Skip to main content

Simple Geometrical Intersection Graphs

  • Conference paper
WALCOM: Algorithms and Computation (WALCOM 2008)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4921))

Included in the following conference series:

Abstract

A graph G = (V,E) is said to be an intersection graph if and only if there is a set of objects such that each vertex v in V corresponds to an object O v and {u,v} ∈ E if and only if O v and O u have a nonempty intersection. Interval graphs are typical intersection graph class, and widely investigated since they have simple structures and many hard problems become easy on the graphs. In this paper, we survey known results and investigate (unit) grid intersection graphs, which is one of natural generalized interval graphs. We show that the graph class has so rich structure that some typical problems are still hard on the graph class.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Babel, L., Ponomarenko, I.N., Tinhofer, G.: The Isomorphism Problem For Directed Path Graphs and For Rooted Directed Path Graphs. Journal of Algorithms 21, 542–564 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  2. Colbourn, C.J.: On Testing Isomorphism of Permutation Graphs. Networks 11, 13–21 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  3. Downey, R.G., Fellows, M.R.: Parameterized Complexity. Springer, Heidelberg (1999)

    Google Scholar 

  4. Fishburn, P.C.: Interval Orders and Interval Graphs. Wiley & Sons, Inc., Chichester (1985)

    MATH  Google Scholar 

  5. Garey, M.R., Johnson, D.S.: Computers and Intractability — A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  6. Golumbic, M.C.: Algorithmic Graph Theory and Perfect Graphs, 2nd edn. Elsevier, Amsterdam (2004)

    MATH  Google Scholar 

  7. Hell, P., Huang, J.: Interval Bigraphs and Circular Arc Graphs. J. of Graph Theory (to appear), http://www.cs.sfu.ca/~pavol/intBig.ps

  8. Nakano, S., Uehara, R., Uno, T.: A New Approach to Graph Recognition and Applications to Distance Hereditary Graphs. In: TAMC 2007. LNCS, vol. 4484, pp. 115–127. Springer, Heidelberg (2007)

    Google Scholar 

  9. Keil, J.M.: Finding Hamiltonian Circuits in Interval Graphs. Information Processing Letters 20(4), 201–206 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lueker, G.S., Booth, K.S.: A Linear Time Algorithm for Deciding Interval Graph Isomorphism. Journal of the ACM 26(2), 183–195 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  11. McKee, T.A., McMorris, F.R.: Topics in Intersection Graph Theory. SIAM  (1999)

    Google Scholar 

  12. Müller, H.: Recognizing Interval Digraphs and Interval Bigraphs in Polynomial Time. Disc. Appl. Math. 78, 189–205 (1997), http://www.comp.leeds.ac.uk/hm/pub/node1.html

  13. Otachi, Y., Okamoto, Y., Yamazaki, K.: Relationships between the class of unit grid intersection graphs and other classes of bipartite graphs. Discrete Applied Mathematics (accepted)

    Google Scholar 

  14. Plesník, J.: The NP-completeness of the Hamiltonian Cycle Problem in Planar Digraphs with Degree Bound Two. Information Processing Letters 8(4), 199–201 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  15. Spinrad, J.P.: Open Problem List (1995), http://www.vuse.vanderbilt.edu/~spin/open.html

  16. Spinrad, J.P.: Efficient Graph Representations. American Mathematical Society (2003)

    Google Scholar 

  17. Uehara, R.: Canonical Data Structure for Interval Probe Graphs. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 859–870. Springer, Heidelberg (2004)

    Google Scholar 

  18. Uehara, R., Iwata, S.: Generalized Hi-Q is NP-Complete. The Transactions of the IEICE E73(2), 270–273 (1990), http://www.jaist.ac.jp/~uehara/pdf/phd7.ps.gz

  19. Uehara, R., Toda, S., Nagoya, T.: Graph Isomorphism Completeness for Chordal Bipartite Graphs and Strongly Chordal Graphs. Discrete Applied Mathematics 145(3), 479–482 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Shin-ichi Nakano Md. Saidur Rahman

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Uehara, R. (2008). Simple Geometrical Intersection Graphs. In: Nakano, Si., Rahman, M.S. (eds) WALCOM: Algorithms and Computation. WALCOM 2008. Lecture Notes in Computer Science, vol 4921. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77891-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77891-2_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77890-5

  • Online ISBN: 978-3-540-77891-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics