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Foreword

For 50 years, we have been teaching programming. In that time, we have seen mo-
mentous changes. From teaching a first course using an assembly language or For-
tran I to using sophisticated functional and OO programming languages. From
computers touched only by professional operators to computers that children play
with. From input on paper tape and punch cards, with hour-long waits for out-
put from computer runs, to instant keyboard input and instant compilation and
execution. From debugging programs using pages-long octal dumps of memory to
sophisticated debugging systems embedded in IDEs. From small, toy assignments
to ones that inspire because of the ability to include GUIs and other supporting
software. From little knowledge or few theories of the programming process to
structured programming, stepwise refinement, formal development methodolo-
gies based on theories of correctness, and software engineering principles.

And yet, teaching programming still seems to be a black art. There is no
consensus on what the programming process is, much less on how it should be
taught. We do not do well on teaching testing and debugging. We have debates
not only on whether to teach OO first but on whether it can be taught first. This
muddled situation manifests itself in several ways. Retention is often a problem.
Our colleagues in other disciplines expect students to be able to program almost
anything after a course or two, and many complain that this does not happen.
In some sense, we are still floundering, just as we were 50 years ago.

Part of the problem may be that we are not sure what we are teaching. Are
we simply providing knowledge, or are we attempting to impart a skill? Many
introductory texts are oriented at teaching programs rather than programming—
they contain little material on the programming process and on problem solving.
And, judging from introductory texts, there is little consensus on how and when
to specify program parts, how to document variables, how to teach algorithmic
development, etc.

Another part of the problem may be that programming is indeed a difficult
mixture of art and science—difficult to do and more difficult to teach. Yet an-
other part of the problem may be that we have not discovered enough about
programming and about teaching it. We need more research, experimentation,
assessment, discussion, and debate.

In this context, this book, Reflections on the Teaching of Programming, is
a welcome—and much needed—addition to our knowledge of programming and
its teaching. Written by Scandinavian researchers and practitioners in computer
science education, this book brings together a nice collection of articles on pro-
gramming education, providing food for thought for anyone involved in the field,
with articles that are, for the most part, based on proven implementation and
real experience.



VI Foreword

Learn about pedagogical experiments in using online tutorials, apprentice-
based learning, the programming process, and problem-based learning. Delve
into some issues of teaching OO. Look at software engineering issues in later
courses. And read two chapters that deal with how we assess the work of
students—a topic that has just begun to be explored.

You may not like, agree with, or believe everything you read—if you did, the
book would be too ”safe” and not provocative enough. But the book is clearly
written by professionals who have thought deeply about and care about teaching
programming, and we can all learn from it.

Perhaps, even, this book will be a catalyst for a renewed effort by our field
to debate and do research on the teaching of programming, with teachers and
researchers and textbook authors working together. Perhaps it will inspire us to
incorporate research on pedagogy into our work, to learn how to assess our own
teaching methods, and to think more deeply about the skill of programming and
how it can be taught. Goodness knows, we need all this.

So, members of the SPoP network—the Scandinavian Pedagogy of Program-
ming Network—thanks for developing this wonderful book. I have benefited
greatly from reading it in draft form, and now the computing community will
get the chance to benefit too.

February 2008 David Gries



 

Preface 

The book you are holding is the result of the cooperation of a number of computing 
educators passionate about programming and teaching and is aimed at programming 
education practitioners in secondary and tertiary education and at computing education 
researchers. 

The book is written by a group of primarily Scandinavian researchers and 
educators with special interest and experience in programming education. There are 
contributions from 24 authors about practical experience gathered in the process of 
teaching programming ⎯for most of the authors for the past 15–20 years. 

The reports are practically oriented. While several experiences described are 
associated with computing education research work, the emphasis here is on practical 
advice and concrete suggestions. It is expected that readers can get ideas for the 
teaching of programming that are directly applicable to the implementation of their 
own programming courses. 

Care has been taken to select work for inclusion in this book that is not speculative, 
but based on proven implementation and real experience. The topics span a wide 
range of problems and solutions associated with the teaching of programming. 

Part I consists of five chapters addressing issues related to introductory 
programming courses. The primary issues covered in this part are exposition of the 
programming process, apprentice-based learning, functional programming first, 
problem-based learning, and the use of on-line tutorials. 

Part II consists of four chapters that specifically address issues related to 
introductory courses on object-oriented programming ⎯the currently most prevailing 
approach to introductory programming. The primary issues covered are transitioning 
to object-oriented programming and Java, the use of the BlueJ environment to 
introduce programming, the use of model-driven programming as opposed to the 
prevailing language-driven approach, and the particular challenge of how to organize 
the first couple of weeks of an introductory course. 

Part III consists of three chapters that address the more general challenge of 
teaching software engineering. The primary issues covered in this part are testing, 
extreme programming, and frameworks. These are all issues that are typically covered 
in later courses. 

Part IV, the last part of the book, consists of two chapters addressing innovative 
approaches to feedback and assessment. The primary issues covered are active 
learning, technology-based individual feedback, and mini project programming 
exams. 

It is expected that the topic areas covered will be of interest to a wide range of 
programming educators. 

The authors have substantial experience in teaching programming, as well as a 
substantial body of publications in the computer science education literature. 

The authors are members of the Scandinavian Pedagogy of Programming Network, 
and bring together a diverse body of experiences from the Nordic European countries. 
The 14 chapters of the book broadly describe experiences from their varying 



VIII Preface 

backgrounds, but are carefully written and edited to present coherent units, not just 
individual, independent papers. Although the experiences described were gathered 
largely in Scandinavian countries, the book should be of equal interest to programming 
educators throughout the world. 

 
February 2008                                                                                                    Jens Bennedsen 

Michael E. Caspersen 
Michael Kölling 
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