
Lecture Notes in Computer Science 4821
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
University of Dortmund, Germany

Madhu Sudan
Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max-Planck Institute of Computer Science, Saarbruecken, Germany

Jens Bennedsen Michael E. Caspersen
Michael Kölling (Eds.)

Reflections
on the Teaching
of Programming

Methods and Implementations

13

Volume Editors

Jens Bennedsen
IT University West
Fuglsangs Allé 20, 8210 Aarhus V, Denmark
E-mail: jbb@it-vest.dk

Michael E. Caspersen
University of Aarhus, Department of Computer Science
Aabogade 34, 8200 Aarhus N, Denmark
E-mail: mec@daimi.au.dk

Michael Kölling
University of Kent, Computing Laboratory
Canterbury, Kent CT2 7NF, UK
E-mail: mik@kent.ac.uk

The copyright of the cover illustration of this book belongs to HAAP Media Ltd.
Budapest, Csatárka út 82-84, 1025 Budapest, Hungary

Library of Congress Control Number: 2008925133

CR Subject Classification (1998): K.3, K.4, D.2, J.1

LNCS Sublibrary: SL 2 – Programming and Software Engineering

ISSN 0302-9743
ISBN-10 3-540-77933-7 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-77933-9 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media

springer.com

© Springer-Verlag Berlin Heidelberg 2008
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 12224616 06/3180 5 4 3 2 1 0

Foreword

For 50 years, we have been teaching programming. In that time, we have seen mo-
mentous changes. From teaching a first course using an assembly language or For-
tran I to using sophisticated functional and OO programming languages. From
computers touched only by professional operators to computers that children play
with. From input on paper tape and punch cards, with hour-long waits for out-
put from computer runs, to instant keyboard input and instant compilation and
execution. From debugging programs using pages-long octal dumps of memory to
sophisticated debugging systems embedded in IDEs. From small, toy assignments
to ones that inspire because of the ability to include GUIs and other supporting
software. From little knowledge or few theories of the programming process to
structured programming, stepwise refinement, formal development methodolo-
gies based on theories of correctness, and software engineering principles.

And yet, teaching programming still seems to be a black art. There is no
consensus on what the programming process is, much less on how it should be
taught. We do not do well on teaching testing and debugging. We have debates
not only on whether to teach OO first but on whether it can be taught first. This
muddled situation manifests itself in several ways. Retention is often a problem.
Our colleagues in other disciplines expect students to be able to program almost
anything after a course or two, and many complain that this does not happen.
In some sense, we are still floundering, just as we were 50 years ago.

Part of the problem may be that we are not sure what we are teaching. Are
we simply providing knowledge, or are we attempting to impart a skill? Many
introductory texts are oriented at teaching programs rather than programming—
they contain little material on the programming process and on problem solving.
And, judging from introductory texts, there is little consensus on how and when
to specify program parts, how to document variables, how to teach algorithmic
development, etc.

Another part of the problem may be that programming is indeed a difficult
mixture of art and science—difficult to do and more difficult to teach. Yet an-
other part of the problem may be that we have not discovered enough about
programming and about teaching it. We need more research, experimentation,
assessment, discussion, and debate.

In this context, this book, Reflections on the Teaching of Programming, is
a welcome—and much needed—addition to our knowledge of programming and
its teaching. Written by Scandinavian researchers and practitioners in computer
science education, this book brings together a nice collection of articles on pro-
gramming education, providing food for thought for anyone involved in the field,
with articles that are, for the most part, based on proven implementation and
real experience.

VI Foreword

Learn about pedagogical experiments in using online tutorials, apprentice-
based learning, the programming process, and problem-based learning. Delve
into some issues of teaching OO. Look at software engineering issues in later
courses. And read two chapters that deal with how we assess the work of
students—a topic that has just begun to be explored.

You may not like, agree with, or believe everything you read—if you did, the
book would be too ”safe” and not provocative enough. But the book is clearly
written by professionals who have thought deeply about and care about teaching
programming, and we can all learn from it.

Perhaps, even, this book will be a catalyst for a renewed effort by our field
to debate and do research on the teaching of programming, with teachers and
researchers and textbook authors working together. Perhaps it will inspire us to
incorporate research on pedagogy into our work, to learn how to assess our own
teaching methods, and to think more deeply about the skill of programming and
how it can be taught. Goodness knows, we need all this.

So, members of the SPoP network—the Scandinavian Pedagogy of Program-
ming Network—thanks for developing this wonderful book. I have benefited
greatly from reading it in draft form, and now the computing community will
get the chance to benefit too.

February 2008 David Gries

Preface

The book you are holding is the result of the cooperation of a number of computing
educators passionate about programming and teaching and is aimed at programming
education practitioners in secondary and tertiary education and at computing education
researchers.

The book is written by a group of primarily Scandinavian researchers and
educators with special interest and experience in programming education. There are
contributions from 24 authors about practical experience gathered in the process of
teaching programming ⎯for most of the authors for the past 15–20 years.

The reports are practically oriented. While several experiences described are
associated with computing education research work, the emphasis here is on practical
advice and concrete suggestions. It is expected that readers can get ideas for the
teaching of programming that are directly applicable to the implementation of their
own programming courses.

Care has been taken to select work for inclusion in this book that is not speculative,
but based on proven implementation and real experience. The topics span a wide
range of problems and solutions associated with the teaching of programming.

Part I consists of five chapters addressing issues related to introductory
programming courses. The primary issues covered in this part are exposition of the
programming process, apprentice-based learning, functional programming first,
problem-based learning, and the use of on-line tutorials.

Part II consists of four chapters that specifically address issues related to
introductory courses on object-oriented programming ⎯the currently most prevailing
approach to introductory programming. The primary issues covered are transitioning
to object-oriented programming and Java, the use of the BlueJ environment to
introduce programming, the use of model-driven programming as opposed to the
prevailing language-driven approach, and the particular challenge of how to organize
the first couple of weeks of an introductory course.

Part III consists of three chapters that address the more general challenge of
teaching software engineering. The primary issues covered in this part are testing,
extreme programming, and frameworks. These are all issues that are typically covered
in later courses.

Part IV, the last part of the book, consists of two chapters addressing innovative
approaches to feedback and assessment. The primary issues covered are active
learning, technology-based individual feedback, and mini project programming
exams.

It is expected that the topic areas covered will be of interest to a wide range of
programming educators.

The authors have substantial experience in teaching programming, as well as a
substantial body of publications in the computer science education literature.

The authors are members of the Scandinavian Pedagogy of Programming Network,
and bring together a diverse body of experiences from the Nordic European countries.
The 14 chapters of the book broadly describe experiences from their varying

VIII Preface

backgrounds, but are carefully written and edited to present coherent units, not just
individual, independent papers. Although the experiences described were gathered
largely in Scandinavian countries, the book should be of equal interest to programming
educators throughout the world.

February 2008 Jens Bennedsen

Michael E. Caspersen
Michael Kölling

Table of Contents

I Issues in Introductory Programming Courses

Introduction to Part I . 3
Jens Bennedsen

Exposing the Programming Process . 6
Jens Bennedsen and Michael E. Caspersen

Apprentice-Based Learning Via Integrated Lectures and
Assignments . 17

Michael Kölling and David J. Barnes

Experiences with Functional Programming in an Introductory
Curriculum . 30

Michael R. Hansen and Jens Thyge Kristensen

Learning Programming with the PBL Method—Experiences on PBL
Cases and Tutoring . 47

Esko Nuutila, Seppo Törmä, Päivi Kinnunen, and Lauri Malmi

Using On-Line Tutorials in Introductory IT Courses 68
Bent Thomsen

II Introducing Object-Oriented Programming

Introduction to Part II . 77
Michael E. Caspersen

Transitioning to OOP/Java—A Never Ending Story 80
Jürgen Börstler, Marie Nordström, Lena Kallin Westin,
Jan-Erik Moström, and Johan Eliasson

Using BlueJ to Introduce Programming . 98
Michael Kölling

Model-Driven Programming . 116
Jens Bennedsen and Michael Caspersen

CS1: Getting Started . 130
Michael E. Caspersen and Henrik Bærbak Christensen

X Table of Contents

III Teaching Software Engineering Issues

Introduction to Part III . 145
Michael Kölling

Experiences with a Focus on Testing in Teaching . 147
Henrik Bærbak Christensen

Teaching Software Development Using Extreme Programming 166
Görel Hedin, Lars Bendix, and Boris Magnusson

Frameworks in Teaching . 190
Michael E. Caspersen and Henrik Bærbak Christensen

IV Assessment

Introduction to Part IV . 209
Michael Kölling

Active Learning and Examination Methods in a Data Structures and
Algorithms Course . 210

Lauri Malmi and Ari Korhonen

Mini Project Programming Exams . 228
Kurt Nørmark, Lone Leth Thomsen, and Kristian Torp

V Appendix

References . 245

Author Index . 261

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

