brings to OWL DL.
5 To be more precise, FaCT-DG supports the SHIQ(G) DL, i.e., OWL-Eu without

nominals, which are not used in the paper.
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Table 1. Colour description patterns and their relative frequencies of occurrence, where
X, Y and Z each represent a single colour term or an atomic colour phrase, A is a degree
adjective and P is a probability adverb

Description patterns Frequency of occurrence Example
X 25.5% “orange”
A X 36.5% “pale blue”
X to Y (to Z. . . ) 25.9% “white to pink to red to purple”
X-Y 19.9% “rose-pink”
X+ish(-)Y 13.2% “reddish-purple”
X(, Y) or Z 6.5% “white or violet”
X(, Y), P Z 6.4% “reddish-purple, rarely white”
X/Y 4.6% “pink/white”
X, Y 2.8% “lavender, white-pink”
X(, Y), and Z 2.3% “white and green”

from several basic colour terms by applying certain morpho-syntactic rules. In
order to be represented correctly, a complex colour description has to be analysed
by using the same rules.

We carried out a morpho-syntactic analysis on 227 colour descriptions of 170
species from five floras.6 Different description patterns and their relative fre-
quencies of occurrence in the data set are summarised in Table 1. Table 3 gives
the corresponding BNF syntax for colour descriptions. As shown in Table 1,
most patterns describe colour ranges that are built from several atomic colour
phrases, such as “blue,” “blue-purple” or “bright yellow.”

There are two steps in our text processing. Firstly, we construct the following
atomic colour phrases as basic colour spaces:

X: This is a single colour space, i.e. (hueRange, satRange, ligRange).7
A X: We need to modify the space of X according to the meaning of A, as

shown in Table 2. For example, “light blue” is represented as (61–71, 70–80,
65–75) where “blue” is (61–71, 90–100, 45–55).

X-Y: This represents an intermediate colour between the two colours X and
Y [22]. For example, “blue-purple” is generated as the halfway colour between
“blue” (66, 100, 50) and “purple” (83, 50, 25), that is, the colour with HSL
value of (75, 75, 38). The hue is calculated by the following formula (with
similar calculations for saturation and lightness):

HueX−Y =
HueX + HueY

2
(1)

6 They are Flora of the British Isles [1], Flora Europaea [3], The New Britton and
Brown Illustrated Flora of the Northeastern United States and Adjacent Canada [4],
New Flora of the British Isles [2] and Gray’s Manual of Botany [21].

7 According to the Colour Naming System (CNS) [22], given a 100-point hue scale,
each major Munsell hue placed at the middle of its 10-point spread, or at division 5.
Therefore, for each basic term, a 5-point spread along each side of the prototypical
values builds up a reasonable space. This setting is inherited by some of the following
operations.
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Table 2. Meanings of modifiers and their corresponding operations on a colour space

Adjective Meaninga Operationb

strong high in chroma satRange + 20
pale deficient in chroma satRange - 20, ligRange + 20
bright of high saturation or brilliance satRange + 20, ligRange + 20
deep high in saturation and low in lightness satRange + 20, ligRange - 20
dull low in saturation and low in lightness satRange - 20, ligRange - 20
light medium in saturation and high in lightness satRange - 20, ligRange + 20
dark of low or very low lightness ligRange - 20

a Referring to Merriam-Webster online dictionary.
b Referring to the specifications from the Colour Naming System (CNS) [22], satu-

ration and lightness are each divided into 5 levels, which causes a range/ranges to
change by 20 (100/5).

Finally it is represented by the range triple (70–80, 70–80, 33–43), by adding
5-point spread in each dimension from the centre.

Xish-Y: Specified in CNS [22], this denotes a quarterway value between the
two colours, closer to the latter colour term. For instance, “reddish-purple”
means it is basically purple (83, 50, 25) but reflecting a quarterway deviation
to red (100, 100, 50), so the hue range for “reddish-purple” is centred on
87, calculated by the following formula (similar formulae for saturation and
lightness):

HueXish−Y = HueY +
HueX − HueY

4
(2)

and the colour is finally represented as (82–92, 58–68, 29–39).

Secondly, we build up combined colour spaces based on basic ones. Specifi-
cally, combined colour spaces are built up by a colour reasoner, according to the
following morpho-syntactic rules:

1. If atomic colour phrases are connected by one or more “to”s, the final colour
space should be the whole range from the first colour to the last one. For
instance, if “light blue” is (66, 80, 70) and “purple” is (83, 50, 25), “light blue
to purple” should be the whole range (66–83, 50–80, 25–70), which contains
any colour in between.

Note that special care is needed for ranges starting or ending with a grey
colour, such as “white to purple.” In the HSL model, colours ranging from
white, through different levels of grey, to black have no hue and saturation
values. For instance, the HSL value of “white” is (0, 0, 100), while “red”
also has a hue value of 0 but its saturation is 100. A special rule for building
such ranges has to be followed; that is, a range from colour A (0, 0, la) to
colour B (hb, sb, lb) should be (hb − 5–hb + 5, 0–sb, la–lb), where the hue
value does not range from 0 to hb which is actually from red to colour B. For
example, the range from “purple” (83, 50, 25) to “white” (0, 0, 100) should
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Table 3. BNF syntax of colour descriptions

< Cterm >::= red|yellow|green| . . .
< Dmodifier >::= strong|pale|bright|deep|dull|light|dark| . . .
< Pmodifier >::= usually|often|sometimes|occasionally|rarely|never| . . .

< Cphrase >::= < Cterm >
| < Cterm > [ish][−| ] < Cterm >
| < Cphrase > − < Cphrase >
| < Dmodifier > < Cterm >

< Cdescription >::= < Cphrase >
| < Cphrase > { to < Cphrase >}
| < Cphrase >, < Cphrase >
| < Cphrase > / < Cphrase >
| < Cphrase > {, < Cphrase >} or < Cphrase >
| < Cphrase > {, < Cphrase >} and < Cphrase >
| < Cphrase > {, < Cphrase >}, < Pmodifier > < Cphrase >

be represented by the triple (78–88, 0–50, 25–100), so that the hue range
(78–88) keeps the purple tint when the colour changes from purple to white.

2. If atomic colour phrases are connected by any of these symbols: “or,” “and,”
comma (“,”) or slash (“/”), they are treated as separate colour spaces; that
is, they are disjoint from each other. For instance, “white, lilac or yellow”
means that the colour of this flower could be either white or lilac or yellow,
not a colour in between.

Notice that “and” is treated as a disjunction symbol because, in floras,
it normally means several colours can be found in the same species, instead
of indicating a normal logical conjunction. For instance, flowers of species
Rumex crispus (Curled Dock) are described as “red and green,” which means
that both red and green flowers may occur in the same species, but it does
not mean that one colour is both red and green.

By using an NL parser based on our BNF syntax, we can generate an OWL-Eu
ontology to model complex colour information.

4 Representation of Colour Descriptions in OWL-Eu

Based on the morpho-syntactic rules introduced in the last section, we can de-
compose the semantics of colour descriptions into several quantifiable compo-
nents, which can be represented as DL datatype expressions. In this section, we
will show how to use the OWL-Eu ontology language to represent the semantics
of a colour description.

The fragment of our plant ontology OC contains Colour as a primitive class.
Important primitive classes in OC include

Class(Species), Class(Flower), Class(Colour);

important object properties in OC include
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ObjectProperty(hasPart), ObjectProperty(hasColour);

important datatype properties in OC include

DatatypeProperty(hasHue Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),
DatatypeProperty(hasSaturation Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),
DatatypeProperty(hasLightness Functional

range(and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100))),

which are all functional properties. A functional datatype property relates an
object with at most one data value. Note that the datatype expression
and(xsd:nonNegativeInteger, xsdx:integerLessThanOrEqualTo100)

is used as the range of the above datatype properties.
Based on the above primitive classes and properties, we can define specific

colours, such as Purple, as OWL-Eu defined classes (indicated by the keyword
“complete”) .

Class(Purple complete Colour
restriction(hasHue someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo78,
xsdx:integerLessThanOrEqualTo88)))

restriction(hasSaturation someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo47,
xsdx:integerLessThanOrEqualTo52)))

restriction(hasLightness someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo20,
xsdx:integerLessThanOrEqualTo30))))

In the above class definition, datatype expressions are used to restrict the values
of the datatype properties hasHue, hasSaturation and hasLightness. Note that
not only colour terms but complex colour descriptions can be also represented in
OWL-Eu classes, as long as they can be transformed into proper colour subspaces
with constraints on their hue, saturation and lightness.

As colour descriptions are represented by OWL-Eu classes, we can use the
subsumption checking service provided by the FaCT-DG reasoner to check if one
colour description is more general than another. Namely, if ColourA is subsumed
by ColourB, we say that ColourB is more general than ColourA. With the help
of the FaCT-DG DL reasoner, the formal representation of colour descriptions
makes it possible to express a query about a range of colours, such as to retrieve
all species which have “bright rose-pink” or “light blue to purple” flowers.

5 Domain-Oriented Queries

The flower colour of an individual plant is an important distinguishing feature for
identifying which species it belongs to. The species identification that botanists
are interested in can be written as a query: “Given a certain colour, tell me all
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the possible species whose flowers have such a colour.” We would like to point
out that, from a botanical point of view, one has to take the variations between
individuals in nature into account. In other words, botanists rarely use colour
as a strict criterion. It is more appropriate to answer such species identification
queries in an fuzzy manner, that is, returning a list which contains all species
that could match the query. We call this kind of query, which is particularly
suitable for domain interests, domain-oriented queries.

We can answer species identification queries based on subsumption queries
that are supported by the FaCT-DG DL reasoner. For example, if the plant on-
tology contains the following class axioms:

Class(SpeciesA restriction(hasPart someValueFrom(FlowerA)))

Class(FlowerA restriction(hasColour someValueFrom(ColourA)))

Class(SpeciesB restriction(hasPart someValueFrom(FlowerB))

Class(FlowerB restriction(hasColour someValueFrom(ColourB)))

and if from the definitions of ColourA and ColourB we can conclude that ColourA
is subsumed by ColourB, when we ask our DL reasoner whether the above on-
tology entails that SpeciesA is subsumed by SpeciesB, the reasoner will return
“yes.” By using this kind of subsumption query, we can, for example, conclude
that a species having “golden” flowers is subsumed by a more general species
which has “yellow” flowers, which again is subsumed by another species which
has “orange to yellow” flowers. Therefore, if one asks “Which species might have
yellow flowers,” our colour reasoner will return all these three species.

For species identification, this hierarchical subsumption matching is very use-
ful for shortening the possible species list. After classification reasoning, we have
already had three different levels of matchings:

– Exact matching (ClassRealSpecies ≡ ClassQuerySpecies),
– PlugIn matching (ClassRealSpecies � ClassQuerySpecies)
– Subsume matching (ClassRealSpecies � ClassQuerySpecies)

Actually there is another possible species list, which is not covered by the above
three kinds of matchings, that is, Intersecting matching (¬(ClassRealSpecies �
ClassQuerySpecies �⊥)) [23,24]. For example, if a species has “greenish-yellow”
flowers, it would also be possible to find in the field an individual which has
“yellow” flowers. Although this latter list has a lower probability to contain the
correct answers, it is still helpful from botanical point of view.

Our colour reasoner reduces our domain problems into standard DLs reasoning
problems. In fact, in order to answer domain-oriented queries, it interacts with
the FaCT-DG reasoner. First, the colour in a query is represented by an OWL-Eu
class Q with datatype constraints about its hue, saturation and lightness.

Secondly, the colour reasoner calculates the complete set of colours completeQ

which satisfies the above four levels of matching. Specifically, completeQ consists
of the following four sets.

– equivQ: all elements are equivalent to the class Q, such as “yellow;”
– subQ: all elements are subsumed by the class Q, such as “golden;”
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– superQ: all elements subsume the class Q, such as “yellow to orange to red;”
– intersectionQ: all elements intersect with the class Q, such as “greenish-

yellow.”

Note that the first two contain answers with 100% confidence, while the latter
two contain those with less confidence. Thirdly, in order to find all species that
have flowers whose colour satisfies the query, the colour reasoner interacts with
the Fact-DG reasoner to return those species which have flowers whose colour is
contained in completeQ set.

6 Experiments on Representation and Query

In this section, we will present some experiments, based on our plant ontology,
of species identification queries.

We chose 100 colour terms which are commonly found in floras, as basic
colour terms. For each basic term, we obtained its RGB value by referring to the
X11 Colour Names,8 converted this into its corresponding HSL value and finally
defined it as ranges in hue, saturation and lightness (as described in Section 4).

A simple plant ontology, mentioned in Section 4, was constructed using the
OWL-Eu language. This ontology contains 1154 species, selected from five floras,
mentioned before, and the online eFloras.9, each of which has a flower part
which has a colour property. The colour property is represented by a datatype
expression, representing the colour spaces transformed from the original colour
descriptions,

For example, species Viola adunca has “light blue to purple” flowers.

Class(Viola adunca complete Species
restriction(hasPart someValuesFrom(Viola adunca flower))),

Class(Viola adunca flower complete Flower
restriction(hasColour someValuesFrom(Viola adunca flower colour))),

Class(Viola adunca flower colour complete Colour
restriction(hasHue someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo66,
xsdx:integerLessThanOrEqualTo83)))

restriction(hasSaturation someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo50,
xsdx:integerLessThanOrEqualTo100)))

restriction(hasLightness someValuesFrom

(and(xsdx:integerGreaterThanOrEqualTo25,
xsdx:integerLessThanOrEqualTo70))))

In our experiments, 10 species identification queries based flower colours were
8 http://en.wikipedia.org/wiki/X11 Color Names
9 This is an international project which collects plant taxonomy data from several

main floras, such as Flora of China, Flora of North America, Flora of Pakistan, etc.
Plant species descriptions are available in electronic form, but still written in the
common style of floras, i.e. semi-NL.
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Table 4. Query results (partial) of species having “yellow,” “light blue” and “light
blue to purple” flowers

Species Flower colour Matching type
Amsinckia menziessi yellow Exact matching
Ranunculus acris golden PlugIn matching
Eucalyptus globulus creamy-white to yellow Subsume matching
Tropaeolum majus yellow to orange to red Subsume matching
Rhodiola sherriffii greenish-yellow Intersection matching
Eschscholzia californica deep orange to pale yellow Intersection matching

(a) “yellow”

Species Flower colour Matching type
Aster chilensis light blue Exact matching
Heliotropium curassavicum white to bluish Subsume matching
Linum bienne pale blue to lavender Subsume matching
Triteleia laxa blue to violet Intersection matching
Dichelostemma congestum pink to blue Intersection matching

(b) “light blue”

Species Flower colour Matching type
Viola adunca light blue to purple Exact matching
Linum bienne pale blue to lavender PlugIn matching
Verbena lasiostachys blue-purple PlugIn matching
Lupinus eximus blue to purple, sometimes lavender Intersection matching
Stachys bullata light purple to pink to white Intersection matching
Triteleia laxa blue to violet Intersection matching

(c) “light blue to purple”

carried out. The queries consist of basic terms, range phrases and others with
different levels of complexity (as shown in Table 1). Each query finished in 1–
2 seconds on a 2G Hz Pentium 4 PC. Some of the results are presented in
Tables 4, in the order of complexity of colours: “yellow,” “light blue,” “light
blue to purple.”

We can query in a specific manner, for example to find species which have “light
blue” flowers but excluding those with “dark blue” flowers (see Table 4 (b)); or in
a more general style, to query all species which could have flowers ranging from
“light blue to purple” (see Table 4 (c)). All of these facilities use our quantitative
model which makes it possible to compare and reason with classes at a semantic
level.

As stated in Section 5, the resulting list is from four different levels of match-
ing, which gives a complete list for species identification. We can also specify to
stop at certain levels of matching to get results with different confidences, such
as only returning those species which fully satisfy the query.

The semantics of a colour term or a complex colour description is decomposed
and represented by a group of ranges in multiple numerical parameters, which is
a small subspace in a multi-dimensional space. Numerical representation makes
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Fig. 2. Range between “light blue” and“purple”

Table 5. Performance comparison between semantic matching and keyword matching

Method Precision Recall
Semantic matching 98.2% 81.1%
Keyword matching 84.8% 71.9%

it easy to build ranges between colours, but a further observation shows that
this is not as obvious as we thought. For example, there could be different ways
of interpreting the meaning of “light blue to purple” (see Figure 2):

– light blue to purple directly (area B),
– light blue to blue then to purple,
– light blue to light purple then to purple,
– the whole rectangle (area A).

In our experiment (see Table 4 (c)), we used the last option (the whole rectangle)
for the sake of simplicity and computation cost. It is open to extend our work
and to allow the users to pick up one of the above options when they query with
the keyword “to.”

We further compared our semantics-based query with the simple keyword
matching. The standard precision and recall10 were use to measure the per-
formance. Here, if the distance of returned answer to the query is less than a
threshold used for integration, as we will introduce later, then this answer is
considered correct. Table 5 gives the comparison results of the performance of
these two methods.

10 The precision indicates the proportion of answers in the returned list which are
correct, while the recall is all the correct answers in the whole dataset that were
found.
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7 Integration of Parallel Colour Descriptions

In the previous sections, we have shown that, by using a multi-dimensional colour
model, we can precisely represent the semantics of complex colour descriptions.
Represented in the OWL-Eu language, this quantitative representation enables
reasoning on the real semantics of NL information and provides more practical
query results.

