
Asynchronous Training in Wireless Sensor Networks

F. Barsi∗ A.A. Bertossi† F. Betti Sorbelli∗ R. Ciotti∗ S. Olariu‡

M.C. Pinotti∗

Abstract

Scalable energy-efficient training protocols are proposed for massively-deployed sensor

networks, where sensors are initially anonymous and unaware of their location. The proto-

cols are based on an intuitive coordinate system imposed onto the deployment area which

partitions the anonymous sensors into clusters. The protocols are asynchronous, in the

sense that the sensors wake up for the first time at random, then alternate between sleep

and awake periods both of fixed length, and no explicit synchronization is performed be-

tween them and the sink. Theoretical properties are stated under which the training of all

the sensors is possible. Moreover, a worst-case analysis as well as an experimental evaluation

of the performance is presented, showing that the protocols are lightweight and flexible.

1 Introduction

Recent technological breakthroughs in ultra-high integration and low-power electronics have

enabled the development of miniaturized battery-operated sensor nodes (sensors, for short)

that integrate signal processing and wireless communications capabilities [1, 24]. Together with

innovative and focused network design techniques that will make possible massive deployment

[22] and sustained low power operation, the small size and cost of individual sensors are a key

enabling factor for a large number of applications. Indeed, aggregating sensors into sophisti-

cated computational and communication infrastructures, called wireless sensor networks, has a

significant impact on a wide array of applications ranging from smart kindergarten [14, 17], to

smart learning environments [4, 9, 16], to habitat monitoring [15, 19], to environment monitor-

ing [12, 20], to greenhouse and vineyard experiments [5], to forest fire detection [6], to helping

the elderly and the disabled [12, 18], among others.

The peculiar characteristics of sensor networks pose unique challenges to the design of pro-

tocols. First of all, the limited energy budget requires the design of ultra-lightweight commu-

nication protocols. However, how data collected by sensors are queried and accessed and how

concurrent sensing can be performed internally are of significance as well. An important guide-

line in this direction is to perform as much local data processing at the sensor level as possible,

avoiding the transmission of raw data through the sensor network. This implies that the sensor

network must be multi-hop and, for reasons of scalability, that no sensor knows the topology of

the network.
∗Department of Computer Science and Mathematics, University of Perugia, 06123 Perugia, Italy,

{barsi,pinotti}@unipg.it
†Department of Computer Science, University of Bologna, Mura Anteo Zamboni 7, 40127 Bologna, Italy,

bertossi@cs.unibo.it
‡Department of Computer Science, Old Dominion University, Norfolk, VA 23529-0162, USA,

olariu@cs.odu.edu

1

 (a) (b)

Figure 1: (a) A sensor network with a central sink. (b) The trained sensor network.

Several possible techniques can be used for interfacing sensor networks to the outside world

and for harvesting the data they produce. The simplest technique involves using one or several

sinks, i.e. special long-range radios deployed alongside with the sensors. Each sink has a full

range of computational capabilities, can send long-range directional broadcasts to the sensors

at distance at most ρ, can receive messages from nearby sensors, and has a steady power supply.

In this scenario, the raw data collected by individual sensors are fused, in stages, and forwarded

to the nearest sink that provides the interface to the outside world. Such a scenario for a sensor

network with a single central sink is depicted in Figure 1(a).

The random deployment results in sensors initially unaware of their location. Further, due to

limitations in form factor, cost per unit and energy budget, individual sensors are not expected

to be GPS-enabled. Moreover, many probable application environments limit satellite access.

Therefore, individual sensors have to determine their exact geographic location, if required by

the application, or else a coarse-grain approximation thereof. The former task is referred to as

localization and has been extensively studied in the literature [10, 13]. The latter task, referred

to as training, has been considered in several recent papers by Olariu et al. [3, 14, 21, 23]. In

particular, they devised some training protocols for sensor networks, which differ on whether or

not sensors need some kind of explicit synchronization with the sink. Such training protocols

have different performance, measured in terms of total time for training, overall sensor awake

time, and number of sensor sleep/wake transitions. In particular, the model in [23] assumes

that the sink and the sensors are asynchronous, in the sense that the sensors wake up for the

first time at random and then alternate between sleep and awake periods both of fixed length,

while no explicit synchronization is performed between them and the sink.

The main contribution of this paper is to further study the task of training, assuming the

same asynchronous model as that originally defined in [23]. The present paper completes the

work of [23], by stating novel theoretical properties under which the training of all the sensors in

the network is possible. Moreover, new protocols are presented which are lightweight in terms

of both the number of sleep/wake transitions and the overall sensor awake time for training.

The remainder of this paper is organized as follows. Section 2 discusses the wireless sensor

network model and introduces the task of training. Training imposes a coordinate system which

divides the sensor network area into equiangular wedges and concentric coronas centered at the

2

awake awakesleep sleep

L L

d L−d d L−d

Figure 2: The sensor sleep-awake cycle.

sink, as first suggested in [21]. Section 3 is the backbone of the entire paper, presenting the

theoretical underpinnings of a basic training protocol, called Flat–, along with its worst-case

performance analysis. Section 4 shows two variants of the basic protocol, called Flat and Flat+,

as well as a two-level approach, which improve the Flat– performance. Section 5 presents an

experimental evaluation of the performance, tested on randomly generated instances, confirming

the analytical results in the worst case and showing a much better behaviour in the average

case. Finally, Section 6 offers concluding remarks.

2 The network model

In this work a wireless sensor network is assumed that consists of a sink and a set of sensors

randomly deployed in its broadcast range as illustrated in Figure 1(a). For simplicity, the sink

is centrally placed, although this is not really necessary.

A sensor is a device that possesses three basic capabilities: sensory, computation, and wire-

less communication, and operates subject to the following fundamental constraints:

a. Sensors are anonymous – they do not have individually unique IDs;

b. Each sensor has a modest non-renewable energy budget and a transmission range of r;

c. In order to save energy, each sensor alternates between sleep periods and awake periods,

as depicted in Figure 2 – the sensor sleep-awake cycle is of total length L out of which

the sensor is in sleep mode for L − d time and in awake mode for d time;

d. Each sensor is asynchronous – it wakes up for the first time according to its internal clock

and is not engaging in an explicit synchronization protocol with either the sink or the

other sensors;

e. Each sensor has no global information about the network topology, but can hear trans-

missions from the sink;

f. Individual sensors must work unattended – once deployed it is either infeasible or imprac-

tical to devote attention to individual sensors.

The task of training is essential in several applications. One example is clustering where the

set of sensors deployed in an area is partitioned into clusters [1, 2, 7, 17]. As a result of training,

we impose a coordinate system onto the sensor network in such a way that each sensor belongs

to exactly one cluster. The coordinate system involves establishing [21]:

1. Coronas: The deployment area is covered by k coronas C0, C1, . . . , Ck−1 determined by k

concentric circles, centered at the sink, whose radii are 0 < r0 < r1 < · · · < rk−1 = ρ;

2. Wedges: The deployment area is ruled into a number of equiangular wedges, centered at

the sink, which are established by directional transmission [14].

3

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

0 0

15 15

Figure 3: The sink transmission cycle.

For the sake of simplicity, in this paper, it is assumed that the corona width is equal to the

sensor transmission range r, and hence the (outer) radius ri of corona Ci is equal to (i + 1)r.

Moreover, the length L of the sensor sleep-awake cycle is assumed to be no smaller than the

number k of coronas. As illustrated in Figure 1(b), at the end of the training period each sensor

has acquired two coordinates: the identity of the corona in which it lies, as well as the identity

of the wedge to which it belongs. In particular, a cluster is the locus of all nodes having the

same coordinates in the coordinate systems [14].

