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1 Introduction

One key driver of a bank’s total interest rate risk is the position of
non-maturing deposits. Several papers such as [6], 8], and [7] value
non-maturing deposits in an arbitrage-free framework and analyze their
risk profile. All these models consist of three major components: first,
the short rate process, i.e. the dynamics of the default-free interest
rate term structure; second, the interest rate pass-through, i.e. the link
between the development of the deposit rates and the development of
default-free interest rates, in general the short rate; third, the develop-
ment of the deposit volume over time. In this paper, we concentrate on
the interest rate pass-through. We provide some term structure model-
free results on the valuation of deposits, when the deposit rates are
linearly linked to some long-term swap rate (rather than a short-term
interest rate) as the reference rate with an unnatural time lag.

2 Deposits

2.1 Preliminaries

Let (£2, (Ft):efo,77}, P) be a filtered probability space that fulfills the
usual conditions. Like the aforementioned articles, we assume markets
to be arbitrage-free, frictionless and complete. Let P(¢,7),0 < t <
T < T, denote the value in t of a default-free zero bond with face
value 1 maturing in T. The filtration is assumed to be generated by
these zero bonds. The M-year swap rate SR(t, M), M € N, in ¢ and
the corresponding today’s M-year forward swap rate FSR(t, M) are
given by
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Q' denotes the unique equivalent {-forward martingale measure (see
[3]) and E§() the respective expectation operator conditional on today.
Under Q7, the value of a non-dividend paying security discounted by
P(t,T) is a martingale. As a special case, the expected value for the

point in time t of a zero bond maturing in T under the t-forward
measure equals its forward price:

SR(t,M) =

(1)

FSR(t,M) = (2)

P(0,T)
P(0,t)

E{(P(t,T)) = (3)

2.2 Valuation

Define 0 = tg, t1, 12, ..., t5y = T with £; — t;_; = At = 1.1 For simplicity,
we consider a deposit with a constant face value 1 and maturity date 7.
The deposit rate for the period J¢;_1, ;) pald in t; is given by DR(t;-1).

We assume that DR(t;_;) is fixed at tk i=ti1+kwith-1<k<1.

The ‘shift’ k has a straightforward mterpretatlon if k = 0 the deposit
rate is fixed at the beginning of the period Jt;_1,t;]- In this case we
have a ‘natural’ time lag between the fixing date and the date at which
the deposit rate is paid. If & < O the deposit rate is fixed before the
beginning of the respective period. If £ > 0 it is fixed within the period.
In both cases there is an ‘unnatural’ time lag. We assume that the
deposit rate for the period ]¢;— 1,t,] is linearly linked to the M-year
swap rate SR(tF_,, M) observed in t¥ , as the reference rate:?

DR(ti_1) = by + bz SR(t5_1, M). (4)

By construction, DR(f;—1) is measurable with respect to F,. It can be
interpreted as a European derivative on the term structure that is due
in t;. Therefore, we obtain the following representation of the present
value PV of the deposit: '

PV = bIZP (0,£:)+P(0,tn)+ bzzP(O t;) E&(SR(tF ,, M)). (5)
i=1 i=1

! The assumption At = 1 can easily be relaxed.

2 Obviously, the deposit is close to a portfolia consisting of a money market floater
and a constant maturity swap. See, e.g., [1] and [4] for the valuation of constant
maturity swaps.
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Clearly, the key to the calculation of PV is the determination of the
present value of SR(t*_,, M) paid in ¢; as the other components of (5)
can be calculated easily. Define

PV(SR(tF_, M),t;) = P(0,t;) E§(SR(t5_y, M)). (6)

In the following, we aim to calculate an adjustment AD(t;) on the
respective forward swap rate, so that

V(SR(tz 17M) P(O t) (FSR(tz 11M) +AD(tz)) (7)

is fulfilled. As the present value of SR(tl_l, M) paid in t; equals the
present value of P(tf_,,t;) SR(t¥_;, M) paid in t§_,

(SR(tz I’M):ti) = P(Oattl'c—l) E (P(tz—hti) SR(tz 1> )) (8)

must hold. By equating (6) and (8) and using the definition of the
covariance we obtain®
P(0,t,)

E§(SR(tf 1, M)) = PO

EO1 1(P(t'¢ 1=t ) SR(tz—l’ ))

_ P(O’ t?—l)
~ P(0,t)
P(0,t},)
P(O, ti)

Y (P(th_1,t)) By~ (SR(th_, M)) (@)
CoVa r()l I(P(tz 1 'L) SR( 11M))

Substituting (3) into (9) and rearranging terms leads to
Et'(SR(t; 1, M))

=E "I(SR(tH, M))

10
P(O,tf_l) CoVa T; HPp (z Lti), SR(t 1_1,]\4)) (10)

P(0,t)
= FSR(tF |, M) + CA(t;) + TA(t:),
where
CA(t:) = Eo’ '(SR(t_y, M)) — FSR(t}_y, M), (11)
TA(t;) = POt,) CoVari—(P(th 1, ), SR(tE 1, M)). (12)

P(O1 ti)

3 The first line of (9) is a special case of the change of numéraire theorem, see {3].
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Equations (6), (10), (11), and (12) clarify that the forward swap rate
has to be adjusted by two terms: first, by the difference CA(t;) between
the t¥_-forward measure expectation of the swap rate and the corre-
sponding forward swap rate. Second, by the scaled covariance T A(t;)
between the discount factor from t; to t¥ , and the swap rate under

the tf_l-forward measure. The two adjustments sum up to the total
adjustment AD(t;) = CA(t;) + TA(t:).

2.3 Convexity and Timing Adjustment

We first analyze the so called ‘convexity adjustment’ C A(¢;). Based on
the definition of the covariance and of the swap rate (1) we obtain

tf—x k
Ey ' (SR(t;_1, M))

= f)f_l( : )Ect)?_l(l—P(tklt"c1+M))
M . i—1sbi—
Sty Py, th +d)

tk 1
+ CoVarg™ ( —,
Zj'\il P(F 1 tf 1 +7)

1—H¢M&+M0-
(13)

As the function # — 1/z is convex Jensen’s inequality, (3) and (2)
imply

B ( ! ) B (1= P(eh_, 1 + M)
0 3 . 0 - 1—11 -1
Z?J:I Pty q,tFy +7) '
1 th_
> — e 5 (1= Pt tia + M)
iy Eo (Pt + ) (14)
1 P(0,t* |y — P(0,t}_ | + M)

~ M POE ) P(0, tF
=1 P(O,tfl_i) (0,t)

= FSR(tf 1, M).

As the covariance term in (13) is positive in general, we obtain the
following inequality for the expected swap rate:

k
B (SR, M) 2 FSR(H,, M). (19)

This implies that the convexity adjustment CA(%;) is positive in gen-
eral. Note that it only depends on the fixing date tf_l and not on the



Non-maturing Deposits, Convexity and Timing Adjustments 267

payment date t; of the deposit rate. Therefore, it is also independent of
the difference between these two dates, i.e. the time lag. The convexity
adjustment would also be necessary if the deposit rate fixed in tf_l
were paid in tf_l rather than in ;.

In contrast, the second adjustment T'A(t;) depends only on the dif-
ference between the fixing date and the payment date, i.e. the time lag.
Therefore, it is called ‘timing adjustment’.? If the time lag is zero, i.e.
if k = 1, we have P(tf_;,t;) = 1 in (12). Therefore, the covariance term
equals zero so that the timing adjustment vanishes, i.e. TA(t;} = 0.
Since generally all interest rates are positively correlated the covari-
ance in (12) and, hence, the timing adjustment is negative for k < 1.
Note that the timing adjustment is even necessary if we have a natural
time lag, i.e. if K = 0.

CAM=90 — — —~ ~CAM=5 ------- CAM =1
ADM =10 — —— ~ADM =5 == =~-~- ADM =1
e TAM =D — — — ~TAM =5 - ---TAM=1

o004 I
O

Fig. 1. Convexity and timing adjustments

This figure shows numerical results for the convexity adjustment C'A, the
timing adjustment T A and the total adjustment AD for different maturities
M of the swap rate in dependence of the time lag k. The adjustments are
calculated for t; = 5. Calculations are based on the short rate model of Hull
and White (see [5]) with the following input parameters: today’s spot rate
structure = flat at 5%; mean reversion speed = 0.1; short rate volatility =
0.02

Of course, the concrete size of the convexity adjustment, the timing
adjustment, and the total adjustment depends on the term structure
model. Figure 1 shows some numerical results for the model by Hull
and White (see [5]). The timing adjustment equals zero for £ =1 and

* See also [4].
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is becoming negative and smaller for smaller k. The convexity adjust-
ment is always positive and is becoming larger for larger k. The total
adjustment is increasing in k and is positive in general. For £ < 0 and
small maturities M of the reference swap rate it can become negative.
Obviously, most effects are more pronounced for longer maturities of
the swap rate.

3 Concluding Remarks

In this paper, we analyzed the valuation of deposits when the deposit
rates are linearly linked to long-term swap rates. We allowed for natural
and unnatural time lags and provided term structure model-free results
on the valuation of these deposits. We especially focused on the struc-
ture of necessary adjustments on the forward swap rates: the convexity
and the timing adjustment. Qur analysis can easily be transferred to
the case of other capital market yields such as spot rates or yields of
fixed-coupon bonds (see [2]).

References

1. Brigo D, Mercurio F (2001) Interest Rate Models: Theory and Practice.
Springer, Berlin Heidelberg New York

2. Entrop, O (2007) Einlagenbewertung und Einlagensicherung in Banken:
Ein Beitrag zum Kapitalmarktorientierten Bankmanagement im struk-
turmodelltheorctischen Kontext. Berliner Wissenschafts-Verlag, Berlin,
forthcoming

3. Geman H, El Karoui N, Rochet JC (1995) Changes of Numéraire,
Changes of Probability Measure and Option Pricing. Journal of Applied
Probability 32:443-458

4. Hull JC (2003) Options, Futures and Other Derivatives. Prentice Hall,
Upper Saddle River

5. Hull JC, White A (1990) Pricing Interest-Rate-Derivative Securities. Re-
view of Financial Studies 3:573-592

6. Jarrow RA, van Deventer DR (1998) The arbitrage-free valuation and
hedging of demand deposits and credit card loans. Journal of Banking
and Finance 22:259-272

7. Kalkbrener M, Willing J (2004) Risk management of non-maturing lia-
bilities. Journal of Banking and Finance 28:1547-1568

8. O’Brien JM (2000) Estimating the Value and Interest Rate Risk of
Interest-Bearing Transactions Deposits. Working Paper, Board of Gov-
ernors of the Federal Reserve System, November 2000



