Skip to main content

Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection

  • Conference paper
Book cover Wireless Sensor Networks (EWSN 2008)

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 4913))

Included in the following conference series:

Abstract

Activity recognition from an on-body sensor network enables context-aware applications in wearable computing. A guaranteed classification accuracy is desirable while optimizing power consumption to ensure the system’s wearability. In this paper, we investigate the benefits of dynamic sensor selection in order to use efficiently available energy while achieving a desired activity recognition accuracy. For this purpose we introduce and characterize an activity recognition method with an underlying run-time sensor selection scheme. The system relies on a meta-classifier that fuses the information of classifiers operating on individual sensors. Sensors are selected according to their contribution to classification accuracy as assessed during system training. We test this system by recognizing manipulative activities of assembly-line workers in a car production environment. Results show that the system’s lifetime can be significantly extended while keeping high recognition accuracies. We discuss how this approach can be implemented in a dynamic sensor network by using the context-recognition framework Titan that we are developing for dynamic and heterogeneous sensor networks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lukowicz, P., Junker, H., Staeger, M., von Bueren, T., Troester, G.: WearNET: A distributed multi-sensor system for context aware wearables. In: Borriello, G., Holmquist, L.E. (eds.) UbiComp 2002. LNCS, vol. 2498, pp. 361–370. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  2. Kallio, S., Kela, J., Korpipää, P., Mäntyjärvi, J.: User independent gesture interaction for small handheld devices. International Journal of Pattern Recognition and Artificial Intelligence 20(4), 505–524 (2006)

    Article  Google Scholar 

  3. Hernandez-Rebollar, J.L.: Gesture-driven american sign language phraselator. In: ICMI 2005. Proceedings of the 7th international conference on Multimodal interfaces, pp. 288–292. ACM Press, New York (2005)

    Chapter  Google Scholar 

  4. Benini, L., Farella, E., Guiducci, C.: Wireless sensor networks: Enabling technology for ambient intelligence. Microelectron. J. 37(12), 1639–1649 (2006)

    Article  Google Scholar 

  5. Watteyne, T., Augé-Blum, I., Ubéda, S.: Dual-mode real-time mac protocol for wireless sensor networks: a validation/simulation approach. In: Proceedings of the first international conference on Integrated internet ad hoc and sensor networks (2006)

    Google Scholar 

  6. Römer, K., Mattern, F.: The design space of wireless sensor networks. IEEE Wireless Communications 11(6), 54–61 (2004)

    Article  Google Scholar 

  7. Van Laerhoven, K., Gellersen, H.W.: Spine versus porcupine: a study in distributed wearable activity recognition. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS, vol. 3298, pp. 142–149. Springer, Heidelberg (2004)

    Google Scholar 

  8. Harms, H., Amft, O., Tröster, D.R.G.: Smash: A distributed sensing and processing garment for the classification of upper body postures. In: Third interational conference on body area networks (submitted, 2008)

    Google Scholar 

  9. Roggen, D., Bharatula, N.B., Stäger, M., Lukowicz, P., Tröster, G.: From sensors to miniature networked sensorbuttons. In: INSS 2006. Proc. of the 3rd Int. Conf. on Networked Sensing Systems, pp. 119–122 (2006)

    Google Scholar 

  10. Paradiso, J.A., Starner, T.: Energy scavenging for mobile and wireless electronics. IEEE Pervasive Computing 4(1), 18–27 (2005)

    Article  Google Scholar 

  11. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac protocol for wireless sensor networks. In: SenSys 2003: Proceedings of the 1st international conference on Embedded networked sensor systems, pp. 171–180. ACM Press, New York (2003)

    Google Scholar 

  12. Alliance, Z.: Zigbee specification (2006), http://www.zigbee.org

  13. Hill, J., Culler, D.: Mica: A Wireless Platform for Deeply Embedded Networks. IEEE Micro. 22(6), 12–24 (2002)

    Article  Google Scholar 

  14. Dai, L., Basu, P.: Energy and delivery capacity of wireless sensor networks with random duty-cycles. In: IEEE International Conference on Communications, pp. 3503–3510 (to appear)

    Google Scholar 

  15. Moser, C., Thiele, L., Benini, L., Brunelli, D.: Real-time scheduling with regenerative energy. In: ECRTS 2006. Proceedings of the 18th Euromicro Conference on Real-Time Systems, pp. 261–270. IEEE Computer Society Press, Washington (2006)