3 The Flat– protocol

The main goal of this section is to present the details of the basic corona training protocol (the

wedge training protocol is similar and will not be discussed), where each individual sensor has

to learn the identity of the corona to which it belongs, regardless of the moment when it wakes

up for the first time. To see how this is done, it is useful to assume the time ruled into slots.

The sensors and the sink use equally long, in phase slots, but they do not necessarily start

counting the time from the same slot.

The idea of the protocol is illustrated in Figure 3. Immediately after deployment the sink

cyclically repeats a transmission cycle which involves k broadcasts at successively lower power

levels. Each broadcast lasts for a slot and transmits a beacon equal to the identity of the

outmost corona reached. Precisely, the sink starts out by transmitting the beacon k − 1 at the

highest power, sufficient to reach the sensors up to the outmost corona Ck−1; next, the sink

transmits the beacon k − 2 at a power level that can be received up to corona Ck−2, but not

by the sensors in corona Ck−1. For the subsequent k − 2 slots, the sink continues to transmit

at decreasing power levels until it concludes its transmission cycle with a broadcast that can

be received only by the sensors in corona C0. In general, at time slot τ , with τ ≥ 0, the sink

transmits the beacon k− 1− |τ |k with a power level that can reach all the sensors up to corona

Ck−1−|τ |k , where |a|b stands for the non negative remainder of the integer division between a

and b (i.e. |a|b is the same as a modulo b). The sink transmission cycle is repeated for a time τ1

sufficient to accomplish the entire corona training protocol. The protocol for the sink is shown

in Figure 4.

In order to describe the protocol for sensors, it is crucial to point out that each sensor is

aware of the sink behaviour and of the total number k of coronas. Immediately after deployment,

each sensor wakes up at random within the 0-th and the (k−1)-th time slot and starts listening

to the sink for d time slots (that is, its awake period). Then, the sensor goes back to sleep for

L − d time slots (that is, its sleep period). Such a sleep/wake transition will be repeated until

4

Procedure Sink (k, τ1);

for τ := 0 to τ1 − 1 do

transmit the beacon |k − 1 − τ |k up to corona C|k−1−τ |k ;

Figure 4: The protocol for the sink.

the sensor will learn the identity of the corona to which belongs, that is, until the sensor will

be trained. Each sensor, during the training process, uses a k-bit register R to keep track of

the beacons, i.e. corona identities, transmitted by the sink while the sensor is awake. As soon

as the sensor hears a sink transmission for the first time, it starts to fill the register R and it is

able to learn the sink global time t within the current sink transmission cycle, that is t = |τ |k.
From now on, such a time will regularly increase so that the sensor can derive from t the beacon

|k− 1− t|k that the sink is transmitting. Then, in each time slot when the sensor is awake, one

entry of R can be always set either to 0 or to 1. In fact, if the sensor hears beacon c, then it sets

Rc = 1, while if the sensor hears nothing, it sets R|k−1−t|k = 0. Note that the awake sensors

which belong to corona c, with c > 0, are able to receive any transmitted beacon from c up to

k − 1, whereas they cannot hear the beacons from 0 up to c− 1. Hence, if a sensor sets Rc = 0

(resp., Rc = 1) then it belongs to a corona whose identity is higher than (resp., smaller than

or equal to) c. Note that only the sensors in corona 0 can hear beacon 0 and thus they are the

only ones which can set R0 = 1. From the above discussion, the following training condition

holds:

Lemma 3.1. [23] A sensor which belongs to corona c, with c > 0, is trained as soon as the

entries Rc and Rc−1 of its register R are set to 1 and 0, respectively. A sensor which is in

corona 0 is trained as soon as R0 is set to 1.

The resulting sensor protocol, called Flat–, is illustrated in Figure 5. Procedure Flat– mimics

the behaviour of the sensor from its first wakeup until it is trained, that is when the identity

of the corona to which it belongs is stored into mycorona. Each sensor counts the number ν of

sleep/wake transitions needed to be trained (line 1), it keeps its local time t, which is initialized

when the sensor receives a beacon for the first time from the sink (that is, when heard is set

to true in line 7), and it stores in alarm-clock the time when the next sleep/wake transition

is planned (line 21–23). After any entry of R is filled, the sensor checks the training condition

stated in Lemma 3.1. Observe that lines 12–19 cannot be executed when c = k− 1, because the

beacon k − 1 reaches the outmost corona Ck−1, all awake sensors hear, and thus they execute

lines 6–11. In the procedure, each sensor executes O(1) arithmetic/logic operations per time

slot.

In the following, some conditions on the parameters k, L, and d will be investigated which

guarantee that all the sensors are trained, independent of their first wakeup time and from the

corona c they belong to. Hereafter, let (a, b) denote the greatest common divisor between a and

b. Moreover, if (a, b) = 1, let
∣

∣

1
a

∣

∣

b
be the multiplicative inverse of a modulo b (e.g. see [8]).

Lemma 3.2. Fixed L, d, and k, there are exactly k′ = k
(L,k) different corona identities that can

be transmitted by the sink when the sensor starts any awake period. Assuming that the sensor

wakes up for the first time at slot x, 0 ≤ x ≤ k−1, then the corona identity transmitted when the

sensor starts its i-th awake period is |Kx − i(L, k)|L′|k′ |k = |Kx − |i|k′(L, k)|L′|k′ |k, where Kx

is the corona identity transmitted at time x, that is Kx = C|k−1−x|k. Such k′ coronas identities

can be reindexed as |Kx − s(L, k)|k, for 0 ≤ s ≤ k′ − 1.

5

Procedure Flat– (k, L, d);

1 heard := trained := false; ν := 0;

2 while wakeup and ¬ trained do

3 ν := ν + 1;

4 for i := 0 to d − 1 do

5 if received beacon c then

6 if ¬ heard then

7 heard := true, t := k − 1 − c;

8 Rc := 1;

9 if c = 0 or (Rc = 1 and Rc−1 = 0) then

10 mycorona := c, trained := true;

11 t := t + 1;

12 else

14 if heard then

15 c := k − 1 − |t|k;

16 Rc := 0;

17 if Rc+1 = 1 then

18 mycorona := c, trained := true;

19 t := t + 1;

20 if heard then

21 alarm-clock := t := t + L − d;

22 else

23 alarm-clock := alarm-clock + L;

24 go to sleep until the alarm-clock rings;

Figure 5: The Flat– protocol for a sensor.

Proof. Consider a sensor that wakes up for the first time at the global time slot τ = x, while

the sink is transmitting the beacon Kx = |k− 1− τ |k = |k− 1−x|k. The i-th sleep-awake cycle

of such a sensor starts at time x+ iL while the sink is transmitting the beacon |k− 1−x− iL|k
= |Kx − i|L|k|k, with i ≥ 0. Observe that L and k can be rewritten as L = gL′ and k = gk′,

where g = (L, k). Since |L|k = |gL′|k = g|L′|k′ , one has |Kx − i|L|k|k = |Kx − ig|L′|k′ |k. The

same corona is transmitted again at the beginning of any two awake periods of the sensor which

are k′ apart because |Kx − (i + k′)|L|k|k = |Kx − (i + k′)g|L′|k′ |k = |Kx − (ig + k′g)|L′|k′ |k
= |Kx − (ig + k)|L′|k′ |k = |Kx − ig|L′|k′ |k, Moreover, for any two awake periods, say the i-th

and the j-th ones, such that i > j and i − j < k′, the coronas Cx+iL and Cx+jL are distinct

and differ by a multiple of g. Hence, overall there are exactly k′ different coronas which can

be transmitted by the sink when the sensor starts its awake periods, independent of how long

the training process will be. In addition, such k′ corona identities can be rearranged so that in

the new order two consecutive coronas differ exactly by g. Indeed the s-th corona in the new

order, that is |Kx − sg|k, corresponds to the first beacon transmitted in the
∣

∣s| 1
L′ |k′

∣

∣

k′-th awake

period, with 0 ≤ s ≤ k′ − 1.

Therefore, after exactly k′ sleep-awake cycles, that is after k′L time slots, which correspond

to k′L
k

= k′L
gk′ = L

g
= L′ sink transmission cycles, the behaviour of the sensor and the sink will

be cyclically repeated. In other words, at the beginning of the k′-th awake period, the sensor

and the sink are in the same reciprocal state as they were at the beginning of the 0-th one, with

the only difference that, if the sensor can be trained, it has heard the sink at least once. Thus:

Lemma 3.3. Fixed L, d, and k, all the entries of R that the sensor can fill are set within the

first 2k
(L,k) sleep-awake cycles.

6

Proof. During the first k′ = k
(L,k) awake periods of any sensor, the sink transmits no more than

k
(L,k)d different corona identities. These corona identities will be cyclically transmitted during

the training process of such a sensor. They correspond to exactly all the positions of R that the

sensor can set and they include all the beacons that the sensor can hear from the sink. Hence,

in the worst case, the sensor needs k′ = k
(L,k) awake periods to hear the sink for the first time

and further k′ = k
(L,k) awake periods to fill R.

Clearly, if the training condition of Lemma 3.1 cannot be verified by a sensor within its first

2k′ = 2k
(L,k) sleep-awake cycles, such a sensor will never be trained, independent of how long the

training process will continue. The following result shows under which conditions for k, L and

d all the sensors can be trained and also gives an upper bound on the number of sleep-awake

cycles needed to accomplish the entire training process.

Theorem 3.4. All the sensors are trained in at most 2k′ = 2 k
(L,k) sleep-awake cycles if and

only if d ≥ (L, k).

Proof. For brevity let g = (L, k). By contradiction, suppose that all the sensors have been

trained and let d < g. By Lemmas 3.2 and 3.3, in at most 2k
g

sleep-awake periods, each sensor

has filled at most k′d entries of R. Since d < g, each sensor has filled less than k entries of R.

Such filled entries depend on the time slot x when the sensor woke up for the first time. Consider

now all the sensors that woke up at the same time x. Note that they have filled, although with

different configurations, the same positions of R independent of the corona they belong. Let c

be one unfilled entry of R. By the hypothesis of massive random deployment, there is at least

one sensor that woke up at time x in each corona, and hence at least one sensor in corona c.

Clearly, such a sensor will not be trained because the training condition in Lemma 3.1 will be

never satisfied.

Conversely, if d ≥ g, by Lemma 3.2, in k′ consecutive sleep-awake cycles, the beacons

transmitted by the sink in the first slot of such k′ cycles are exactly g apart. Since an awake

period lasts d ≥ g slots, at least g new corona identities are transmitted by the sink during

an awake period of the sensor. Hence, after having heard the sink within the first k′ awake

periods, the sensor fills at least g entries of R in each awake period and completely fills R in at

most other k′ awake periods. Therefore, the sensor is trained in at most 2k′ consecutive awake

periods. Note that this happens for all the sensors, independent of their first wake-up time x

and of the corona c to which they belong.

In the following, a better bound on the maximum number of sleep-awake periods required

in the worst case to train a sensor is discussed for two particular cases, namely, d = (L, k) and

d = |L|k. Note that, since d = |L|k = (L, k)|L′|k′ , Theorem 3.4 holds in both cases and hence

register R is completely filled within the first 2k
(L,k) sleep-awake periods. However, the training

condition may be verified earlier because it is sufficient that the entries c and c − 1 of R be

filled. Precisely, Lemmas 3.5 and 3.6 specify, for d = (L, k) and d = |L|k respectively, in which

awake period of a sensor that wakes up for the first time at slot x the sink is transmitting an

arbitrary beacon c.

Lemma 3.5. Let c be any corona identity and assume d = (L, k). The sink transmits the beacon

c during the ic,x-th awake period of a sensor that wakes up for the first time at slot x, where

ic,x =
∣

∣

∣

⌊

|Kx−c|k
d

⌋

∣

∣

1
L′

∣

∣

k′

∣

∣

∣

k′
, L′ = L

d
, and k′ = k

d
.

7

Proof. When the sensor wakes up at time x the sink is transmitting the beacon Kx. Moreover,

the beacon values decrease within a sink transmission cycle. Thus, the beacon c will be trans-

mitted, starting from Kx, during the j-th group of d consecutive corona identities such that

j =
⌊

|Kx−c|k
d

⌋

. Such a j-th group of d consecutive corona identities will be transmitted dur-

ing the ic,x-th sensor awake period in which the sink transmits
∣

∣

∣
Kx −

⌊

|Kx−c|k
d

⌋

d

∣

∣

∣

k
as the first

beacon. Hence, by Lemma 3.2, ic,x is derived by solving the equation |Kx − ic,x(L, k)|L′|k′ |
k

=
∣

∣

∣
Kx −

⌊

|Kx−c|k
d

⌋

d

∣

∣

∣

k
. Since d = (L, k), it follows ic,x =

∣

∣

∣

⌊

|Kx−c|k
d

⌋

∣

∣

1
L′

∣

∣

k′

∣

∣

∣

k′

Lemma 3.6. Let c be any corona identity and assume d = |L|k. The sink transmits the beacon

c during the ic,x-th awake period of a sensor which wakes up for the first time at slot x, where

ic,x =
⌊

|Kx−c|k
d

⌋

.

Proof. The proof is similar to that of Lemma 3.5. Only observe that now, since d = |L|k =

(L, k)|L′|k′ , ic,x is derived by solving the equation |ic,x(L, k)|L′|k′ |k = |jd|k, and hence ic,x = j.

The following two lemmas determine when the training condition is satisfied by a sensor.

Lemma 3.7. Let d = (L, k). A sensor which wakes up for the first time at slot x and belongs

to corona c, with c > 0, is trained during the i-th awake period where i = ic−1,x, if ic,x ≤ ic−1,x,

or i ≤ ic,x +
∣

∣

1
L′

∣

∣

k′, if ic,x > ic−1,x. If c = 0, then i = i0,x.

Proof. If ic,x ≤ ic−1,x, during the ic,x awake period the sensor hears the beacon c and hence

it sets Rc = 1. Moreover, during the ic−1,x awake period, the sensor sets Rc−1 = 0 because

it does not hear c − 1 but, having already heard c, it knows what the sink is transmitting. If

ic,x > ic−1,x, in the worst case the sensor hears for the first time during the ic,x-th awake period

and sets Rc = 1. Then, the beacon c− 1 will be transmitted at the i-th awake period such that

|Kx − i(L, k)|L′|k′ |k = |Kx − (j + 1)d|k, where j =
⌊

|Kx−c|k
d

⌋

. Solving the above equation, one

has i =
∣

∣(j + 1)
∣

∣

1
L′

∣

∣

k′

∣

∣

k′ = ic,x +
∣

∣

1
L′

∣

∣

k′ .

Lemma 3.8. Let d = |L|k. A sensor which wakes up for the first time at slot x and belongs to

corona c, with c > 0, is trained during the i-th awake period where i = ic−1,x, if ic,x ≤ ic−1,x, or

i ≤ ic,x + 1, if ic,x > ic−1,x. If c = 0, then i = i0,x.

Proof. The proof is similar to that of Lemma 3.7. For d = |L|k, only observe that, when

ic,x > ic−1,x, since d = |L|k = (L, k)|L′|k′ , i is derived by solving the equation |i(L, k)|L′|k′ |k =

|(j + 1)d|k, and hence i = j + 1.

In order to analytically evaluate the performance of the Flat– training protocol, let us

introduce the following notations. Let ν be the number of sleep/wake transitions required by a

sensor to be trained in the worst case, that is the number of sleep/wake transitions required to

fill the whole register R. Moreover, let ω be the overall sensor awake time and τ be the total

time for training. Recalling that a sleep-awake period has length L, a sensor is awake for d time

slots per sleep-awake period, and wakes up at time x < k, one has ω = νd and τ = νL + k.

Thus, the worst case performance for the Flat– protocol can be summarized as follows:

Theorem 3.9. Fixed L, d, and k, if d < (L, k) then there are sensors which cannot be trained

by the Flat– protocol; otherwise all the sensors are trained, and:

8

1. If (L, k) ≤ d < |L|k, then ν ≤ k
(L,k) +

∣

∣

1
L′

∣

∣

k′, where k′ = k
(L,k) and L′ = L

(L,k) ;

2. If |L|k ≤ d < k, then ν ≤
⌊

k
|L|k

⌋

+ 1;

3. If d = k, then ν ≤ 2.

Proof. When (L, k) ≤ d < |L|k, since by Lemma 3.2 the k′ coronas transmitted by the sink

when the sensor wakes up do not depend on d, the sensor cannot be trained later than in the

case d = (L, k), because the register R is filled faster. Hence by Lemma 4.3, observing that
⌊

|Kx−c|k
d

⌋

varies between 0 and k
d
−1, one has ν ≤ k

(L,k) +
∣

∣

1
L′

∣

∣

k′ , where k′ = k
(L,k) and L′ = L

(L,k) .

Similarly, when |L|k ≤ d < k, the sensor cannot be trained later than in the case d = |L|k.
Hence, by Lemma 3.8, ν ≤

⌊

k
|L|k

⌋

+ 1. Note that, when k is a multiple of |L|k, ν =
⌊

k
|L|k

⌋

+ 1

only for those sensors that wake up for the first time while the sink is transmitting corona c− 1

and they belong to corona c. Finally, when d = k, two sleep-awake cycles are needed only by

those sensors which wake up for the first time while the sink is transmitting corona c − 1 and

which belong to corona c.

Note that, when d = (L, k) or d = |L|k, since ν equals the upper bound stated in Theo-

rem 3.9, τ =
(

k
(L,k) +

∣

∣

1
L′

∣

∣

k′

)

L+k or τ =
(⌊

k
|L|k

⌋

+ 1
)

L+k, respectively. Referring to Figure 4,

it should be clear that τ1 must be an upper bound on the total time for training, which is derived

as τ1 = νL + k by choosing ν according to the upper bounds given by Theorem 4.4.

4 Improvements

The Flat– protocol presented in the previous section can be improved in several ways so as to

reduce the number ν of sleep/wake transitions, and hence also the overall sensor awake time as

well as the total time for training.

4.1 The Flat protocol

As a first improvement of Flat–, recall that, as soon as a sensor hears the sink transmission for

the first time, it learns from the beacon the sink global time modulo the sink transmission cycle.

Therefore, it can immediately retrieve backwards the coronas which it did not hear and which

were transmitted by the sink during its previous awake periods, setting to 0 the corresponding

entries of R. The resulting improved protocol, which is called Flat, is derived from the Flat–

protocol by modifying, as shown in Figure 6, the if instruction in lines 6-7 of Figure 5. As a

drawback, a sensor may now execute as many as O(νd) arithmetic/logic operations per time

slot. The time required to perform such arithmetic operations, however, should be negligible

with respect to the time slot length, which instead depends on the characteristics of the radio

broadcast equipment.

Observed that, when the sensor hears the sink for the first time, it fills R as it would have

heard the sink since the first time it woke up, Lemma 3.3 and Theorem 3.4 can be restated as

follows:

Lemma 4.1. Fixed L, d, and k, all the entries of R the sensor can fill are set within the first

k′ = k
(L,k) sleep-awake cycles.

9

6 if ¬ heard then

7 heard := true, t := k − 1 − c;

7.1 for j := i − 1 downto 0 do R|c+1+j|k := 0;

7.2 for j := ν − 1 downto 1 do

7.3 for h := d − 1 downto 0 do R|c+j|L|k+i−h|
k

:= 0;

Figure 6: The extra instructions for the Flat protocol.

Theorem 4.2. All the sensors are trained in at most k′ = k
(L,k) sleep-awake cycles if and only

if d ≥ (L, k).

In other words, the Flat prootocol completes the training process in at most k′ sleep/wake

transitions. Such a bound is tight in the particular case that d = (L, k), while it can be lowered

when d = |L|k. Indeed, since Lemmas 3.5 and 3.6 still hold, Lemmas 3.7 and 3.8 can be restated

for the Flat protocol as follows:

Lemma 4.3. When d = (L, k) or d = |L|k, a sensor which wakes up for the first time at slot

x and belongs to corona c is trained during the i-th awake period where i = max{ic−1,x, ic,x}, if

c > 0, or i = i0,x, if c = 0.

Proof. When ic,x ≤ ic−1,x, the proof is the same as that in Lemmas 3.7 and 3.8 for d = (L, k)

and d = |L|k, respectively. When ic,x > ic−1,x, although in the worst case the sensor hears

for the first time during the ic,x-th awake period, since R is set backwards, both Rc = 1 and

Rc−1 = 0 are set during such awake period.

The worst case performance for the Flat protocol is summarized below:

Theorem 4.4. Fixed L, d, and k, if d < (L, k) then there are sensors which cannot be trained

by the Flat protocol; otherwise all the sensors are trained, and:

1. If (L, k) ≤ d < |L|k, then ν ≤ k
(L,k) ;

2. If |L|k ≤ d < k, then ν ≤
⌈

k
|L|k

⌉

;

3. If d = k, then ν = 1.

Proof. When d = (L, k), by Lemmas 3.5 and 4.3, a sensor is trained in at most k
(L,k) sleep/wake

transitions. Similarly, when d = |L|k, the result derives from Lemmas 3.6 and 4.3. Moreover,

when (L, k) < d < |L|k and |L|k < d < k, the sensor cannot be trained later than in the case

d = (L, k) and d = |L|k, respectively, because by Lemma 3.2 the k′ coronas transmitted by the

sink when the sensor wakes up are the same (such coronas depend only on L and k) and clearly

the register R is filled faster. Finally, when d = k at least one sleep/wake transition is needed.

Note that, in both cases d = k and k multiple of |L|k, the sensors that belong to corona c and

wake-up when the sink is transmitting corona c − 1 will set Rc−1 the first time they hear the

sink, without waiting that the sink retransmits beacon c− 1, saving one transition with respect

to Flat–.

Note that, when d = (L, k) and d = |L|k, τ = kL
(L,k) + k and τ =

⌈

k
|L|k

⌉

L + k, respectively,

because ν matches the upper bound given in Theorem 4.4.

10

4.2 The Flat+ protocol

A further improvement to the Flat protocol exploits the fact that when a sensor hears a beacon

c, it knows that it will also hear all the beacons greater than c, and thus it can immediately

set to 1 the entries from Rc up to Rk−1. Similarly, when a sensor sets an entry Rc to 0, it

knows that it cannot hear any beacon smaller than c, and thus it can immediately set to 0 the

entries from Rc−1 down to R0, too. In contrast to the previous protocols, the sensor now fills

entries of R relative to beacons not yet transmitted during its awake periods. Therefore, it can

look ahead to decide whether it is worthy or not to wake up in the next awake period. If the

d entries of R that will be transmitted by the sink in the next awake period have already been

filled, then the sensor can skip its next awake period, thus saving energy. The sensor repeats

the look ahead process above until at least one unfilled entry is detected among the d entries

corresponding to a future awake period. The resulting protocol, called Flat+, is illustrated in

Figure 7. Procedure Flat+ makes use of two variables, max0 and min1, which record the largest

(smallest, resp.) index of R which has been filled to 0 (1, resp.). When a beacon c is heard, the

sensor sets to 1 all the entries from Rc to Rmin1 (line 11). When an entry Rc has to be set to

0, then all the entries from Rmax0 to Rc are set to 0 (line 19). When the sensor hears the sink

for the first time, it stores in max0 the largest entry of R which must be 0 due to its previous

awake periods (lines 8-9), and thus it sets to 0 the entries from R0 to Rmax0 (line 10). Finally,

at the end of the awake period, the sensor performs the above mentioned look ahead process,

properly setting the alarm-clock (lines 24–29).

Clearly, the number ν of sleep/wake transitions of Flat+ cannot be larger than that of

Flat. Moreover, when d = |L|k or d = (L, k), one can find bad instances where ν, in the worst

case, is the same for both Flat+ and Flat. For example, when d = |L|k, a sensor which uses

Flat+, belongs to corona c, and wakes up when the sink transmits Kx = c − 1 can never take

advantage from the look ahead processing. Hence, the results in Theorem 4.4 hold for both

the Flat and Flat+ protocols. However, as it will be experimentally checked in Section 5, the

average behaviour of Flat+ is much better than that of Flat, specially for small values of d.

4.3 The two-level approach

The protocols discussed so far can be further improved by following a nesting approach in which

the k coronas are viewed as k1 macrocoronas of k2 adjacent coronas each. Precisely, each sensor

first learns in which macrocorona it belongs and then refines its training by determining the

microcorona inside its macrocorona. Once a sensor learns the index of its macrocorona, say m

with 0 ≤ m ≤ k1 − 1, as well as that of its microcorona, say µ with 0 ≤ µ ≤ k2 − 1, it obtains

its actual corona identity as c = k2m + µ, where of 0 ≤ c ≤ k1k2 − 1. For determining both the

macrocorona and microcorona identities, any of the Flat protocol variants can be used.

The protocol for the sink is shown in Figure 8. The sink works in two levels and counts the

total time in τ . In the first level, the sink cyclically repeats the macrocorona transmission cycle,

that is a cycle of length k1 using decreasing powers so as to distinguish different consecutive

macrocoronas. In fact, at time slot z = 0, the sink starts out by transmitting the beacon k1 − 1

to a power sufficient to reach the sensors up to the outmost macrocorona, that is up to corona

Ck−1. Next, the sink transmits the beacon k1 − 2 at a power that can be received up to the

(k1 − 2)-th macrocorona, that is corona Ck−k2−1. For the subsequent k1 − 2 slots, the sink

continues to transmit at decreasing powers until it concludes its cycle at time slot z = k1 − 1

11

Procedure Flat+ (k, L, d);

1 heard := trained := false; ν := 0; max0 := 0; min1 := k − 1;

2 while wakeup and ¬ trained do

3 ν := ν + 1;

4 for i := 0 to d − 1 do

5 if received beacon c then

6 if ¬ heard then

7 heard := true, t := k − 1 − c;

8 max0 := max{max0, |c + i|k};

9 for j := ν − 1 downto 0 do max0 := max{max0, |c + j|L|k + i|
k
};

10 for h := 0 to max0 do Rh := 0;

11 for h := c to min1 do Rh := 1;

12 min1 := c;

13 if c = 0 or (Rc = 1 and Rc−1 = 0) then

14 mycorona := c, trained := true;

15 t := t + 1;

16 else

17 if heard then

18 c := k − 1 − |t|k;

19 for h := max0 to c do Rh := 0;

20 max0 := c;

21 if Rc+1 = 1 then

22 mycorona := c, trained := true;

23 t := t + 1;

24 if heard then

25 filled:=true, alarm-clock := t := t + L − d;

26 while filled do

27 s := |k − 1 − t|k, z := 0;

28 while z ≤ d − 1 and R|s−z|k has been filled do z := z + 1;

29 if Rz is unfilled then filled := false else alarm-clock := t := t + L;

30 else

31 alarm-clock := alarm-clock + L;

32 go to sleep until the alarm-clock rings;

Figure 7: The Flat+ protocol for a sensor.

Procedure Sink (k1, k2, τ1, τ2);

τ := 0;

for z := 0 to τ1 − 1 do

transmit the beacon |k1 − 1 − z|k1
up to corona Ck2(|k1−1−z|k1

+1)−1;

τ := τ + 1;

for m := 0 to k1 − 1 do

for z := 0 to τ2 − 1 do

transmit the beacon |k2 − 1 − z|k2
up to corona Cmk2+|k2−1−z|k2

;

τ := τ + 1;

Figure 8: The two-level protocol for the sink.

12

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

15

11

7

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	
	 	

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

15

12

13

14

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

15

12

13

14

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

15

11

7

! !
! !
! !
! !
! !
! !
! !
! !
! !
! !
! !

" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "
" " "

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $
$ $

% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %
% %

& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &
& &

' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '
' '

((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((
((

))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))
))

* * *
* * *
* * *
* * *
* * *
* * *
* * *
* * *
* * *

+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +
+ + +

, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,
, ,

- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -
- -

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

. .

/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /
/ /

0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0
0 0

1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1
1 1

2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2
2 2

3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3
3 3

4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4
4 4

5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5
5 5

6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6
6 6

7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7
7 7

8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8
8 8

9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9
9 9

: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :
: : :

; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;
; ; ;

< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <
< <

= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =
= =

> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >
> >

? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?
? ?

@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @
@ @

A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A
A A

B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B
B B B

C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C
C C

D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D
D D

E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E
E E

F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F
F F F

G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G
G G G

H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H
H H

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I

J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J
J J J

K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K
K K

L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L
L L

M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M
M M

N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N
N N

O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O
O O

P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P
P P

Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q
Q Q

R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R
R R

S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S
S S

T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T
T T

U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U
U U

V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V
V V V

W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W
W W

X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X
X X

Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y
Y Y

Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z
Z Z Z

[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[
[[

\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \
\ \ \

]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]
]]]

^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^
^ ^

_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _
_ _

` `
` `
` `
` `
` `
` `
` `
` `
` `
` `
` `
` `
` `
` `
` `
` `

a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a
a a

b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b
b b

c c
c c
c c
c c
c c
c c
c c
c c
c c
c c
c c
c c
c c
c c

d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d
d d

e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e
e e

f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f
f f f

g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g
g g

h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h
h h

i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i
i i

j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j
j j

k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k
k k

l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l
l l l

m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m
m m

n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n
n n

o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o
o o

p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p
p p

q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q
q q

r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r
r r

s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s
s s

t t t
t t t
t t t
t t t
t t t

u u
u u
u u
u u
u u

v v v
v v v
v v v
v v v
v v v
v v v
v v v
v v v
v v v
v v v

w w
w w
w w
w w
w w
w w
w w
w w
w w
w w

x x
x x
x x
x x
x x
x x
x x
x x
x x
x x

y y
y y
y y
y y
y y
y y
y y
y y
y y
y y

z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z
z z

{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {
{ {

| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }
} }

~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~
~ ~

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �
� �
� �
� �
� �
� �
� �

� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �
� � �

� �
� �
� �
� �
� �
� �
� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

15

11

7

3

15

11

7

3 3 3

8

11 11

10
9

8

10
9

7

6

5

4

7

6
5

4
3

2

1

0

3

2

1

0

7
6

5

4

7
6

5

4

1111

10
9

8

15

12

13

14

15

12

13

14

10
9

8

0

1

2

3

0

1

2

3

Figure 9: The sink transmission cycle for the TwoLevel and TwoLevel+ protocols.

with a broadcast that can be received only by the sensors in the 0-th macrocorona, that is, up

to corona Ck2−1. The first level lasts for τ1 time slots, thus repeating τ1
k1

times the macrocorona

transmission cycle. The time τ1 is properly chosen to allow all the sensors to be trained with

respect to their macrocorona.