However, the reality does not stop here. As the example in Section 1 shows,
a species is often observed by different botanists, that is, parallel descriptions
of the same species are easily found cross different floras. Since they describe
the same species, these parallel colour descriptions are expected to be similar
to or compatible with each other. Most importantly, as demonstrated in [5],
extracting and collecting parallel information from different sources can produce
more complete results.

A close observation of real data shows that, even using a standard naming
system, botanists use their personally preferred patterns to describe what they
observe, so as to cover the variations of plant individuals in nature. Accordingly,
parallel colour descriptions are rarely exactly the same; sometimes they vary a
lot, especially when the species itself has a relatively wide variation. Here we do
not focus on some genuine geographic or temporal influences on species variation
or some literary errors; instead, we are only concerned linguistic differences be-
tween parallel information. We assume that information from different sources
is correct but probably incomplete; i.e. different sources are never considered
contradictory, only complementary, possibly with a certain degree of overlap.

The key task is to find good strategies to integrate parallel colour descrip-
tions; otherwise, we could end up producing incomplete or redundant results.
A simple conjunction (or intersection) would cause information loss. For exam-
ple, if one flora says that a flower is “white” while another says it is “white or
purplish, sometimes yellow,” the result of their intersection is “white”—“purple”
and “yellow” would be removed. Another logic operation, disjunction (or union),
does not work ideally either. For example, there are two descriptions of the same
flower: “reddish-purple, rarely white” and “white or purplish-red.” Each of them
is represented by two separate colour subspaces. The union operation results in

White � Purplish-red � Reddish-purple

Note that the other “white” is omitted because two “white”s are identical. The
result is complete but there is a redundant overlap between “reddish-purple”
and “purplish-red;” while people can easily infer from the original texts that
actually any colour between red and purple is possible for this species.

The above observations show that naive use of logic operations cannot produce
the integration results as we really expect, indicating that it is not appropriate
to simply mix information without careful studies of how similar or how different
they are. Along this line, investigations of the similarities of parallel informa-
tion seem to be a good integration strategy. To a large degree, similarities of
their semantics can tell how much different descriptions agree with each other,
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Fig. 3. Three different relations between two ranges

namely, the more similar two descriptions are, the more compatible they are.
Thus, given similarities are quantified properly, if two descriptions are similar
enough, although they might not be exactly the same (due to various reasons),
it is better to combine them as one single “super-description” and remove re-
dundancies; otherwise, it is safer to leave them separate because they are both
likely to provide partial information of the same object.

The similarity of two objects is often closely related to the distance between
their representations in certain underlying spaces [25]. More specifically, similar-
ity is a decaying function of distance. Ideally, since colour is a common perceptual
phenomenon, any distance function for colours should be able to capture the real
differences perceived by human eyes. However, how to find perfect colour dis-
tances in different colour models is beyond the scope of this paper. Here, we
claim that any perceptually acceptable distance function d(x, y) (for a metric
space S) which satisfies the following conditions (for all points x, y in S) will
suffice.

Minimality: d(x, y) = 0 =⇒ x = y;
Symmetry: d(x, y) = d(y, x).

In what follows, we will present two ways to define the distance function d(x, y);
we will also show that both distances satisfy the above two conditions.

Inspired by Tversky’s feature contrast and ratio model [26], given two ranges
r1 and r2, the distance of r1 and r2, i.e. d(r1, r2), is equal to the “non-common
part of r1 and r2” divided by “the minimal super-range that contains both r1
and r2”.

Distance Function d1. We start to consider a simple distance function: dis-
tance w.r.t. the hue-range only. Obviously, hue differences is always the first and
the most prominent aspect when people try to compare colours.

There are 3 different types of relations between two ranges, shown in Figure
3. With the help of the FaCT-DG DL reasoner, we can tell whether one range
subsumes the other (r1 � r2), or they intersect with each other (¬(r1 � r2) �⊥),
or they are disjoint from each other ((r1 � r2) �⊥). Accordingly, we define the
following distance function for two arbitrary ranges r1 and r2:

d1(r1, r2) =

{
1 − L1

L2
if r1 and r2 overlap

1 + L1
L2

otherwise;
(3)
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where L2 is the length of minimal super-range which contains both r1 and r2,
and L1 is defined as follows: when r1 and r2 overlap (see (a) and (b)), L1 is the
length of the overlap part of two ranges; otherwise, for (c), L1 is the length of
the gap between two ranges. If two ranges r1 and r2 only share one point, we
say they meet each other and L1 = 0

The distance d1(r1, r2) is continuous and nicely scaled into the range [0, 2): if
d1(r1, r2) = 0, r1 equals r2; if 0 < d1(r1, r2) < 1, r1 and r2 overlap; if d1(r1, r2) =
1, r1 meets r2; if 1 < d1(r1, r2) < 2, r1 and r2 are disjoint; as two ranges move
further apart from each other, the distance gets closer to 2.

Distance Function d3. As we know, hue, saturation and lightness values should
be assigned to a colour at the same time because they are integral dimensions
[27]. In order to have a more sensible distance measure, it might be better to
take the other two dimensions into account.

We still use the overlap/gap ratio to measure distances. Instead of comparing
the length of ranges in one dimension, we measure the volume of the overlap/gap
space. Similarly, the FaCT-DG DL reasoner helps to classify the relation between
two colour spaces, which would be subsumption, intersection or disjunction.
Accordingly, we define the function d3 for two colour spaces cs1 and cs2:11

d3(cs1, cs2) =

{
1 − V1

V2
if cs1 and cs2 overlap

1 + V1
V2

otherwise
(4)

where V2 is the volume of minimal cuboid space which contains both cs1 and
cs2, and V1 is defined as follows: when cs1 and cs2 overlap with each other, V1
is the volume of the overlap space of the two spaces; otherwise, V1 is the volume
of the gap between two spaces in terms of their “super-space” V2. It is easy to
show that the distance function 4 has exactly the same properties as the distance
function 3 has.

Once the distances of any two colour descriptions are calculated, users can
have a better overview of all parallel information from different sources. Based
on such an overview, they can therefore decide whether it is necessary to com-
bine two pieces of information or just to leave them as separate as they are. If a
reasonable distance threshold is given,12 our colour reasoner automatically com-
bines two descriptions if they are close/similar enough or keeps them separate
otherwise.

The integration process is recursive as follows:

Step 1. Use the FaCT-DG DL reasoner to classify the relations between any
two colour spaces generated from parallel descriptions of the same species,
and then use our colour reasoner to calculate their distances (by using either
Formula 3 or 4).

Step 2. Select two closest colour spaces and check whether they are “similar-
enough,” i.e. their distance is less than the distance threshold.

11 Here, d3 means the distance function considers all three dimensions, instead of only
the hue is considered as d1 measures.

12 See Section 8 for more detail.
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Step 3. If they are not similar enough then the integration stops; otherwise,
the smallest cuboid space which contains them is generated and substitutes
them as their integrated space (the same operation as building “to” ranges
in Section 3).

Step 4. Go back to Step 1 to check the updated colour spaces.

In the final results, not only the integrated colour spaces are stored, but also
those generated from parallel sources are kept for further references. For each
disjoint colour space rcsi in the final results, we check how many of the original
colour spaces intersect with it.

Probrcsi =
Count of original colour spaces that intersect with rcsi

Count of original colour spaces
(5)

According to the Prob value of each original colour space, we can see how many
authors agree on one particular range of colours, which reflects how likely people
will find such coloured plant individuals in the field. Therefore, some interesting
frequency inferences can be deduced from parallel information integration, which
will be illustrated in the next section.

8 Experiments on Integration

In this section, we present some results of our experiments on the integration of
parallel colour descriptions. These experiments illustrate how the collaboration
of DL reasoning and similarity measuring helps to integrate parallel information.
Interestingly, our results can also be used to evaluate the performance of the two
similarity functions in a real application.

We further selected 656 species, each of which has at least two parallel de-
scriptions. Note that due to geographic influences, i.e. some species only exist in
some particular regions, parallel information is not guaranteed for each species.

We extended the NL parser introduced in Section 3 in order that it can parse a
whole botanical document and extract flower colour descriptions before it deeply
parses these colour descriptions by using morpho-syntactic rules (see Table 3).
All data is extracted by the parser automatically and double-checked manually.

In order to calculate the threshold for the integration, we selected a group
of parallel descriptions from the whole dataset, which are not identical yet are
still considered to be similar enough to be combined. The average distance of
these parallel descriptions is used as the threshold. Interestingly, we got slightly
different thresholds for two similarity functions, i.e. 1.5 for d1 and 1.4 for d3.

To simplify the presentation, here we use two species to illustrate our ex-
periments. According to three different authors, Linum bienne (Pale Flax) has
“pale blue to lavender,” or “pale lilac-blue” or “pale blue” flowers. In the 3D
HSL-space, the FaCT-DG DL reasoner classifies their relations as follows:

– ¬(CSpale blue to lavender �CSpale blue) �⊥ (“pale blue to lavender” intersects with
“pale blue”),

– (CSpale blue to lavender � CSpale lilac−blue) �⊥ (“pale blue to lavender” is disjoint
from “pale lilac-blue”), and
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– (CSpale blue �CSpale lilac−blue) �⊥ (“pale blue” is disjoint from “pale lilac-blue”).

According to their logic relations, their distances are calculated differently.
By using function d3, distances between these colour spaces are:

– d3(CSpale blue to lavender , CSpale blue) = 0.55,
– d3(CSpale blue to lavender , CSpale lilac−blue) = 1.26,
– d3(CSpale blue, CSpale lilac−blue) = 1.77.

CSpale blue to lavender and CSpale blue are combined first because they are close
enough (actually, CSpale blue � CSpale blue to lavender , so CSpale blue to lavender

is kept as their integrated space), then the integration process goes back to check
the newly updated colour spaces. This time, CSpale lilac−blue is close enough
(1.26 is less than the threshold for d3, which is 1.4) to the newly integrated
colour space (CSpale blue to lavender), they are combined too although they do
not overlap with each other directly. Therefore, three slightly different NL de-
scriptions are finally combined as one single and unified colour space.

Differently, the species Allium dichlamydeum (Coast Onion) has two descrip-
tions about its flower colour: “pink to rose” and “deep reddish-purple”. They are
obviously disjoint from each other; their distance is 1.63 which is higher than
the threshold, so they are kept separately.13 Table 7 shows more examples of
parallel data and their integration results.

Our experiments confirm that the different effects of two distance functions
d1 (based on hue dimension only) and d3 (based on all three HSL dimensions).
Again taking Allium dichlamydeum (Coast Onion) for example, if only the hue
dimension is considered, the two descriptions would be combined as a single
colour space because their hue ranges are actually quite similar. However, after
taking saturation and lightness into account, the HSL-space similarity function
successfully keeps them separate, which seems more acceptable to human per-
ception. Other similar cases are shown in Table 6.

It might be expected that using all three HSL dimensions would lead to very
different integration results to those using the distances in the single hue dimen-
sion. Interestingly, these two distance functions give almost the same results in
most cases. Only 20% of the parallel data give different results; for example,
in Table 7, both distance functions (with different thresholds) give exactly the
same integrated results. The more complicated HSL-space distance function (d3)
does not produce as much advantage as we had expected. One possible reason
is, as we mentioned in Section 7, that although people use different modifiers
to distinguish colours’ saturation and lightness, hue is still the most prominent
aspect which really counts for describing flower colours. Therefore we choose to
use the simpler hue-range distance as the default criterion for integration, while
HSL-space distance is used for some advanced comparisons.

As stated in Section 7, one of the advantages of processing parallel informa-
tion is that we can infer some probabilistic conclusions by observing how often
certain information is mentioned by different authors, as the last column in
13 It has been checked out that this species has slightly different flower colour according

to its geographic distribution.
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Table 6. Comparison of integration results from two different distance functions

Species Parallel Descriptions
Integration Results

Distance
H S LFunction

Allium pink to rose d1 84–0 13–61 6–87
dichlamydeum deep reddish-purple

d3
84–90 22–61 6–16
97–0 13–24 45–87

Iris blue d1 63–86 39–100 25–77
laevigata dark blue or violet

d3 80–86 39–45 67–77
63–69 60–100 25–55

Hylotelephium pink or light purple d1 80–0 22–50 20–92
ewersii purplish-red

d3
84–0 22–26 82–92
80–86 35–50 20–50

Table 7 shows. Looking back to the example mentioned in Section 1, flowers
of Origanum vulgare (marjoram) have been described by four different authors.
After integration, “violet-purple,” “purplish-red,” “purple-red to pale pink” and
“reddish-purple” are combined and substituted by the colour space whose hue
ranges from 80 to 99, saturation from 18 to 88 and lightness from 26 to 100;
“white” is kept as a disjoint colour space found from parallel sources. The former
colour space has a higher probability value (66.7%) than the latter one (33.3%),
from which a reasonable inference can be deduced that white marjoram flowers
are less likely to be found in nature.

Table 7. Examples of parallel descriptions and their integration results

Species Parallel Descriptions
Integration Results

H S L Prob
Lathyrus bright rose-pink
latifolius vivid magenta-pink 87–2 13–50 61–91 100%

rose-pink
Linum pale blue to lavender
bienne pale lilac-blue 63–78 3–80 65–94 100%

pale blue
lavender, white-pink 63–0 5–50 20–99 66.7%

Raphanus white or violet 0–0 0–0 95–100 22.2%
sativus white, lilac or violet, 13–19 95–100 45–55 11.1%

rarely purple/yellow
Ranunculus lemon-yellow 12–23 60–96 46–75 100%
arvensis pale greenish-yellow

violet-purple
Origanum white or purplish-red 80–99 18–88 26–100 66.7%
vulgare purple-red to pale pink 0–0 0–0 95–100 33.3%

reddish-purple, rarely white
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9 Related Work

Automatically integrating information from a variety of sources has become a
necessary feature for many information systems [10]. Compared to structured
or semi-structured data sources, information in natural language documents is
more cumbersome to access [28]. Our work focuses mainly on parallel information
extraction and integration from homogeneous monolingual (English) botanical
documents.

Information Extraction (IE) [29] is a common Natural Language Processing
(NLP) technique which can extract information or knowledge from documents.
Ontologies, containing various semantics expressions of domain knowledge, have
recently been adopted in many IE systems [30,31,32]. Semantics embedded in
ontologies can boost the performance of IE in terms of precision and recall [33].
Since they can be shared by different sources, ontologies also play an impor-
tant role in the area of information integration [10,34,28]. Ontology reasoning
is also introduced into the extraction, representation and integration processes
[35,36,33]. We have shown that reasoning support for ontologies with customised
datatypes is very useful for answering species identification queries and integra-
tion of parallel colour descriptions.

One of our main contributions is to capture the NL semantics as precisely as
possible. In other research areas, many methods have been tried to solve simi-
lar problems. Semantic differential [37] measures people’s reactions to words or
concepts in terms of ratings on bipolar scales defined with contrasting adjectives
at each end, such as “good–bad”. Individuals’ connotations are captured in a
multidimensional space and thus the psychological “distance” between words
or concepts are measured. Lexical Decomposition [38] attempts to break the
meanings of words down to several basic categories, hoping to find some internal
structure for words’ meaning. Multidimensional modelling was also employed
in several areas of cognitive science [25]. Spatial or geometrical structures are
exploited in concept formation and learning, and also in studies in cognitive
linguistics [39]. The limitations of their methods are either the dimensions are
difficult to interpret or they are most qualitative which prevents to capture se-
mantics precisely.

The quantitative semantic model can produce more useful results for real
domain purposes. Specifically, in the botanical domain, many current plant
databases can only support keyword-based query, such as the ActKey,14 ePIC
project,15, the PLANTS database,16 etc. They rely heavily on the occurrence
of keywords. As demonstrated in Section 6, our method uses real semantics
matching, instead of pure keyword matching, which supports more flexible-styled
queries, especially range-based ones.

Another important related research area is semantic similarity measurement.
Obviously, similarity is an important criterion for integration. Depending on how

14 http://flora.huh.harvard.edu:8080/actkey/
15 http://www.rbgkew.org.uk/epic/
16 http://plants.usda.gov/



232 S. Wang and J.Z. Pan

they are represented in different models, similarity between objects is calculated
differently, such as the ratio of common/distinct features in feature models [26],
the vector distances in multidimensional spacial models [25,40], the path-length
in network models [41,42], etc. In NL research, corpus-based methods are often
used to measure similarities between concepts by comparing their information
content [43]. Unfortunately, these methods only focus on relations between basic
terms, but rarely pay enough attention to more complex expressions, such as
regions or ranges. In other words, they are probably able to find the similarity
between “lilac” and “purple,” but cannot tell how close “lilac to pale blue” is
to “deep reddish-purple,” which is much more common in the real world. Our
method uses a 3D-space as a basic representation of basic colour terms and
maps all common linguistics rules into operations on such spaces. Complex NL
descriptions are represented by one or several subspaces. By calculating the
distances between these subspaces, the similarities between their original NL
descriptions are successfully quantified and therefore used as a crucial criterion
for the integration.

10 Conclusion and Outlook

This paper has presented and evaluated an ontology-based approach which fa-
cilitates representing, integrating and querying colour information from parallel
floras. It turns out that, even in this limited domain, formally representing the
semantics of colour descriptions is not a trivial problem. Based on a multi-
dimensional semantic model and certain morpho-syntactic rules, we have imple-
mented an NL parser which translates complex colour descriptions into quantita-
tive representations written in the OWL-Eu ontology language. A colour reasoner
is implemented to interact with the FaCT-DG DL reasoner in order to integrate
parallel information and carry out queries for real botanical applications.

We have shown that our approach outperforms keyword-based approaches,
which are widely used in this domain. Firstly, our quantifiable model enables
automatic reasoning on the real semantic level. Relations between colour de-
scriptions are captured precisely. For example, yellow is between red and green
in terms of hue, lilac is lighter than purple although they have the same hue.
Furthermore, based on the rules of processing adjective modifiers and ranges,
we can query in a detailed manner, such as “light blue,” which excludes pure
blue and dark blue. We can also query on a fuzzy manner, such as “light blue
to purple”, as required for particular domain purposes.

Furthermore, we have also addressed a common but crucial problem for inte-
gration systems: semantic similarities between information from different
sources. Two reasonable distance functions are proposed. The distance mea-
suring collaborates with the FaCT-DG DL reasoner to give complete but not
redundant results. From our experiments, the simpler distance function (i.e. d1)
works well enough in a real-world application. By comparing integrated results
with their original descriptions, some useful probabilistic conclusions can be in-
ferred, which are especially useful for, e.g., the botanical domain.
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Encouraged by the existing results, we plan to extend our work further on
ontology-based species identification queries. Firstly, as suggested in Section 6,
a future version of our colour reasoner should provide several options so as to
allow users to decide on their intended meaning of the “to” keyword. Technically,
this requires the use of not only unary but also n-ary datatype expressions as
constrains on datatype properties hasHue, hasSaturation and hasLightness.
To capture these constraints, we need to use the OWL-E [44,24] ontology lan-
guage, which is the n-ary extension of OWL-Eu.

Another possible future work is to represent the probabilistic information in
the ontology. There are many descriptions with adverbs of quantification, such
as “sometimes,” “rarely,” “often,” etc., which also indicate the probability of
certain colour information. Because current ontology languages do not support
the annotation of classes with probabilities, the probabilistic aspect is ignored
in the text processing. This obviously affects the interpretation of integration
results. However, there are several attempts to extend DL languages with fuzzy
expressions [45,46,47], which, in the future, may be used to enable our logic
representation to capture more of the real semantics implied by its original NL
descriptions.

Most importantly, from this highly specialised domain, we have learnt a set of
more general methodological rules. Key tasks we identified in our study include:
(1) modelling the primitive terms (2) based on the semantic model, the effect
of modifiers has to be defined and ranges have to be built properly; (3) in order
to integrate parallel information, a proper distance measurement is crucial to
quantify the similarities among information from multiple sources; (4) depend-
ing on the application, more expressive representation and additional reasoning
may be necessary to solve real problems. This has proved itself a successful com-
bination, not only in the evaluation but also in its computational tractability,
providing us with a semantic basis for information integration and knowledge
retrieval. Under this light, many continuous quantities occurring in botany and
other descriptive domains, such as leaf shapes, texture, sound, spatial and tem-
poral arrangements, appear to fit fairly straightforwardly into this framework. It
is clear that much more development is possible in this very practical area and
a holistic system is our future task.
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Gómez-Pérez, A., Euzenat, J. (eds.) ESWC 2005, LNCS, vol. 3532, Springer, Hei-
delberg (2005), An extended version is published in the Journal of Web Seman-
tics(to appear)

9. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language Se-
mantics and Abstract Syntax. Technical report, W3C, W3C Recommendation
(2004)

10. Wache, H., Voegele, T., Visser, U., Stuckenschmidt, H., Schuster, G., Neumann, H.,
Huebner, S.: Ontology-based integration of information - a survey of existing ap-
proaches. In: Proceedings of the IJCAI-01 Workshop: Ontologies and Information
Sharing, Seattle, WA, pp. 108–117 (2001)

11. Wang, S., Pan, J.Z.: Ontology-based representation and query colour descriptions
from botanical documents. In: Meersman, R., Tari, Z. (eds.) OTM 2005. LNCS,
vol. 3761, pp. 1279–1295. Springer, Heidelberg (2005)

12. Lammens, J.M.: A computational model of color perception and color naming.
Ph.D. thesis, State University of New York (1994)

13. Berk, T., Brownston, L., Kaufman, A.: A human factors study of color notation
systems for computer graphics. Communications of the ACM 25(8), 547–550 (1982)

14. U.S. Department of Commerce, National Bureau of Standards: Color: Universal
Language and Dictionary of Names. NBS Special Publication 440. U.S. Government
Printing Office, Washington D.C. (1976) (S.D. Catalog No. C13.10:440)

15. Bechhofer, S., van Harmelen, F., Hendler, J., Horrocks, I., McGuinness, D.L., Patel-
Schneider, P.F. (eds.): L.A.S.: OWL Web Ontology Language Reference (2004),
http://www.w3.org/TR/owl-ref/

16. Pan, J.Z., Horrocks, I.: Extending Datatype Support in Web Ontology Reasoning.
In: Meersman, R., Tari, Z., et al. (eds.) ODBASE 2002. LNCS, vol. 2519, pp.
1067–1081. Springer, Heidelberg (2002)

17. Pan, J.Z., Horrocks, I.: Web Ontology Reasoning with Datatype Groups. In: Fensel,
D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, Springer,
Heidelberg (2003)

18. W3C Mailing List (starts from 2001),
http://lists.w3.org/archives/public/www-rdf-logic/

19. W3C Mailing List (starts from 2004) (2004),
http://lists.w3.org/archives/public/public-swbp-wg/

20. Group, J.W.U.P.I.: URIs, URLs, and URNs: Clarifications and Recommendations
1.0., W3C Note (2001), http://www.w3.org/TR/uri-clarification/

21. Fernald, M.: Gray’s Manual of Botany. American Book Company, New York (1950)
22. Berk, T., Brownston, L., Kaufman, A.: A new color-naming system for graphics

languages. IEEE Computer Graphics and Applications 2(3), 37–44 (1982)
23. Li, L., Horrocks, I.: A Software Framework For Matchmaking Based on Semantic

Web Technology. In: WWW 2003. Proc. of the Twelfth International World Wide
Web Conference, pp. 331–339. ACM Press, New York (2003)

24. Pan, J.Z.: Description Logics: Reasoning Support for the Semantic Web. PhD the-
sis, School of Computer Science, The University of Manchester (2004)

http://www.w3.org/TR/owl-ref/
 http://lists.w3.org/archives/public/www-rdf-logic/
http://lists.w3.org/archives/public/public-swbp-wg/
http://www.w3.org/TR/uri-clarification/


Semantically Processing Parallel Colour Descriptions 235

25. Gärdenfors, P.: Conceptual Spaces: the geometry of thought. MIT Press, Cam-
bridge (2000)

26. Tversky, A.: Features of similarity. Psychological Review 84(4), 327–352 (1977)
27. Melara, R.: The concept of perceptual similarity: from psychophysics to cognitive

psychology. In: Algom, D. (ed.) Psychophysical Approaches to Cognition, pp. 303–
388. Elsevier, Amsterdam (1992)

28. Williams, D., Poulovassilis, A.: Combining data integration with natural language
technology for the semantic web. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.)
ISWC 2003. LNCS, vol. 2870, Springer, Heidelberg (2003)

29. Gaizauskas, R., Wilks, Y.: Information extraction: Beyond document retrieval.
Journal of Documentation 54(1), 70–105 (1998)

30. Embley, D., Campbell, D., Liddle, S., Smith, R.: Ontology-based extraction and
structuring of information from data-rich unstructured documents. In: Proceed-
ings of International Conference On Information And Knowledge Management,
Bethesda, 7, Maryland, USA, (1998)

31. Maedche, A., Neumann, G., Staab, S.: Bootstrapping an ontology-based informa-
tion extraction system. studies in fuzziness and soft computing. In: Szczepaniak,
P., Segovia, J., Kacprzyk, J., Zadeh, L.A. (eds.) Intelligent Exploration of the Web,
Springer, Berlin (2002)

32. Alani, H., Kim, S., Millard, D.E., Weal, M.J., Hall, W., Lewis, P.H., Shadbolt,
N.R.: Automatic ontology-based knowledge extraction from web documents. IEEE
Intelligent Systems 18(1), 14–21 (2003)

33. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured informa-
tion processing in the corporate research environment. Journal of Natural Language
Engineering 10(3-4), 327–348 (2004)

34. Goble, C., Stevens, R., Ng, G., Bechhofer, S., Paton, N., Baker, P., Peim, M.,
Brass, A.: Transparent access to multiple bioinformatics information sources. IBM
Systems Journal Special issue on deep computing for the life sciences 40(2), 532–
552 (2001)

35. Calvanese, D., Giuseppe, D.G., Lenzerini, M.: Description logics for information
integration. In: Kakas, A.C., Sadri, F. (eds.) Computational Logic: Logic Program-
ming and Beyond. LNCS (LNAI), vol. 2408, pp. 41–60. Springer, Heidelberg (2002)

36. Maier, A., Schnurr, H.P., Sure, Y.: Ontology-based information integration in the
automotive industry. In: Fensel, D., Sycara, K.P., Mylopoulos, J. (eds.) ISWC 2003.
LNCS, vol. 2870, pp. 897–912. Springer, Heidelberg (2003)

37. Osgood, C., Suci, G., Tannenbaum, P.: The measurement of meaning. University
of Illinois Press, Urbana (1957)

38. Dowty, D.R.: Word Meaning and Montague Grammar. D. Reidel Publishing, Dor-
drecht (1979)

39. Lakoff, G.: Women, fire, and dangerous things: what categories reveal about the
mind. University of Chicago Press, Chicago (1987)

40. Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to latent semantic analysis.
Discourse Processes 25, 259–284 (1998)

41. Rada, R., Mili, H., Bicknell, E., Blettner, M.: Development and application of
a metric on semantic nets. IEEE Transactions on Systems, Man and Cybernet-
ics 19(1), 17–30 (1989)

42. Wu, Z., Palmer, M.: Verb semantics and lexical selection. In: The 32th Annual
Meeting of the Association for Computational Linguistics, Las Cruces, Mexico,
pp. 133–138 (1994)



236 S. Wang and J.Z. Pan

43. Resnik, P.: Using information content to evaluate semantic similarity in a taxon-
omy. In: The 14th International Joint Conference on Artificial Intelligence, Mon-
treal, vol. 1, pp. 448–453 (1995)

44. Pan, J.Z.: Reasoning Support for OWL-E (Extended Abstract). In: Basin, D.,
Rusinowitch, M. (eds.) IJCAR 2004. LNCS (LNAI), vol. 3097, Springer, Heidelberg
(2004)

45. Tresp, C., Molitor, R.: A description logic for vague knowledge. In: ECAI 1998.
Proceedings of the 13th biennial European Conference on Artificial Intelligence,
pp. 361–365. John Wiley and Sons, Chichester (1998)

46. Straccia, U.: Transforming fuzzy description logics into classical description logics.
In: Alferes, J.J., Leite, J.A. (eds.) JELIA 2004. LNCS (LNAI), vol. 3229, pp. 385–
399. Springer, Heidelberg (2004)

47. Stoilos, G., Stamou, G., Tzouvaras, V., Pan, J.Z., Horrock, I.: A Fuzzy Description
Logic for Multimedia Knowledge Representation. In: Proc. of the International
Workshop on Multimedia and the Semantic Web, Crete (2005)


	Semantically Processing Parallel Colour Descriptions
	Introduction
	Technical Background
	The Colour Model
	OWL DL and Its Datatype Extension OWL-Eu

	NL Processing
	Representation of Colour Descriptions in OWL-Eu
	Domain-Oriented Queries
	Experiments on Representation and Query
	Integration of Parallel Colour Descriptions
	Experiments on Integration
	Related Work
	Conclusion and Outlook



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




