
Journal of Discrete Algorithms 6 (2008) 583–594
Contents lists available at ScienceDirect

Journal of Discrete Algorithms

www.elsevier.com/locate/jda

Approximating largest convex hulls for imprecise points ✩

Marc van Kreveld, Maarten Löffler ∗

Department of Information and Computing Sciences, Utrecht University, the Netherlands

a r t i c l e i n f o a b s t r a c t

Article history:
Received 16 October 2007
Accepted 28 April 2008
Available online 10 May 2008

Keywords:
Computational geometry
Data imprecision
Convex hull
Core-sets

Assume that a set of imprecise points in the plane is given, where each point is specified
by a region in which the point will lie. Such a region can be modelled as a circle, square,
line segment, etc. We study the problem of maximising the area of the convex hull of such
a set. We prove NP-hardness when the imprecise points are modelled as line segments,
and give linear time approximation schemes for a variety of models, based on the core-set
paradigm.

© 2008 Elsevier B.V. All rights reserved.

1. Introduction

In computational geometry, many fundamental problems take a point set as input on which some computation is done,
for example to determine the convex hull, the Voronoi diagram, or a travelling sales route. These problems have been
studied for decades. The vast majority of research assumes the locations of the input points to be known exactly. In practice,
however, this is often not the case. Coordinates of the points may have been obtained from the real world, using equipment
that has some error interval, or they may have been stored as floating points with a limited number of decimals. In real
applications, it is important to be able to deal with such imprecise points.

When considering imprecise points, various interesting questions arise. Sometimes it is sufficient to know just some
possible solution, which can be achieved by applying existing algorithms to some point set that is possibly the true point
set. More information about the outcome can be obtained by computing a probability distribution over all possibilities, for
example using Monte Carlo methods. In many applications it is also important to know concrete lower and upper bounds
on some measure on the outcome, given concrete bounds on the input.

1.1. Results

There are a number of basic geometric measures on point sets, such as the diameter, the size of the smallest enclosing
circle, the area of the convex hull, etc. For most of these measures the lower and upper bounds can be computed exactly in
an efficient way [16], as is summarised in Table 1. However, there are a few problems for which no efficient exact algorithm
is known.

In [17], we studied a wide range of problems concerning the convex hull of imprecise points. We varied the imprecision
model (line segment, square, circle), the objective function (area, perimeter), the goal (maximisation, minimisation), and the
restrictions on the input (equal size, disjoint, no restrictions). It appeared that the maximisation of area variant (see Fig. 1)

✩ This research was partially supported by the Netherlands Organisation for Scientific Research (NWO) under BRICKS/FOCUS grant number 642.065.503
and through the project GOGO.

* Corresponding author.
E-mail addresses: marc@cs.uu.nl (M. van Kreveld), loffler@cs.uu.nl (M. Löffler).
1570-8667/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.jda.2008.04.002

http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jda
mailto:marc@cs.uu.nl
mailto:loffler@cs.uu.nl
http://dx.doi.org/10.1016/j.jda.2008.04.002

584 M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594
Table 1
Exact algorithms for basic geometric measures on imprecise point sets, when the imprecision of a point is modelled as a square region. The O (n7) result
for the largest area convex hull only applies for disjoint squares; see Table 2

Structure Smallest Largest

diameter O (n logn) [16] O (n logn) [16]
closest pair O (n logn) [16] NP-hard [8]
smallest enclosing circle O (n) [13] O (n) [16]
convex hull (area) O (n2) [17] O (n7) [17]
minimum spanning tree NP-hard [17] open

Fig. 1. The maximum area convex hull for a set of imprecise points modelled as squares.

Table 2
New and previous results for maximising convex hull area of a set of imprecise points

Model Restrictions Exact algorithm Approximation scheme

line segments parallel O (n3) [17] O (n + η3)

line segments – O (2nn logn) (NP-hard) O (n) + 2O (η2)

squares disjoint O (n7) [17] O (n + η14)

squares equal size O (n5) [17] O (n + η12)

squares disjoint and equal size O (n3) [17] O (n + η12)

squares – O (4nn logn) O (n) + 2O (η2)

k-gons disjoint or equal size nO (k) O (n) + 2O (k logη)

k-gons – O (knn log n) O (n) + 2O (η2 log k)

circles disjoint or equal size O (n) + 2O (
√

η logη)

circles – O (n) + 2O (η2 logη)

was one of the hardest, where we found many polynomial time algorithms of rather high degree, and were unable to find
any polynomial time algorithm for several variants.

Here we present linear time approximation schemes for all variants of the largest area convex hull problem that we
studied. The algorithms are all of the form O (n + f (η)), where n is the input size and 1

η = ε is the required precision of
the answer. The dependence on n is linear, provided that the ceiling operation can be performed in constant time. The
dependence on η is polynomial if we have a polynomial time exact algorithm to solve the problem, and superpolynomial
otherwise. Our previous exact results and new approximate results are summarised in Table 2.

1.2. Related work

A lot of research about imprecision in computational geometry is directed at computational imprecision [18], or at
stochastic or fuzzy imprecision models. Recently, however, interest in exact approaches to deal with data imprecision is
growing [1,4,5,7,11,14,15]. A more extensive overview of related work in this area is given in [17].