    Google Scholar 

  16. Vigorito, C.M., Ganesan, D., Barto, A.G.: Adaptive control of duty cycling in energy-harvesting wireless sensor networks. In: SECON 2007. 4th Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks, June 18–21, 2007, pp. 21–30 (2007)

    Google Scholar 

  17. Stiefmeier, T., Ogris, G., Junker, H., Lukowicz, P., Tröster, G.: Combining motion sensors and ultrasonic hands tracking for continuous activity recognition in a maintenance scenario. In: 10th IEEE International Symposium on Wearable Computers (2006)

    Google Scholar 

  18. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–285 (1989)

    Article  Google Scholar 

  19. Maurtua, I., Kirisci, P.T., Stiefmeier, T., Sbodio, M.L., Witt, H.: A wearable computing prototype for supporting training activities in automative production. In: IFAWC. 4th International Forum on Applied Wearable Computing (2007)

    Google Scholar 

  20. Zappi, P., Stiefmeier, T., Farella, E., Roggen, D., Benini, L., Tröster, G.: Activity recognition from on-body sensors by classifier fusion: Sensor scalability and robustness. In: 3rd Int. Conf. on Intelligent Sensors, Sensor Networks, and Information Processing (2007)

    Google Scholar 

  21. Ming Hsiao, K., West, G., Vedatesh, S.M.K.: Online context recognition in multisensor system using dynamic time warping. In: Proc. of the 2005 International Conference on Intelligent Sensors, Sensor Networks and Information Processing, pp. 283–288 (2005)

    Google Scholar 

  22. Mitra, S., Acharya, T.: Gesture recognition: A survey. IEEE Transactions on Systems, Man and Cybernetics - Part C 37(3), 311–324 (2007)

    Article  Google Scholar 

  23. Ganti, R.K., Jayachandran, P., Abdelzaher, T.F., Stankovic, J.A.: Satire: a software architecture for smart attire. In: MobiSys., pp. 110–123 (2006)

    Google Scholar 

  24. Rish, I., Hellerstein, J., Thathachar, J.: An analysis of data characteristics that affect naive bayes performance. In: ICML 2001 (2001)

    Google Scholar 

  25. Stiefmeier, T., Roggen, D., Tröster, G.: Fusion of string-matched templates for continuous activity recognition. In: 11th IEEE International Symposium on Wearable Computers, October 2007, pp. 41–44 (2007)

    Google Scholar 

  26. Lombriser, C., Stäger, M., Roggen, D., Tröster, G.: Titan: A tiny task network for dynamically reconfigurable heterogeneous sensor networks. In: KiVS. Fachtagung Kommunikation in Verteilten Systemen, pp. 127–138 (2007)

    Google Scholar 

  27. Hill, J., Szewczyk, R., Woo, A., Hollar, S., Culler, D., Pister, K.: System architecture directions for network sensors. In: Architectural Support for Programming Languages and Operating Systems (November 2000)

    Google Scholar 

  28. Chen, H., Wu, H., Tzeng, N.F.: Grid-based approach for working node selection in wireless sensor networks. In: IEEE International Conference on Communications, June 20–24, 2004, vol. 6, pp. 3673–3678 (2004)

    Google Scholar 

  29. Yu, J.Y., Chong, P.H.J.: A survey of clustering schemes for mobile ad hoc networks. IEEE Communications Surveys 7(1), 32–48 (2005)

    Article  Google Scholar 

  30. Pham, T., Kim, E.J., Moh, M.: On data aggregation quality and energy efficiency of wireless sensor network protocols - extended summary. In: Proceedings of the First International Conference on Broadband Networks, pp. 730–732 (2004)

    Google Scholar 

  31. Guo, Y., McNair, J.: An adaptive sleep protocol for environment monitoring using wireless sensor networks. Communications and Computer Networks, 1–6 (2005)

    Google Scholar 

  32. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Roberto Verdone

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zappi, P. et al. (2008). Activity Recognition from On-Body Sensors: Accuracy-Power Trade-Off by Dynamic Sensor Selection. In: Verdone, R. (eds) Wireless Sensor Networks. EWSN 2008. Lecture Notes in Computer Science, vol 4913. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77690-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77690-1_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77689-5

  • Online ISBN: 978-3-540-77690-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics