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Summary. “The timetable is the essence of the service offered by any provider
of public transport” (Jonathan Tyler, CASPT 2006). Indeed, the timetable has a
major impact on both operating costs and on passenger comfort. Most European
agglomerations and railways use periodic timetables in which operation repeats in
regular intervals. In contrast, many North and South American municipalities use
trip timetables in which the vehicle trips are scheduled individually subject to fre-
quency constraints. We compare these two strategies with respect to vehicle oper-
ation costs. It turns out that for short time horizons, periodic timetabling can be
suboptimal; for sufficiently long time horizons, however, periodic timetabling can
always be done ‘in an optimal way’.

1 Introduction

The construction of the timetable is perhaps the most important scheduling
activity of a railway or public transport company. It has a major impact on
operating costs and on passenger comfort. The problem has been extensively
covered in the operations research literature, see [2] for a recent survey. There
are two main timetabling strategies that differ w.r.t. to structural dependen-
cies between individual trips. In a periodic timetable, there is a fixed time
interval between two trips; if a single trip is scheduled on a directed line, all
other trips of this line are determined. In contrast, in a trip timetable, each
trip is scheduled individually, subject to frequency constraints. Stipulating ap-
propriate constraints, a trip timetable can be forced to become periodic, or, to
put it the other way round, trip timetables feature more degrees of freedom
than periodic ones. We investigate in this paper the question whether this
freedom can be used to lower operation costs in terms of numbers of vehicles.
Of course, such improvements (if any) come at the price of diminishing the
regularity of the timetable.

∗ Supported by the DFG Research Center Matheon (http://www.matheon.de).
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2 The Timetabling Problem

We consider the timetabling problem for a single, bidirectional line between
two stations A and B. The line is operated by homogenous vehicles with run-
ning times tab and tba in directions A → B and B → A, respectively (these
include minimum turnaround times in the respective terminus stations). We
want to construct a timetable that covers N time periods of length T with a
trip frequency of f vehicles per time period, and such that the minimum head-
way between two consecutive trips is at least ℓ and at most u. We assume that
f divides T and call T/f the period time of the timetable (to be constructed).
We further assume ℓ ≤ T/f ≤ u ≤ T and that all mentioned numbers are
positive integers except for ℓ, which is supposed to be a non-negative integer.
The timetable that we want to construct involves m := N · f departures at
station A, that we denote by U = {u1, . . . , um}, and the same number of
departures at station B, that we denote by V = {v1, . . . , vm}; let U ∪ V be
the set of all these departure events. A timetable is a function t : U ∪ V 7→ Z

that maps departures to times such that the following conditions hold:

(i) t(ui) ≤ t(ui+1) i = 1, . . . , m − 1

t(vi) ≤ t(vi+1) i = 1, . . . , m − 1

(ii) ⌊(i − 1)/f⌋T ≤ t(ui) < (⌊(i − 1)/f⌋+ 1)T i = 1, . . . , m − 1

⌊(i − 1)/f⌋T ≤ t(vi) < (⌊(i − 1)/f⌋+ 1)T i = 1, . . . , m − 1

(iii) ℓ ≤ t(ui+1) − t(ui) ≤ u, i = 1, . . . , m − 1

ℓ ≤ t(vi+1) − t(vi) ≤ u, i = 1, . . . , m − 1.

Constraints (i) ensure that the departure times at both stations ascend in
time, (ii) guarantees f departures in each period at each station, and (iii)
enforce a minimum and maximum headway of ℓ and u between two consecutive
departures of trips. A timetable is a periodic timetable if condition (iii) is
replaced by

(iii′) t(ui+1) − t(ui) = t(vi+1) − t(vi) = T/f, i = 1, . . . , m − 1,

otherwise it is a trip timetable. Note that a timetable can be forced to be
periodic by stipulating ℓ = T/f = u. The timetabling problem is to determine
a feasible timetable that can be operated with a minium number of vehicles2.

We remark that our problem definition deliberately omits technical con-
straints, such as passing sidings, in order to focus upon purely structural
implications.

2 This definition is made in our context; there are other types of timetabling prob-
lems in the literature.
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3 Periodic vs. Trip Timetables

Lemma 1. Consider a public transport line between stations A and B with
running times tab and tba which include the minimum turnaround times in
the respective terminus stations, such that tab + tba is an integer multiple of
T . Then, operating this line for a time duration of at least N · T > tab + tba
requires at least

Z :=
tab + tba

T
f

(1)

vehicles in an arbitrary timetable.

Proof. At least f vehicles have to be scheduled in each of the first Z/f time
periods until the first vehicle can be reused for a second trip in the same
direction. ⊓⊔

Lemma 2. Consider a public transport line between stations A and B with
running times tab and tba (again including minimum turnaround times). Op-
erating this line at shorter running times t′ab ≤ tab and t′ba ≤ tba does not
increase the number of vehicles that are required for operation in the respec-
tively best arbitrary timetables for this line.

Proof. For the optimal timetables for running times tab and tba there exist
timetables with running times t′ab and t′ba that can be operated at the same
number of vehicles. In fact, add a turnaround waiting time at terminus sta-
tion B of tab − t′ab, and a waiting time of tba − t′ba at station A. ⊓⊔

[tab, tab + T
f
− ε]

[tba, tba + T
f
− ε]

A B

Fig. 1. The so-called Pesp-graph (see, e.g., [2]) for the situation of the periodic
vehicle circulation as it is considered in Prop. 1.

Proposition 1. Consider a public transport line between stations A and B
with a period time T

f
and running times tab and tba (again including minimum

turnaround times in the terminus stations) such that tab + tba < NT − T/f .
Then, any periodic timetable requires at least

Z0 :=

⌈

tab + tba
T
f

⌉

(2)

vehicles for operation. Moreover, any periodic timetable for this line can be
operated with at most Z0 + 1 vehicles. Indeed, there exist periodic timetables
that can be operated with Z0 vehicles.
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Proof. Using the cycle inequalities due to Odijk [4], it had been observed
by Nachtigall [3] that there exists some appropriate ε > 0 such that the
following general bounds on the number Z of vehicles are valid for all periodic
timetables, and tight for some timetables:

Z0 :=

⌈

tab + tba
T
f

⌉

≤ Z ≤

⌊

tab + T
f
− ε + tba + T

f
− ε

T
f

⌋

≤ Z0 + 1. (3)

⊓⊔

Lemma 3. Consider a public transport line between stations A and B with
running times tab and tba which once more include the minimum turnaround
times in the respective terminus stations. Then, operating this line for at least
a time duration of N · T > tab + tba requires at least

Z1 :=

⌊

tab + tba
T

⌋

· f (4)

vehicles in an arbitrary timetable.

Theorem 1. For each public transportation line with running times tab and
tba (including minimum turnaround times), there exists a number N0 ∈ N

such that operating the line for a time duration of at least N0 · T requires at
least

Z0 =

⌈

tab + tba
T
f

⌉

(5)

vehicles for operation. In other words, for sufficiently long time horizons, the
minimum number of vehicles needed to operate a trip timetable is equal to the
minimum number of vehicles needed to operate a periodic timetable.

Proof. In a time duration of N · T , for the two directions of the line together
there must be scheduled at least 2Nf trips. In turn, one vehicle can cover no

more than
⌈

2NT
tab+tba

⌉

of these trips.

Now, choose N0 such that 2N0T
tab+tba

becomes integer. Then, the number of
required vehicles is bounded from below by

2N0f
2N0T

tab+tba

=
f

T
· (tab + tba) (6)

=
tab + tba

T
f

. (7)

Since we must only consider integer quantities of vehicles, (5) follows. ⊓⊔
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4 Example

Let the balancing intervalequal T = 60 minutes, and let the number of re-
quired trips within this interval be f = 3. We consider a parameterized one-
way running time tab = tba = 60−c, which includes the minimum turnaround
times, for c ∈ {1, 2, . . . , 10}.

01:00

02:00

03:00

04:00

05:00

06:00

07:00

A B

∅

Fig. 2. A timetable for tab = tba = 52, that uses only five vehicles. In the first
five hours, there are three departures from each terminus station. But in the sixth
hour, there are only two departures from B, which makes this timetable infeasible
for N = 6. The lines on the right indicate the vehicle that covers two trips in the
corresponding hour.

First, observe that whenever c < 10, then the number of vehicles that are
required in the best periodic timetables equals

Z0 =

⌈

tab + tba
T
f

⌉

=

⌈

120 − 2c
60

3

⌉

=

⌈

120 − 2c

20

⌉

=

⌈

60 − c

10

⌉

= 6. (8)

Second, it can be verified that in any trip timetable, we need at least five
vehicles for operating this line over at least three hours. Last, recall from
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the proof of Theorem 1 that after at least 100 − 2c hours we can be sure to
also require six vehicles when scheduling each trip individually. Yet, in this
example we will show that, for certain running times, as early as after at least
six hours we are sure to need the sixth vehicle also in any trip timetable.

The first simple observation is that within each hour, when considering
both directions of the line together, there must be six trips in the schedule.
Hence, in order to need only five vehicles, there must be one vehicle within
each hour that covers two of these six trips. Of course, these two trips must
be in opposite direction.

Now comes the key observation: If some fixed vehicle covers two trips in
hour X , then it cannot cover two trips in any of the hours {X + 1, . . . , X +
⌊

T
c

⌋

− 2}. As a consequence, if the one-way running time was tab = 52, and
thus c = 8, then no vehicle can cover two trips in two of the hours {1, . . . , 6},
because of X +

⌊

T
c

⌋

−2 = 1+7−2 = 6. Hence, in the sixth hour of operation,
the latest, a sixth vehicle has to be put into operation, cf. Fig. 2.

5 Passenger Waiting Times

One can also analyze the differences between periodic and trip timetables
with respect to passenger comfort, i.e., waiting times. An analysis of this type
can be found in [1]. There, an example of a transportation network is given,
in which passengers spend strictly less waiting time at transfers, if a trip
timetable is used instead of when a periodic timetable is used.
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