The core-set framework, introduced by Agarwal and Har-Peled [2], is a powerful way to obtain approximation algorithms,
and still an active research topic [3,9,10]. In this framework, a point set P is given, and the problem is to maximise some
measure μ(P). To do this, one constructs a core-set P ′ ⊂ P , such that μ(P ′) > (1 − ε)μ(P). The size of the core-set must
only depend on ε, and not on n (or sublinearly on n, depending on the application). Now the total running time of the
algorithm is the time it takes to construct P ′ , and the time it takes to compute μ(P ′), where the second step does not
depend on n. If the first part can be done in linear time, one obtains a linear time approximation scheme (LTAS) [6]. A good
survey on core-sets is provided by Agarwal et al. [3].

We generalise the concept of core-sets to sets of imprecise points. We are not given a set of points, but a set of regions.
A core-set of such a set is still a subset of bounded size that guarantees a good solution. However, the criteria to include
a region in the core-set become more elaborate; in some cases they depend on the size and shape of a region as well
as its location, rather than only on its location, as is usually the case. For the classical (precise) convex hull problem it is

M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594 585
Fig. 2. There are vertices in X − V ′ , and from these vertices there is an augmenting path that ends in either V ′ − X or Y − W ′ .

well known that a small core-set always exists [3]. This immediately implies that a core-set for the imprecise convex hull
problem exists as well: take a core-set for the optimal solution. In the remainder of this paper we show how to compute
such core-sets efficiently.

2. Preliminaries

Before treating the main results, we first give some small results that are independent of the rest of the text, but are
needed in some of the proofs.

2.1. Perfect matchings in bipartite graphs

Let G be a bipartite graph with two sets of vertices V and W , and a set of edges E ⊂ V × W . Let M ⊂ E be a maximum-
cardinality matching of G , and let V ′ ⊂ V and W ′ ⊂ W be the two vertex sets that are used by M . A matching between
two subsets A ⊂ V and B ⊂ W is called perfect if it consists of exactly min(|A|, |B|) edges.

Lemma 1. For every subset Y ⊂ W , if there is a perfect matching between V and Y then there is also a perfect matching between V ′
and Y .

Proof. Suppose the theorem is false. Let Y ⊂ W be a subset of W such that there exists a perfect matching between V and
Y , but no perfect matching between V ′ and Y . Let N ⊂ E be the matching among all perfect matchings between V and Y
that uses the largest number of vertices of V ′ . Let X ⊂ V be the set of vertices used by N , apart from Y . Then X ⊂ V ′ , so
there is a vertex x ∈ X with x /∈ V ′; see Fig. 2.

Now start an augmenting path from x that uses only edges of M ∪ N . This path takes alternating edges from N and from
M , since no two from the same set can use the same vertex. Therefore, this path ends either in a vertex v ∈ V ′ − X or in
a vertex w ∈ Y − W ′ . In the first case, we have a perfect matching between X − {x} ∪ {v} and Y , which is in contradiction
with the choice of N . In the second case, we have a perfect matching between V ′ ∪ {x} and W ′ ∪ {w}, which contradicts the
maximality of M . �
2.2. Constant factor approximation of the diameter and width

Let P be a set of points in the plane. The diameter of P is the largest distance between any two points in P . The width
of P is the smallest distance between any two parallel lines containing P between them. Here we briefly show that these
measures can be approximated in linear time.

Let P be a set of n points, and let d be its diameter and ω its width.

Lemma 2. We can find two points of P whose distance is at least d√
2

in O (n) time.

Proof. Compute the axis-parallel bounding box B of P with dimensions w × h. If w > h, take the leftmost and rightmost
points, otherwise take the topmost and bottommost points. In the worst case, B is a square and the distance between those
points is the side length of the square, while the real diameter is the diagonal, which is a factor

√
2 larger. �

Lemma 3. Let p,q ∈ P be two points with distance at least d
c . Then the directional width of P perpendicular to pq is at most 2cω.

Proof. Let 	e1 be the direction from p to q and 	e2 the direction perpendicular to it. Let B be the smallest axis-parallel
bounding box of P in the (e1, 	e2) coordinate system, and denote its dimensions by w × h. Let u, v ∈ P be the points that
realise the real diameter d of P , so the distance between p and q is at least d

c ; see Fig. 3.

Now consider the quadrilateral �puqv . We can write its area as A = 1
2 |pq|h � 1

2
d
c h. But we can also write it as A =

1 |uv|(ωp + ωq), where ωp is the distance from p to uv and ωq is the distance from q to uv . Clearly, both of these
2

586 M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594
Fig. 3. The ratio between ω and h is at most 2c.

Fig. 4. A set of parallel line segments divided in vertical strips.

distances are at most ω, so A � dω. Therefore, 1
2

d
c h � A � db, so h � 2cω. Note that if �puqv is not convex, the area is

even smaller than 1
2 |uv|(ωp + ωq). �

3. Approximating the largest convex hull

We study the problem of finding the largest possible convex hull for a set of imprecise points. Given a set of imprecise
points, choose a point in each imprecise point such that the convex hull of the resulting point set is as large as possible.
We measure the size of the convex hull by its area. More formally, we are given a set L ⊂ P(R2) of imprecise points; that
is, L is a set of subsets of R

2. We denote a solution, that is, a convex polygon with each vertex in a different region of L,
by S , and its area by A(S). We denote the optimal solution by S∗ .

Since the optimal solution is hard to compute, we look for (1 − ε)-approximations. We also denote η = ε−1. We want to
find a core-set L′ ⊂L with respect to the measure μ, where μ measures the area of the largest possible convex hull: a set
of regions such that the optimal solution S ′ ∗ for L′ has area A(S ′ ∗) � (1 − ε)A(S∗). If wanted, this can be translated back
to a solution for L by just taking a random point inside each region that is not part of L′ .

We model the imprecise points as line segments, squares and circles.

3.1. Parallel line segments

Problem 1. Given a set of parallel line segments, choose a point on each segment such that the area of the convex hull of
the resulting point set is as large as possible.

We can solve this problem exactly in O (n3) time, using a dynamic programming solution [17]. Without loss of generality,
we assume that the segments are vertical.

3.1.1. Core-set construction
Assume that there are points pl on the leftmost segment and pr on the rightmost segment that have the same y-

coordinate. We can do this without loss of generality, because we can freely skew the plane with a transformation of the
form (x, y) → (x, y + cx). This keeps the segments vertical, does not change any areas, and preserves convexity.

Let L be the set of input segments. We will select a core-set L′ ⊂L of at most 16η segments. Let w be the difference in
x-coordinates between pl and pr , and let h be the (unknown) maximal difference in y-coordinate between any two vertices
of the optimal solution. Let δ be δ = 1

4 ε · w . We will now divide the plane into 4η vertical strips of width δ; see Fig. 4. In
each strip, we take the two topmost and the two bottommost endpoints and add to L′ the segments to which they belong.

3.1.2. Proof of L′ being a core-set
Let S∗ be an optimal solution for L, the original input, and let S ′ ∗ be an optimal solution for L′ . First we show that the

area of S∗ is bounded by a constant factor of the area w times h. Then we prove that the difference in area between S∗
and S ′ ∗ is only a fraction of this area, dependent on ε.

Lemma 4. The optimal solution S∗ has area at least 1 wh.
2

M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594 587
Fig. 5. There is a solution S with area 1
2 wh, so S∗ is at least as large.

Fig. 6. In one strip, the horizontal difference between the points in S∗ and S ′ is at most δ.

Proof. Let the topmost vertex in the optimal solution be ht higher than pl , and the bottommost vertex hb lower, where
h = ht + hb; see Fig. 5. The line segment from pl to pr has length w , and the topmost vertex is ht away from this line,
since we ensured that it is horizontal. So the area of this upper triangle is 1

2 wht . In the same way, the lower triangle has
area 1

2 whb . This means that the solution S that uses the topmost and bottommost vertices and pl and pr has area 1
2 wh,

and the optimal solution S∗ cannot be smaller than this. �
Lemma 5. There exists a solution S ′ for L′ such that the difference between A(S∗) and A(S ′) is at most 2δh.

Proof. For each vertical strip, let pt be the topmost vertex on the upper part of S∗ within that strip, and let pb be the
bottommost vertex on the lower part of S∗ . Since pt and pb cannot be endpoints of the same segment, there are points p′

t
and p′

b in L′ such that p′
t is equal to or above pt , and p′

b is equal to or below pb , and they are not endpoints of the same
segment; see Fig. 6. Use these points in S ′ . If there are no vertices in the strip on the top or the bottom part of S∗ , we just
skip it.

Let S be the solution for L obtained by taking the same points in the regions of L′ that S ′ uses, and any points in the
remaining regions. Then of course A(S ′) � A(S) � A(S∗). On the other hand, because of the above, S∗ can never be larger
than S ′ with a strip of horizontal width δ around it (the Minkowski sum of S ′ and the horizontal line segment from (−δ, 0)

to (δ,0)). So A(S∗) �A(S ′) + 2δh. �
Let S ′ ∗ be the optimal solution for L′ . Now we have:

A(S ′ ∗) �A(S ′) �A(S∗) − 2δh =A(S∗) − 1

2
εwh �A(S∗) − εA(S∗) = (1 − ε)A(S∗)

3.1.3. Running time analysis
As mentioned earlier, we assume that the ceiling operation can be performed in constant time. This is necessary to put

the segments into the correct strips in linear time. Without this assumption, the algorithm can be made to run in O (n logη)

time.

Theorem 1. We can compute a core-set of size O (η) for Problem 1 in O (n) time.

This problem can be solved exactly in O (n3) time, and therefore approximated in O (n + η3) time.

3.2. Arbitrary line segments

Problem 2. Given a set of line segments, choose a point on each segment such that the area of the convex hull of the
resulting point set is as large as possible.

588 M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594
Fig. 7. A set of line segments divided according to their cells.

Fig. 8. (a) In the narrow case, there is a solution with area at least 1
8 wh. (b) In the non-narrow case, there is a solution with area at least 1

128 wh.

As we proved in [17], this problem is NP-hard. However, for the core-set approach, we do need an exact algorithm. There
exists an optimal solution that has every point on an endpoint of its segment ([17], Lemma 1). Therefore we can solve
the problem in O (2nn log n) time by computing the convex hull of every possible set of endpoints. Of course this can be
improved slightly.

3.2.1. Core-set construction
First, we scale the input to ensure that the width and diameter of the set of endpoints are not too different. Compute a

factor
√

2 approximate diameter d̃, and scale the input such that the bounding box aligned with the two points determining
d̃ becomes a square, without changing the distance between those points. Note that this does not influence the relative
area of any solution. After scaling, the real diameter may have become a factor

√
2 larger, so d̃ is no longer a factor

√
2

approximation but a factor 2 approximation. If the sides of the square have length b, then by Lemma 3 the width of the
scaled input is at least 1

4 b. We also know that the diameter is at most
√

2b, so they differ by at most a factor 4
√

2.
Let lmax be the longest segment in L. We put lmax in L′ . Let p and q be two points of the vertex set of L− {lmax} that

approximate its diameter within a factor 2. Denote the direction from p to q by 	e1, and the direction perpendicular to this
by 	e2. Determine the axis-parallel bounding box B of L−{lmax} in the (e1, 	e2) axis system, and let w ×h be its dimensions.
Assume that w � h, and exchange axes otherwise.

Divide B into 1024η by 1024η grid cells; see Fig. 7. The cells are δ1 = ε
1024 w long in the 	e1 direction, and δ2 = ε

1024 h long
in the 	e2 direction. Consider the bipartite graph where one set of nodes corresponds to the set of line segments L− {lmax},
and the other set corresponds to the cells of the grid. There is an edge between segment l and cell c if one of the endpoints
of l is in c. Let M be a maximum-cardinality matching of this graph, and add all segments that occur in M to L′ .

3.2.2. Proof of L′ being a core-set
Let S∗ be an optimal solution for L, the original input, and let S ′ ∗ be an optimal solution for L′ , the core-set. Let

A =A(B) + g · w , where g is the distance from the centre of B to the furthest endpoint of lmax. We will first show that the
area of S∗ is at least a constant fraction of A. Then we will show that the difference in area between S∗ and S ′ ∗ is only an
ε-dependent fraction of A.

Lemma 6. The area of S∗ is at least 1
128 times the area of B.

Proof. We consider two cases. If B is narrow, that is, h < 1
16 w , as in Fig. 8(a), then there exist two points p and q among

the endpoints of L − {lmax} such that the distance between them is at least 1
2 w , and they are not endpoints of the same

segment. There also exists a point r that is an endpoint of lmax that is at least (2
√

2 − 1)h away from B , since we know that
the width of the original input was at least 1

8

√
2 times the diameter. Now r has to be at least (2

√
2 − 2)h > 1

2 h away from

the line extending pq, so the area of �pqr is at least 1
8 wh.

If B is not narrow, that is, h � 1
16 w , as in Fig. 8(b), there exist three points p, q and r among the endpoints of L−{lmax}

such that the distance between any pair is at least h, since, otherwise, there would be a smaller bounding box. If they are

M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594 589
Fig. 9. In one cell, the horizontal difference between the points in S∗ and S ′ is at most δ1, and the vertical difference is at most δ2.

all endpoints of different segments, �pqr is a valid solution of area at least 1
4 h2 > 1

64 wh. Otherwise, one of the segments
has length at least h, and therefore also lmax has length at least h. Suppose p and q are endpoints of the same segment.
Now there has to be an endpoint s of lmax such that s is at least 1

2 h away from either the line extending pr or the line
extending qr. This means that either �prs or �qrs (or both) has area at least 1

8 h2 > 1
128 wh.

In both cases we have a valid solution with an area of at least 1
128 wh, so the area of the optimal solution will also be at

least 1
128 wh. �

Lemma 7. The area of S∗ is at least 1
128 g w.

Proof. There are two points p and q among the endpoints of L − {lmax} such that the distance between them is at least
1
2 w , and they are not endpoints of the same segment. Because the width/height ratio of the input was at most 4

√
2 and

we know there is at least some point more than g away from the centre of B , there must also be a point r that is at least
1
8

√
2g away from the supporting line of pq. This means that the triangle �pqr has an area of at least 1

16

√
2g w . If r is not

the other endpoint of the line segment of either p or q, this completes the proof.
Otherwise, suppose p and r belong to the same line segment, and suppose |pr| < 1

4 w . Then we know that lmax has

length at least |pr| � 1
8

√
2g , so one of its endpoints is at least 1

16

√
2g away from either pq or qr. Both of these have length

at least 1
4 w , so we have a solution of area at least 1

64

√
2g w . On the other hand, if |pr| � 1

4 w , we have that also |lmax| � 1
4 w ,

and of its endpoints is at least 1
8 w away from either pq or qr, both of which have length at least 1

8

√
2g in this case; thus,

again we have a solution of area at least 1
64

√
2g w . �

As a consequence of these lemmata, we now know that the area of S∗ is at least a constant fraction of A: A(S∗) � 1
256 A.

Lemma 8. There exists a solution S ′ for L′ such that the difference between the areas of S ′ and S∗ is at most ε
256 times A.

Proof. Let Y be the set of grid cells used by the optimal solution S∗ . There exists a perfect matching between L and Y ,
otherwise S∗ would not be possible. By Lemma 1, we know that there is also a perfect matching between L′ and Y . Let
S ′ be the convex hull of the point set that realises this matching and uses the same endpoint of lmax as S∗ . Then for each
vertex of S∗ there is a point of S ′ in the same grid cell. Going from S∗ to S ′ , all vertices can move a distance of δ1 in the
	e1 direction, and δ2 in the 	e2 direction; see Fig. 9. In the worst case, the transformed solution has a complete ‘band’ around
it. The area of such a band is composed of two triangles incident to lmax, which together are smaller than (δ1 + δ2)d, and a
part that lies completely within B , which is smaller than 2δ1h + 2δ2 w . In total this is smaller than ε

256 A. �
We need that the optimal solution of L′ is at least (1 − ε) times as large as the optimal solution of L. By Lemma 8,

there is a solution S ′ of L′ with an area of at most ε
256 A away from the area of S∗ . Furthermore, by Lemmata 6 and 7 we

know that the area of S∗ is at least 1
256 A. Therefore we have:

A(S ′ ∗) �A(S ′) �A(S∗) − ε

256
A �A(S∗) − ε

256
256A(S∗) = (1 − ε)A(S∗)

3.2.3. Running time analysis
To ensure that the input L is not too skinny, we need to compute an approximate bounding box of the endpoints, which

can be done in linear time, according to Lemma 2. Again, we need to perform the ceiling operation to allocate the endpoints
of the segments to the right cells of the grid.

To compute a maximum-cardinality matching, we can use the algorithm by Hopcroft and Karp [12], which runs in
O (

√|V ||E|) time. In our case, we have n − 1 nodes on the left side and 220η2 nodes on the right side, and every left node
has degree 2. When there are more than two left nodes that are connected to the same two right nodes, we will never use
more than two of them, so we can reduce the number of left nodes to at most 2 · 240η4 by using radix sort. The number

590 M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594
Fig. 10. A set of squares divided according to their cells.

of edges is twice the number of left nodes. Now we can compute a maximum-cardinality matching in O (η6) time. In total
this takes O (n + η6) time.

Theorem 2. We can compute a core-set of size O (η2) for Problem 2 in O (n + η6) time.

The problem is NP-hard, so unless P = NP there is no polynomial time exact algorithm. A trivial approach takes
O (2nn log n) time. Using this, we achieve an approximation running time of O (n) + 2O (η2) .

3.3. Squares

Problem 3. Given a set of axis-parallel squares, choose a point in each square such that the area of the convex hull of the
resulting point set is as large as possible.

The status of the general version of this problem is open. In the optimal solution, every point has to be chosen on
a corner of its square. Therefore we can solve the problem in O (4nn log n) time by computing the convex hull of every
possible set of corners.

Under certain conditions, the problem can be solved more efficiently. If the squares are disjoint, we can solve it exactly
in O (n7) time. If the squares all have the same size, we can solve it in O (n5) time. If the squares are both disjoint and of
the same size, we only need O (n3) time. All of these results can be found in [17].

3.3.1. Core-set construction
Let smax be the largest square in L, and smax2 the second largest square. Put smax and smax2 in L′ . Let p and q be two

points that approximate the diameter d of the vertices of L − {smax, smax2} by a factor 2. Let 	e1 be the direction from p
to q, and 	e2 the direction perpendicular to this. Let B be the smallest bounding box of L− {smax, smax2} in the (e1, 	e2) axis
system, and let w × h be its dimensions.

Divide B into 214η by 214η grid cells; see Fig. 10. The cells will be δ1 = 2−14εw long in the 	e1 direction, and δ2 =
2−14εh long in the 	e2 direction. Consider the bipartite graph where one set of nodes corresponds to the set of squares
L − {smax, smax2}, and the other set of nodes corresponds to the cells of the grid. There is an edge between square s and
cell c if one of the corners of s is in c. Let M be a maximum-cardinality matching of this graph, and add all squares that
occur in M to L′ .

3.3.2. Proof of L′ being a core-set
Let S∗ be an optimal solution for L, the original input, and let S ′ ∗ be an optimal solution for L′ , the core-set. First we

show that the area of S∗ is bounded from below by a constant factor of the area of B . Then we prove that the difference in
area between S∗ and S ′ ∗ is only a fraction of the area of B , dependent on ε.

Lemma 9. If n � 3, then the width of S∗ is at least 1
8 times the side length of smax2 .

Proof. Let b be the side length of smax2, and let ω∗ be the width of S∗ . Suppose the lemma is not true, so ω∗ < 1
8 b. Let p

and q be the vertices of S∗ that define the diameter d of S∗ . Then we know that the area of S∗ is a∗ � dω∗ < 1
8 db. Suppose

either p or q is not a corner of one of the two largest squares. Then one of the two largest squares has a corner u that is at
least 1

2 b away from the line extending pq, and there exists a solution of area 1
4 db > 1

8 db, so in this case S∗ would not be
optimal, a contradiction. Now suppose that both p and q are corners of the largest two squares; see Fig. 11. Let r = p,q be
an arbitrary vertex of S∗ . Now r is at least 1

2 d away from either p or q, say p without loss of generality. Now the square
that has q as a corner has another corner u that is at least 1

2 b away from the line extending pr, and there exists a solution
of area 1

8 db, so in this case S∗ would not be optimal either. Therefore the assumption is false, and the lemma is true. �
This lemma implies that the area of S∗ is at least 2−8 times the area of smax2.

M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594 591
Fig. 11. Triangle �pru has a larger area than S∗ .

Fig. 12. If all squares are small, the triangle �pqr has a large area.

Lemma 10. The area of S∗ is at least 2−12 times the area of B.

Proof. Let b be the side length of smax2. If b � 1
4 w , then this square has area at least 2−4 wh. The optimal solution has area

at least 2−8 times the second largest square, so at least 2−12 wh.
Next, assume that b < 1

4 w . If p and q, approximating the diameter of the vertices of L − {smax, smax2}, were corners of
the same square, then the width of this square would be at least 1

2 d � 1
2 w , which is larger than the diameter of smax2. So

p and q are corners of different squares. Let r be the point in P furthest from the line extending pq; see Fig. 12. If r is a
corner of yet another square, then the solution pqr has an area of at least 1

8 wh, and so the optimal solution also has at
least that area.

If r is a corner of the same square as either p or q, say p, then this means that the width of this square is larger
than 1

4

√
2h, so b > 1

4 h. The optimal solution S∗ uses some corner p′
l of the same square as pl , the leftmost point in the

	e1 direction, and some corner p′
r of the same square as pr , the rightmost point in the 	e1 direction and we know that the

distance between p′
l and p′

r is at least w − 3b > 1
4 w . We also know that S∗ has a width of at least 1

8 b > 1
32 h, so the area

of S∗ is at least 2−6 wh. �
Lemma 11. There exists a solution S ′ for L′ such that the difference between the areas of S ′ and S∗ is at most 2−12ε times the area
of B.

Proof. Let Y be the set of grid cells used by the optimal solution S∗ . There exists a perfect matching between L and Y ,
since, otherwise S∗ would not be possible. By Lemma 1, we know that there is also a perfect matching between L′ and Y .
Let S ′ be the convex hull of the point set that realises this matching. Then for each vertex of S∗ there is a point of S ′ in the
same grid cell. Going from S∗ to S ′ , all vertices can move a distance of δ1 in the 	e1 direction, and δ2 in the 	e2 direction;
see Fig. 9. In the worst case, the transformed solution has a complete band around it, that is, it is the Minkowski sum
of the old solution and a 2δ1 by 2δ2 rectangle centered at (0,0). The area of such a band is smaller than 2δ1h + 2δ2 w =
2−12εwh. �

Let S ′ ∗ be the optimal solution for L′ . Then we have:

A(S ′ ∗) �A(S ′) �A(S∗) − 2−12εwh �A(S∗) − 2−12ε212A(S∗) = (1 − ε)A(S∗)

3.3.3. Running time analysis
The computation of B takes linear time, by Lemma 2. Again, we need to perform the ceiling operation to allocate the

corners of the squares to the right cells of the grid.
To compute a maximum-cardinality matching, we can use the algorithm by Hopcroft and Karp, which runs in O (

√|V ||E|)
time. In our case, we have n − 1 nodes on the left side and 228η2 nodes on the right side, and every left node has degree 4.
When there are more than four left nodes that are connected to the same four right nodes, we will never use more than
four of them, so we can reduce the number of left nodes to at most 4 · 2112η8 by using radix sort. The number of edges is

592 M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594
four times the number of left nodes. Now we can compute a maximum-cardinality matching in O (η12) time. In total this
takes O (n + η12) time.

Theorem 3. We can compute a core-set of size O (η2) for Problem 3 in O (n + η12) time.

For arbitrary squares, we can solve the problem exactly in O (4nn log n) time; therefore we can approximate it in O (n) +
4O (η2) time. For unit size squares, we have an O (n5) exact algorithm so we get a strong linear time approximation scheme
that runs in O (n + η12 + η10) = O (n + η12). We can solve disjoint squares exactly in O (n7) so we get an O (n + η14) LTAS.
For squares that are both unit size and disjoint, we have an O (n3) exact algorithm, but this gives no better result than the
general unit size case since the running time is dominated by the term η12.

3.4. Circles

Our exact solution to the convex hull problem for square regions makes use of the four extreme points in the cardinal
directions, which makes it impossible to extend to circular regions. A second difficulty is of an algebraic nature. Even if we
know which circles have points that contribute to the largest area convex hull, it is not easy to determine where on the
circles the points should be. These difficulties remain even for disjoint unit-size circular regions [17].

When we model the points as circular regions (discs), we only need to consider the boundaries, since no vertex of an
optimal solution need be chosen in the interior of a region.

Problem 4. Given a set of circles, choose a point in each circle such that the area of the convex hull of the resulting point
set is as large as possible.

3.4.1. Approximate circles by k-gons
Let ε be given. Let C be the set of circles, and C′ the set of circles with the same centres but radii a factor (1 − δ)

smaller, where δ = 1
8 ε.

Lemma 12. The area of an optimal solution for C′ is at least (1 − ε) times the area of an optimal solution for C .