In the second level, for each macrocorona, the sink cyclically repeats a microcorona trans-

mission cycle, that is one of length k2 using decreasing powers so as to distinguish different

consecutive coronas. Such a microcorona transmission cycle is repeated τ2
k2

times so as to allow

all the sensors in each macrocorona m to be also trained with respect to their microcorona.

Overall the second level of the protocol lasts k1τ2 time slots.

As regard to the protocol for the sensors, it is assumed that each sensor is aware of the

two-level sink behaviour and thus of the numbers k1 and k2 of macrocoronas and microcoronas,

respectively. Each sensor wakes up at time x, with 0 ≤ x ≤ min{k1, k2}, and repeats its sleep-

awake cycle of length L such that L ≥ d ≥ max{(L, k1), (L, k2)}. Each sensor uses a k1-bit

register P and a k2-bit register Q to keep track of the macrocorona and microcorona identities,

respectively. As soon as the sensor wakes up at time x, it performs one of the protocol variants,

i.e. Flat–, Flat, and Flat+, using its register P to learn its macrocorona identity m. When it

has been trained on its macrocorona, it sets its alarm clock to τ1 + (k1 − 1 − m)τ2 + x to be

ready for the training on its microcorona, and goes to sleep. Reawakened, the sensor performs

again the same protocol variant, but now filling its register Q to learn its microcorona identity

µ. Clearly, as soon as it knows both m and µ, it derives its corona identity c = k2m + µ, and

thus it is trained.

Depending on which protocol, Flat–, Flat, and Flat+, is used to train the sensors on

each macrocorona and microcorona level, three two-level protocols are achieved, denoted by

TwoLevel–, TwoLevel, and TwoLevel+. In Figure 9, the macrocorona and microcorona sink

transmission cycles are depicted for the TwoLevel and TwoLevel+ protocols in the case where

k = 16, k1 = k2 = 4, L = 6, d = |L|4 = 2. In this case, ν1 = ν2 = 4
2 , and hence τ1 = 2 ∗ 6 + 4,

τ2 = 2 ∗ 6 + 4, and τ = 16 + 4 ∗ 16 = 80. Note that the sink performs τ1
k1

= 4 sink transmis-

sion cycles of length k1 to train the sensors on their macrocorona, and additional τ2
k2

= 4 sink

transmission cycles of length k2 per macrocorona to train them on their microcorona.

In general, with respect to the performance of the two-level protocols, one has:

Theorem 4.5. Fixed L, d, k, k1, and k2, with k = k1k2 and L ≥ d ≥ max{(L, k1), (L, k2)},
letting ν1 and ν2 be, respectively, the numbers of sensor sleep/wake transitions required to train

a sensor on k1 macrocoronas and k2 microcoronas, the two-level protocols require ν = ν1 + ν2

sleep/wake transitions and ω = (ν1 + ν2)d overall sensor awake time. Moreover, the total time

for training is τ = τ1 +τ2k1, where τ1 and τ2 must be the upper bounds on the total time required

13

by the training protocol adopted on each level.

Note that, by Theorems 3.9 and 4.4, tight bounds on the values of τ1 and τ2 can be derived

only when d = (L, k) and d = |L|k. In all other cases, the total time of each level is derived

from τ = νL + k, setting ν equal to the upper bound given in Theorems 3.9 and 4.4. For

example, consider the TwoLevel– protocol and assume d = |L|k1 , and (L, k2) ≤ d < |L|k2.

Then, τ1 =
(⌊

k1
|L|k1

⌋

+ 1
)

L + k1 and τ2 =
(

k2
(L,k2)

+
∣

∣

1
L′

∣

∣

k′

)

L + k2, where k′ = k2
(L,k2) and

L′ = L
(L,k2) .

Next, the worst case performance of the Flat protocol is compared with that of the corre-

sponding TwoLevel protocol when the same value of L and d are used, k1
(L,k1) 6= 1, k2

(L,k2)
6= 1,

and (L, k2) 6= 1. Note that to satisfy the constraints of both the Flat and TwoLevel pro-

tocols, d must vary between (L, k) = (L, k1)(L, k2) and min{k1, k2}, and L must be greater

than k. When d = (L, k), by Lemma 4.1 and Theorem 4.4, the number of transitions is at

most k1
(L,k1)

+ k2
(L,k2) for TwoLevel and is at least k

(L,k) for Flat. Since (L, k) = (L, k1)(L, k2),

one has k1
(L,k1) + k2

(L,k2)
< k1

(L,k1)
k2

(L,k2)
= k

(L,k1)(L,k2) = k
d
. Similarly, TwoLevel beats Flat

when d = min{k1, k2}. Indeed letting d = k1 = min{k1, k2}, TwoLevel requires at most

1 + k2
(L,k2)

< k2 sleep/wake transitions, while Flat needs at least k
d

= k2 transitions. Since in

both protocols the number of transitions decreases when d increases, TwoLevel beats Flat when

(L, k) ≤ d ≤ min{k1, k2}. Finally it is easy to see that both the overall sensor awake time and

the total time for training of Flat are larger than those of TwoLevel.

5 Experimental tests

In this section, the worst and average performance of the corona training protocols are exper-

imentally tested. The algorithms were written in C++ and the experiments were run on an

AMD Athlon X2 4800+ with 2 GB RAM. In the simulation, each corona has a unit width.

There are N = 10000 sensors uniformly distributed within a circle, centered at the sink, having

radius ρ = k. Precisely, the polar coordinates of each sensor are generated choosing at random

two real numbers. The first one, uniformly distributed between 0 and k, represents the radial

coordinate of the sensor, that is, its distance from the sink. The second number, uniformly

distributed between 0 and 2π, represents the angular coordinate of the sensor, that is, the

positive angle required to reach the sensor from the polar axis. In the experiments, both the

worst and average number of transitions, denoted by νmax and νavg, as well as both the worst

and average overall sensor awake time, ωmax and ωavg, are evaluated. Such average values are

obtained by summing up the values for each single sensor and then dividing by the number of

sensors. Moreover, the total time τ , which measures the time required to terminate the whole

training process, is evaluated.

Consider first the experiments for the Flat–, Flat, and Flat+ protocols. In the simulations,

the number k of coronas is fixed to 64. The length L of the sensor sleep-awake cycle assumes

the values 104 and 168. Finally, the sensor awake period d is an integer that varies, with a step

of 4, between the greatest common divisor (L, k) = 8 and k = 64, thus including |L|k = 40.

The results are reported only when all the sensors can be trained, that is for d ≥ 8, and are

averaged over 3 independent experiments.

Figure 10 shows the number νmax and νavg of transitions for the different values of d. Ac-

cording to Theorems 3.9 and 4.4, when d = 8, Flat– has νmax = k
(L,k) +

∣

∣

1
L′

∣

∣

k′ = 8 + 5 = 13,

14

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

 13

 14

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

n
u
m
b
e
r

o
f

t
r
a
n
s
i
t
i
o
n
s

d

N=10000 k=64 L=104

 Flat- νmax
 Flat νmax
 Flat+ νmax
 Flat- νavg
 Flat νavg
 Flat+ νavg

Figure 10: Number of transitions when k = 64, L = 104, and 8 ≤ d ≤ 64.

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45
 50
 55
 60
 65
 70
 75
 80
 85
 90
 95
 100
 105
 110
 115
 120
 125
 130
 135
 140

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

o
v
e
r
a
l
l

s
e
n
s
o
r

a
w
a
k
e

t
i
m
e

d

N=10000 k=64 L=104

 Flat- ωmax

 Flat ωmax

 Flat+ ωmax

 Flat- ωavg

 Flat ωavg

 Flat+ ωavg

Figure 11: Overall sensor awake time when k = 64, L = 104, and 8 ≤ d ≤ 64.

while both Flat and Flat+ have νmax =
⌈

k
|L|k

⌉

= 8. Similarly, when d = 40, all protocols

take νmax = 2 transitions. Except for the extreme values d = 8 and d = 64, the greatest

percentage of gain for νmax is achieved when d = 24, where both Flat+ and Flat employ forty

percent less transitions than Flat–. As regard to the average performance, one notes that νavg

is considerable better than νmax for all three protocols. Flat and Flat– have almost the same

average performances, while Flat+ always behaves better than them. In particular, its greatest

percentage of gain for νavg is obtained in the range 8 ≤ d ≤ 20, where Flat+ improves about

twenty/thirty percent upon Flat–.

Figure 11 shows the awake times ωmax = νmaxd and ωavg = νavgd, which measure the

overall energy spent by each sensor to be trained. Although the number of transitions decreases

as d increases, Figure 11 suggests to choose a small value of d from the sensor awake time

perspective. The minimum ωmax is achieved by Flat and Flat+ for d = 8 and d = 64, as

expected by Theorems 3.9 and 4.4. However, when d = 8, ωavg lowers to about two thirds of

ωmax for Flat– and Flat, and to about one third for Flat+. Note that Flat+ has the maximum

gain when d is small. Indeed, it can fill the same entries of R just listening to the sink for

15

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900
 1000
 1100
 1200
 1300
 1400
 1500
 1600
 1700
 1800
 1900
 2000
 2100
 2200
 2300

 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68

t
o
t
a
l

t
i
m
e

d

N=10000 k=64

 L=104 Flat- τ
 L=104 Flat τ
 L=104 Flat+ τ
 L=168 Flat- τ
 L=168 Flat τ
 L=168 Flat+ τ

Figure 12: Total time for training when k = 64, L = 104 or L = 168, and 8 ≤ d ≤ 64.

 0
 2
 4
 6
 8
 10
 12
 14
 16
 18
 20
 22
 24
 26
 28
 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64
 66
 68

 1 3 5 7 9 11 13 15 17 19 21 23

m
a
x
i
m
u
m

n
u
m
b
e
r

o
f

t
r
a
n
s
i
t
i
o
n

d

N=10000 k=575 k1=25 k2=23 L=27

 TwoLevel- νmax
 TwoLevel νmax
 TwoLevel+ νmax
 TwoLevel- νavg
 TwoLevel νavg
 TwoLevel+ νavg

Figure 13: Number of transitions when k = 575, k1 = 25, k2 = 23, L = 27, and 1 ≤ d ≤ 23.

a single slot or for d slots. Hence, small values of d save the same number of transitions as

larger values, but allow sensors to reduce their energy consumption because they stay awake for

smaller periods.

Figure 12 exhibits the total time τ required to accomplish the entire training task, for both

L = 104 and L = 168. Since |168|64 = |104|64 = 40, by Lemma 3.2, each protocol maintains

the same behaviour with respect to the number of transitions. Thus, the plots for L = 168 of

νmax and νavg, and hence of ωmax and ωavg, are exactly the same as those shown in Figures 10

and 11. Recalling that τ = νmaxL + k, the total time for L = 168 scales by a constant ∼ 168
104 ,

as depicted in Figure 12. In general, all values of L such that |L|k is the same present the

properties above, namely, ν and ω are identical, while τ scales. Therefore, the minimum total

time τ is achieved for the smallest value of L. However, larger values of L could be also selected

in order to increase the longevity of the wireless sensor network. Fixed d, a longer L results in

a longer life as the life of a sensor is measured in terms of the overall number of sleep-awake

cycles until its energy is exhausted.

Consider now the experiments relative to the two-level approach. Recall that TwoLevel–,

16

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 120

 130

 140

 150

 160

 170

 180

 190

 200

 1 3 5 7 9 11 13 15 17 19 21 23

o
v
e
r
a
l
l

s
e
n
s
o
r

a
w
a
k
e

t
i
m
e

d

N=10000 k=575 k1=25 k2=23 L=27

 TwoLevel- ωmax

 TwoLevel ωmax

 TwoLevel+ ωmax

 TwoLevel- ωavg

 TwoLevel ωavg

 TwoLevel+ ωavg

Figure 14: Overall sensor awake time when k = 575, k1 = 25, k2 = 23, L = 27, and 1 ≤ d ≤ 23.

TwoLevel, and TwoLevel+ denote, respectively, the protocol when Flat–, Flat, and Flat+ are

employed on each single level. In the simulations, the number k of coronas is fixed to 575 while k1

and k2 are fixed to 25 and 23, respectively. The length L of the sensor sleep-awake cycle is fixed

to 27 and the sensor awake period d varies, with a step of 2, between max{(L, k1), (L, k2)} = 1

and min{k1, k2} = 23. The results are averaged over 3 independent experiments.

Figures 13, 14, and 15 plot both the average and worst case performance of ν, ω, and τ .

As explained in the previous section, one can easily derive the worst case performance of the

two-level protocols in Figure 13 from the worst case performance of the one-level protocols. For

example, when d = (L, k1) = (L, k2) = 1, TwoLevel– requires ν = 65 sleep/wake transitions

because the Flat– protocol requires ν1 = k1
(L,k1) +

∣

∣

1
L

∣

∣

k1
= 25+15 = 38 transitions when k1 = 25

and ν2 = k2
(L,k) +

∣

∣

1
L

∣

∣

k2
= 23 + 6 = 19 transitions when k2 = 23.

Figure 14 shows the awake times ωmax = νmaxd and ωavg = νavgd. The curves in Figure 14

smoothly change, without the abrupt peaks of Figure 11, because now the number of transitions

monotonically decreases, as shown in Figure 13. Moreover, note that when d = (L, k) = 1 the

overall awake time is minimum, although the number of transitions is maximum, and TwoLevel+

reaches the maximum gain with respect to the other algorithms, in both the worst and average

cases. For d = 13, the TwoLevel+ protocol registers on both ν ad ω a local minimum

Figures 16, 17, and 18 are devoted to compare the behaviour of the Flat and TwoLevel

protocols. As before, k = 575, k1 = 25, and k2 = 23. The length L of the sensor sleep-awake

cycle is fixed to 27 and 577 for TwoLevel and Flat, respectively. Note that both such values of

L are the smallest possible choices for the two protocols, because Flat requires L larger than k

and TwoLevel needs L larger than max{k1, k2}. The sensor awake period d varies, with a step

of 5, between (L, k) = 1 and 76. The results are averaged over 3 independent experiments.

As expected for 1 = (L, k) ≤ d ≤ 23 = min{k1, k2} = 23, the TwoLevel protocol always

significantly beats the Flat protocol. Note that, in contrast to Flat, TwoLevel cannot be

employed when d ≥ 23. Observe that ν = O(1) can be achieved by both the Flat and TwoLevel

protocols in correspondence of d = Θ(k) and d = Θ(
√

k), respectively, leading therefore to a

big difference in the values of ω and τ .

Although two different values of L are used in the experiments, L = 577 could be also used

for the TwoLevel protocol. In such a case, since |577|25 = |27|25, the number of transitions

17

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 21000

 1 3 5 7 9 11 13 15 17 19 21 23

t
o
t
a
l

t
i
m
e

d

N=10000 k=575 k1=25 k2=23 L=27

 TwoLevel- τ
 TwoLevel τ
 TwoLevel+ τ

Figure 15: Total time for training when k = 575, k1 = 25, k2 = 23, L = 27, and 1 ≤ d ≤ 23.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

n
u
m
b
e
r

o
f

t
r
a
n
s
i
t
i
o
n
s

d

N=10000 k=575 k1=25 k2=23

 TwoLevel νmax
 TwoLevel νavg
 Flat νmax
 Flat νavg

Figure 16: Comparing the number of transitions between Flat and TwoLevel.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 12000

 13000

 14000

 15000

 16000

 17000

 18000

 19000

 20000

 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

o
v
e
r
a
l
l

s
e
n
s
o
r

a
w
a
k
e

t
i
m
e

d

N=10000 k=575 k1=25 k2=23

 TwoLevel ωmax

 TwoLevel ωavg

 Flat ωmax

 Flat ωavg

Figure 17: Comparing the overall sensor awake time between Flat and TwoLevel.

18

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76

t
o
t
a
l

t
i
m
e

d

N=10000 k=575 k1=25 k2=23

 TwoLevel τ
 Flat τ

Figure 18: Comparing the total time for training between Flat and TwoLevel.

ν1 on the macrocoronas would remain the same, whereas the number of transitions ν2 on

the microcoronas would become slightly larger because |577|23 = 2 < |27|23 = 4. Therefore,

ν = ν1 + ν2 would increase at most by d23
2 e− d23

4 e = 6 with respect to that shown in Figure 16.

Obviously the total time τ for TwoLevel with L = 577 would dramatically increase with respect

to that illustrated in Figure 18, but it would still remain below that of Flat.

6 Concluding remarks

In this work new protocols have been proposed which employ the asynchronous model originally

presented in [23] and are lightweight in terms of the number of sleep/wake transitions and

overall sensor awake time for training. Among the various protocol variants and improvements,

Flat– is the simplest one from the computational viewpoint because each sensor performs O(1)

operations per time slot. In contrast, TwoLevel+ has the best performance, but all the two-level

protocols as well as Flat+ cannot be used if the sensor is not allowed to skip one or more awake

periods.

The results presented in this paper show that the protocols are flexible, in the sense that their

parameters can be properly tuned. For instance, fixed the number k of coronas, one can decide

the optimal values of d and L so as to minimize the number of sleep/wake transitions and/or

the overall awake time per sensor. Conversely, one can fix the desired number of sleep/wake

transitions, and then select suitable values of d and L.

However, several questions still remain open. In particular, a good idea for further work

should be that of comparing the performance of the protocols proposed in the present paper

with those devised in [3]. Indeed, the synchronous training protocols of [3] present an irregular

toggling between sleep and wake periods, so as to optimize the total time for training, but they

consume energy in the explicit synchronization between the sensors and the sink to handle such

irregular sleep/wake toggling. In contrast, the asynchronous protocols proposed in the present

paper assume sensors to periodically follow sleep-awake cycles, thus avoiding irregular toggling,

but they take a larger total time for training.

19

References

[1] I. F. Akyildiz, W. Su, Y. Sankarasubramanian, and E. Cayirci. Wireless sensor networks: a survey. Computer

Networks, 38(4):393–422, 2002.

[2] S. Bandyopadhyay and E. Coyle. An efficient hierarchical clustering algorithm for wireless sensor networks.

Proc. IEEE INFOCOM 2003, San Francisco, CA, April 2003.

[3] A. A. Bertossi, S. Olariu, and M.C. Pinotti. Efficient training of sensor networks. Proc. 2nd Interna-

tional Workshop on Algorithmic Aspects of Wireless Sensor Networks (AlgoSensors 2006). Lecture Notes in

Computer Science 4240, 1–12, 2006.

[4] D. Culler, D. Estrin, and M. Srivastava. Overview of sensor networks. IEEE Computer, 37(8):41–49, 2004.

[5] K. A. Delin and S. P. Jackson. The sensor web: a new instrument concept. Proc. SPIE Symposium on

Integrated Optics, San Jose, California, January 2001.

[6] D. M. Doolin and N. Sitar. Wireless sensors for wild remonitoring. Proc. SPIE Symposium on Smart Struc-

tures and Materials (NDE 2005), San Diego, California, March 6-10, 2005.

[7] S. Ghiasi, A. Srivastava, X. Yang, and M. Sarrafzadeh. Optimal energy-aware clustering in sensor networks.

Sensors, 2:258–269, 2002.

[8] H. Griffin, Elementary Theory of Numbers, McGraw Hill, New York, 1954.

[9] B. Hemingway, W. Brunette, T. Anderal, and G. Boriello. The flock: Mote sensors sing in undergraduate

curriculum. IEEE Computer, 37(8), 2004, 72-78.

[10] K. Langendoen and N. Reijers. Distributed localization algorithm. In Embedded Systems Handbook, R. Zu-

rawski (Editor), CRC Press, Boca Raton, FL, 2004.

[11] J. J. Lee, B. Krishnamachari, and C. C. Jay Kuo. Impact of heterogeneous deployment on lifetime sensing

coverage in sensor networks. Proc. IEEE SECON, 2004.

[12] K. Martinez, J.K. Hart, and R. Ong. Sensor network applications. IEEE Computer, 37(8):50–56, 2004.

[13] D. Nicolescu. Positioning in ad-hoc sensor networks. IEEE Network, 18(4):24–29, 2004.

[14] S. Olariu, A. Waada, L. Wilson, and M. Eltoweissy. Wireless sensor networks leveraging the virtual infras-

tructure. IEEE Network, 18(4):51–56, 2004.

[15] J. Polastre, R. Szewcyk, A. Mainwaring, D. Culler, and J. Anderson. Analysis of wireless sensor networks

for habitat monitoring. In Wireless Sensor Networks, Raghavendra, Sivalingam, and Znati, Eds., Kluwer

Academic, 2004, 399-423.

[16] K. Ryokai and J. Cassell. StoryMat: A play space for collaborative storytelling. Proc. CHI’99, October 1999.

[17] K. Sohrabi, J. Gao, V. Ailawadhi, and G. Pottie. Protocols for self-organization of a wireless sensor network.

IEEE Personal Communications, 7(5), 2000, 16–27.

[18] M. Srivastava, R. Muntz, and M. Potkonjak. Smart Kindergarten: Sensor-based wireless networks for smart

developmental problem-solving environments. Proc. ACM MOBICOM, Rome, Italy, July 2001.

[19] R. Szewczyk, J. Polastre, A. Mainwaring, J. Anderson, and D. Culler. An analysis of a large scale habitat

monitoring application. Proc. 2nd ACM Conference on Embedded Networked Sensor Systems, Nov. 2004.

[20] R. Szewczyk, E. Osterweil, J. Polatre, M. Hamilton, A. Mainwaring, and D. Estrin. Habitat monitoring with

sensor networks. Communications of the ACM, 47(6), (2004), 34–40.

[21] A. Waada, S. Olariu, L. Wilson, M. Eltoweissy, and K. Jones. Training a wireless sensor network. Mobile

Networks and Applications, 10(1):151–168, 2005.

[22] B. Warneke, M. Last, B. Leibowitz, and K. Pister. SmartDust: communicating with a cubic-millimeter

computer. IEEE Computer, 34(1):44–51, 2001.

[23] Q. Xu, R. Ishak, S. Olariu, and S. Salleh. On asynchronous training in sensor networks. Proc. 3rd Intl.

Conf. on Advances in Mobile Multimedia, K.Lumpur, September 2005.

[24] V.V. Zhirnov and D.J.C. Herr. New frontiers: self-assembly and nano-electronics. IEEE Computer, 34(1):34–

43, 2001.

20

