Skip to main content

Affordance-Based Human-Robot Interaction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4760))

Abstract

In our targeted scenario, humans can flexibly establish joint object reference with a robot entirely on the basis of their own intuitions. To reach this aim, the robot needs to be equipped with the kind of knowledge that can be matched in a cognitively adequate way to users’ intuitive conceptual and linguistic preferences. Such an endeavour requires knowledge about human spatial object reference under consideration of object affordances and functional features. In this paper we motivate our approach by reviewing relevant insights gained in the field of Spatial Cognition, and we discuss the suitability of our robotic system to incorporate these findings. In our context, affordances are visually perceivable functional object aspects shared by the designer of the recognition module and the prospective robot user or instructor.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amalberti, R., Carbonell, N., Falzon, P.: User Representations of Computer Systems in Human–Computer Speech Interaction. International Journal of Man–Machine Studies 38, 547–566 (1993)

    Article  Google Scholar 

  2. Biederman, I.: Recognition-by-components: A theory of human image understanding. Psychological Review 94, 115–147 (1987)

    Article  Google Scholar 

  3. Carlson-Radvansky, L.A., Radvansky, G.: The influence of functional relations on spatial term selection. Psychological Science 7, 56–60 (1996)

    Article  Google Scholar 

  4. Coventry, K.R., Garrod, S.C.: Saying, seeing and acting: The psychological semantics of spatial prepositions. Essays in Cognitive Psychology series. Psychology Press (2004)

    Google Scholar 

  5. Dickinson, S., Metaxas, D., Pentland, A.: The role of model-based segmentation in the recovery of volumetric parts from range data. IEEE Transactions on Pattern Analysis and Machine Intelligence 19(3), 259–267 (1997)

    Article  Google Scholar 

  6. Doran, C., Aberdeen, J., Damianos, L., Hirschman, L.: Comparing several aspects of human-computer and human-human dialogues. In: Proceedings of the 2nd SIGdial Workshop on Discourse and Dialogue, Aalborg, Denmark, pp. 1–2 (September 2001)

    Google Scholar 

  7. Fischer, K.: Linguistic methods for investigating concepts in use. Methodologie in der Linguistik (2003)

    Google Scholar 

  8. Fischer, K.: What Computer Talk Is and Is not: Human-Computer Conversation as Intercultural Communication. AQ, Saarbruecken (2006)

    Google Scholar 

  9. Fischer, K., Moratz, R.: From communicative strategies to cognitive modelling. In: Workshop Epigenetic Robotics, Lund (2001)

    Google Scholar 

  10. Gibson, J.: The Ecological Approach to Visual Perception. Houghton Mifflin Company, Boston (1979)

    Google Scholar 

  11. Gorniak, P., Roy, D.: Situated language understanding as filtering perceived affordances. Cognitive Science (in press)

    Google Scholar 

  12. Habel, C., Hildebrandt, B., Moratz, R.: Interactive robot navigation based on qualitative spatial representations. In: Wachsmuth, I., Jung, B. (eds.) Proceedings Kogwis 1999, St. Augustin. infix, pp. 219–225 (1999)

    Google Scholar 

  13. Hauck, A., Lanser, S., Zierl, C.: Hierarchical recognition of articulated objects from single perspective views. In: IEEE International Conference on Computer Vision and Pattern Recognition, pp. 870–876. IEEE Computer Society Press, Los Alamitos (1997)

    Google Scholar 

  14. Herrmann, T.: Vor, hinter, rechts und links: das 6H-Modell. Psychologische Studien zum sprachlichen Lokalisieren. Zeitschrift für Literaturwissenschaft und Linguistik 78, 117–140 (1990)

    Google Scholar 

  15. Herrmann, T., Deutsch, W.: Psychologie der Objektbenennung. Hans Huber Verlag, Bern u.a (1976)

    Google Scholar 

  16. Herrmann, T., Grabowski, J.: Sprechen: Psychologie der Sprachproduktion. Spektrum Verlag, Heidelberg (1994)

    Google Scholar 

  17. Hois, J., Wünstel, M., Bateman, J.A., Röfer, T.: Dialog-based 3d-image recognition using a domain ontology. In: Proc. International Conference Spatial Cognition, September 24–28, 2006 Bremen, Germany (2006)

    Google Scholar 

  18. Jordan, T., Raubal, M., Gartrell, B., Egenhofer, M.: An affordance-based model of place in GIS. In: Eight International Symposium on Spatial Data Handling, pp. 98–109 (1998)

    Google Scholar 

  19. Kruijff, G.-J.M., Zender, H., Jensfelt, P., Christensen, H.I.: Situated dialogue and spatial organization: What, where... and why? International Journal of Advanced Robotic Systems, Special Issue on Human and Robot Interactive Communication 4(2) (to appear, 2007)

    Google Scholar 

  20. Kuhn, W.: Handling data spatially: Spatializing user interfaces. In: SDH 1996. Advances in GIS Research II, Delft. International Geographical Union, pp. 13B.1–13B.23 (1996)