Proof. Let S∗ be the optimal solution for C . Let B the smallest enclosing bounding box of S∗ with dimensions w × h, and
let 	e1 and 	e2 be the axes of B . Let S ′ be the solution for C′ achieved by placing the vertices of S∗ on the border of the
new smaller circle, but at the same angle with relation to the positive x-axis (as seen from the circle centre) as they were
before, and taking the convex hull of this new point set.

Let p be a vertex of S∗ , and let q be the opposite point on the same circle as p; see Fig. 13(a). The line segment pq
cannot be longer than 2w in the 	e1 direction and 2h in the 	e2 direction, because otherwise choosing q instead of p would
yield a better solution (q would contribute an area of more than 1

2 wh, while p contributes at most 1
2 wh). This means that

the point p′ in C′ at the same circle as p is at most δw away from p in the 	e1 direction, and at most δh in the 	e2 direction.
Since this is true for all vertices of S∗ , the area of S ′ is at most 4δwh smaller than the area of S∗; see Fig. 13(b). Since

the area of B is at most twice the area of S∗ , this means that the area of S ′ is at least (1 − 8δ) = (1 − ε) times as large as
the area of S∗ . Of course, the optimal solution for C′ can only be larger. �

We will now approximate the circular imprecise points by k-gons that lie completely within the band between the
original circle and the circle with a factor (1−δ) smaller radius; see Fig. 14. A k-gon fits inside this band when 2k arccos(1−
δ) � 2π , and this can be estimated by k � 2π

√
η. Let k =
2π

√
η �, and G the set of k-gons (with the same orientation)

that have their corners on the circles of C .

Fig. 13. (a) The line segment from p to p′ cannot go too far outside B . (b) Decreasing the radii of the circles by a factor (1 − δ) does not decrease the area
of the convex hull by more than a factor (1 − ε).

M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594 593
Fig. 14. A k-gon between two circles.

Fig. 15. (a) The division of the plane for k = 7. (b) There are 11 groups of parallel line segments. (c) The order in which the groups can be combined.

Theorem 4. The area of the optimal solution for G is a (1 − ε) approximation for the optimal solution for C .

Proof. Since all k-gons are contained in the respective circles, the optimal solution for G is a valid solution for C . Since all
small circles are contained in the k-gons, the optimal solution for C′ is also a valid solution for G , and smaller than the
optimal solution for G . �
3.4.2. Exact algorithms

The status of the general version of the problem for regular k-gons is open. In the optimal solution, every point has to
be chosen at a corner of its k-gon. Therefore we can solve the problem in O (knn log n) time by computing the convex hull
of every possible set of endpoints. Of course this can be improved slightly.

As in the case of squares, we can achieve a better algorithm under certain constraints. If the k-gons are either disjoint or
unit size, we can solve the problem in nO (k) instead of kO (n) time. We can adapt the algorithm described in [17] in a mostly
straightforward manner to the k-gon case. We will briefly discuss the main differences and new ideas that are needed to
make these algorithms work.

For both algorithms, we need to know the k extreme points of the solution. These are the vertices of the solution that lie
furthest in one of the k directions that are perpendicular to the edges of a k-gon. Trying all possibilities gives a factor O (nk).

Suppose the k-gons are disjoint. The k extreme points divide the plane into k triangular regions; see Fig. 15(a). For
each k-gon, we only need to consider the endpoints that are within their respective triangle. Since the k-gons are disjoint,
there can be at most k − 2 k-gons that intersect more than two of these triangles. For these k-gons, we try every possible
combination of their candidate endpoints. This gives a factor O (kk).1

The remaining k-gons can now be represented as line segments. There are at most 2k − 3 groups of line segments;
see Fig. 15(b). We can solve the problem in this situation in O (kn3) time, using a dynamic programming approach as
described in [17]. We start with two consecutive groups that pass over only one extreme point, for which there is no group
between them. For these two groups, we compute the optimal solution for every pair of points. Then we combine them
with the group that passes over both extreme points. This process is repeated until we have found the optimal solution;
see Fig. 15(c).

Now suppose the k-gons have equal sizes (but are not necessarily disjoint). The algorithm described in [17] still works
exactly as described there, only with k chains instead of four. This gives a running time of O (nk+1) instead of O (n5).

3.4.3. Core-set construction
A core-set of a set of regular k-gons can be computed in exactly the same way as with squares, as long as k � 4. The

same proof also applies.

1 In fact, a little more work shows it can only be O (3k).

594 M. van Kreveld, M. Löffler / Journal of Discrete Algorithms 6 (2008) 583–594
3.4.4. Running time analysis
Constructing a core-set of size O (η2) takes O (

√|V ||E|) time. In our case, we have O (η2k) nodes at the left side after
removing doubles, and O (η2) nodes at the right side, and each left node has exactly k edges, so |V | = O (η2k + η2) and

|E| = O (η2k+ 1
2). This means that the core-set selection algorithm runs in O (n + η3k+ 1

2) = O (n) + 2O (
√

η logη) time, again
provided that the ceiling operation takes constant time.

Theorem 5. We can compute a core-set of size O (η2) for Problem 4 in O (n) + 2O (
√

η logη) time.

The general problem can be solved exactly in O (knn log n) time. The approximation algorithm then takes O (n) +
2O (

√
η logη) + O (kη2

η2 logη) = O (n) + 2O (η2 logη) time in total.
Under the assumption that the circles are either disjoint or unit size, we have a better exact algorithm, which runs in

nO (k) time. The approximation algorithm then takes O (n) + 2O (
√

η logη) + ηO (
√

η) = O (n) + 2O (
√

η logη) time.

4. Conclusions

The core-set paradigm has been successfully applied to sets of imprecise points to obtain approximation algorithms for
computationally hard problems. The dependence of the running time on the input size is linear and does not multiply with
the dependence on ε, which makes the algorithms suitable for very large sets of imprecise points. On the other hand, the
dependence on ε is often highly polynomial or exponential, which limits the achievable precision.

Acknowledgements

The authors would like to thank anonymous referees for their detailed and helpful comments.

References

[1] M. Abellanas, F. Hurtado, P.A. Ramos, Structural tolerance and Delaunay triangulation, Inf. Proc. Lett. 71 (1999) 221–227.
[2] P.K. Agarwal, S. Har-Peled, Approximating extent measures of points, in: Proc. 12th Annual ACM–SIAM Symposium on Discrete Algorithms, 2001, pp.

148–157.
[3] P.K. Agarwal, S. Har-Peled, K.R. Varadarajan, Geometric approximation via coresets, in: J.E. Goodman, J. Pach, E. Welzl (Eds.), Combinatorial and Com-

putational Geometry, in: MSRI Publications, vol. 52, Cambridge University Press, 2005.
[4] D. Bandyopadhyay, J. Snoeyink, Almost-Delaunay simplices: Nearest neighbour relations for imprecise points, in: Proc. 15th ACM–SIAM Symposium on

Discrete Algorithms, 2004, pp. 410–419.
[5] C.B. Barber, Computational geometry with imprecise data and arithmetic, PhD thesis, Princeton Univ., Princeton, NJ, 1993.
[6] T.M. Chan, Approximating the diameter, width, smallest enclosing cylinder, and minimum-width annulus, Int. J. Comput. Geometry Appl. 12 (1–2)

(2002) 67–85.
[7] H. Desaulniers, N.F. Stewart, Robustness of numerical methods in geometric computation when problem data is uncertain, Comput.-Aided Design 25

(1993) 539–545.
[8] J. Fiala, J. Kratochvil, A. Proskurowski, Systems of distant representatives, Discrete Appl. Math. 145 (2005) 306–316.
[9] G. Frahling, C. Sohler, A fast k-means implementation using coresets, in: Proc. 22nd Annual ACM Symposium on Computational Geometry, 2006, pp.

135–143.
[10] J. Gao, M. Langberg, L.J. Schulman, Analysis of incomplete data and an intrinsic dimension Helly theorem, in: Proc. 17th Symposium on Discrete

Algorithms, 2006, pp. 464–473.
[11] L.J. Guibas, D. Salesin, J. Stolfi, Constructing strongly convex approximate hulls with inaccurate primitives, Algorithmica 9 (1993) 534–560.
[12] J.E. Hopcroft, R.M. Karp, An n5/2 algorithm for maximum matching in bipartite graphs, SIAM J. Comput. 4 (1973) 225–231.
[13] S. Jadhav, A. Mukhopadhyay, B.K. Bhattacharya, An optimal algorithm for the intersection radius of a set of convex polygons, J. Algorithms 20 (1996)

244–267.
[14] A.A. Khanban, A. Edalat, Computing Delaunay triangulation with imprecise input data, in: Proc. 15th Canad. Conf. on Comput. Geom., 2003, pp. 94–97.
[15] Z. Li, V. Milenkovic, Constructing strongly convex hulls using exact or rounded arithmetic, Algorithmica 8 (1992) 345–364.
[16] M. Löffler, M. van Kreveld, Largest bounding box, smallest diameter, and related problems on imprecise points, in: Proc. 10th Workshop on Algorithms

and Data Structures, LNCS, vol. 4619, 2007, pp. 447–458.
[17] M. Löffler, M. van Kreveld, Largest and smallest convex hulls for imprecise points, Algorithmica (2008), doi: 10.1007/s00453-008-9174-2, in press.
[18] C.-K. Yap, Robust geometric computation, in: J.E. Goodman, J. O’Rourke (Eds.), Handbook of Discrete and Computational Geometry, Chapman & Hall/CRC,

2004, pp. 927–952 (Chapter 41).

http://dx.doi.org/10.1007/s00453-008-9174-2

	Approximating largest convex hulls for imprecise points
	Introduction
	Results
	Related work

	Preliminaries
	Perfect matchings in bipartite graphs
	Constant factor approximation of the diameter and width

	Approximating the largest convex hull
	Parallel line segments
	Core-set construction
	Proof of L' being a core-set
	Running time analysis

	Arbitrary line segments
	Core-set construction
	Proof of L' being a core-set
	Running time analysis

	Squares
	Core-set construction
	Proof of L' being a core-set
	Running time analysis

	Circles
	Approximate circles by k-gons
	Exact algorithms
	Core-set construction
	Running time analysis

	Conclusions
	Acknowledgements
	References