    Google Scholar 

  21. Lanser, S., Zierl, C., Munkelt, O., Radig, B.: Moral - a vision-based object recognition system for autonomous mobile systems. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP 1997. LNCS, vol. 1296, pp. 33–41. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  22. Lauria, S., Bugmann, G., Kyriacou, T., Bos, J., Klein, E.: Training personal robots using natural language instruction. IEEE Intelligent Systems 16(5), 38–45 (2001)

    Article  Google Scholar 

  23. Leonardis, A., Solina, F., Macerl, A.: A direct recovery of superquadric models in range images using recover- and select paradigm. In: Eklundh, J.-O. (ed.) ECCV 1994. LNCS, vol. 800, pp. 309–318. Springer, Heidelberg (1994)

    Google Scholar 

  24. Levinson, S.C.: Space in language and cognition: explorations in cognitive diversity. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  25. Mark, L.: Eye height-scaled information about affordances: A study of sitting and stair climbing. Journal of Experimental Psychology: Human Perception and Performance 13, 361–370 (1987)

    Article  Google Scholar 

  26. Miller, G., Johnson-Laird, P.: Language and Perception. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  27. Moratz, R.: Intuitive linguistic joint object reference in human-robot interaction. In: Proceedings of the Twenty-First National Conference on Artificial Intelligence (AAAI), pp. 1483–1488 (2006)

    Google Scholar 

  28. Moratz, R., Fischer, K., Tenbrink, T.: Cognitive Modeling of Spatial Reference for Human-Robot Interaction. International Journal on Artificial Intelligence Tools 10(4), 589–611 (2001)

    Article  Google Scholar 

  29. Moratz, R., Tenbrink, T.: Instruction modes for joint spatial reference between naive users and a mobile robot. In: Proceedings of RISSP IEEE International Conference on Robotics, Intelligent Systems and Signal Processing, Special Session on New Methods in Human Robot Interaction, pp. 8–13. Changsha, China (2003)

    Google Scholar 

  30. Moratz, R., Tenbrink, T.: Spatial reference in linguistic human-robot interaction: Iterative, empirically supported development of a model of projective relations. Spatial Cognition and Computation 6(1), 63–106 (2006)

    Article  Google Scholar 

  31. Sacks, H., Schegloff, E., Jefferson, G.: A simplest systematics for the organization of turn-taking for conversation. Language 50, 696–735 (1974)

    Article  Google Scholar 

  32. Solina, F., Bajcsy, R.: Recovery of parametric models form range images: The case for superquadratics with global deformations. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(2), 131–146 (1990)

    Article  Google Scholar 

  33. Spexard, T., Li, S., Wrede, B., Fritsch, J., Sagerer, G., Booij, O., Zivkovic, Z., Terwijn, B., Kröse, B.: BIRON, where are you? Enabling a robot to learn new places in a real home environment by integrating spoken dialog and visual localization. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2006)

    Google Scholar 

  34. Stark, L., Bowyer, K.: Generic Object Recognition using Form and Function. World Scientific, Singapore (1996)

    MATH  Google Scholar 

  35. Talmy, L.: Towards a cognitive semantics. A Bradford Book, M.I.T. Press, Cambridge, MA (2000)

    Google Scholar 

  36. Tenbrink, T.: Identifying objects on the basis of spatial contrast: an empirical study. In: Freksa, C., et al. (eds.) Spatial Cognition IV. LNCS (LNAI), vol. 3343, pp. 124–146. Springer, Heidelberg (2005)

    Google Scholar 

  37. Tsuji, T., Tanaka, Y.: Tracking control properties of human-robotic systems based on impedance control. IEEE Transactions on Systems, Man, and Cybernetics, Part A 35(4), 523–535 (2005)

    Article  Google Scholar 

  38. Webber, B.L., Badler, N.I., Eugenio, B.D., Geib, C.W., Levison, L., Moore, M.: Instructions, intentions and expectations. Artif. Intell. 73(1-2), 253–269 (1995)

    Article  Google Scholar 

  39. Wu, K., Levine, M.: Recovering parametric geons from multiview range data. In: Proc. IEEE Conf. Computer Vision and Pattern Recognition, pp. 159–166. Seattle (1994)

    Google Scholar 

  40. Wünstel, M., Moratz, R.: Automatic object recognition within an office environment. In: Canadian Conference on Computer and Robot Vision (CRV2004) (2004)

    Google Scholar 

  41. Zhang, J., Knoll, A.: A two-arm situated artificial communicator for human-robot cooperative assembly. IEEE Transactions on Industrial Electronics 50(4), 651–658 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Erich Rome Joachim Hertzberg Georg Dorffner

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Moratz, R., Tenbrink, T. (2008). Affordance-Based Human-Robot Interaction . In: Rome, E., Hertzberg, J., Dorffner, G. (eds) Towards Affordance-Based Robot Control. Lecture Notes in Computer Science(), vol 4760. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77915-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77915-5_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77914-8

  • Online ISBN: 978-3-540-77915-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics