Skip to main content

DNA Memory with 16.8M Addresses

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4848))

Abstract

A DNA Memory with over 10 million (16.8M) addresses was achieved. The data embedded into a unique address was correctly extracted through addressing processes based on the nested PCR. The limitation of the scaling-up of the proposed DNA memory is discussed by using a theoretical model based on combinatorial optimization with some experimental restrictions. The results reveal that the size of the address space of the DNA memory presented here may be close to the theoretical limit. The high-capacity DNA memory can be also used in cryptography (steganography) or DNA ink.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Lipton, R.: DNA solution of hard combinatorial problems. Science 268, 542–545 (1995)

    Article  Google Scholar 

  3. Braich, R.S., Chelyapov, N., Johnson, C., Rothemund, P.W.K., Adleman, L.: Solution of a 20-Variable 3-SAT Problem on a DNA Computer. Science 296, 499–502 (2002)

    Article  Google Scholar 

  4. Benenson, Y., Paz-Elizur, T., Adar, R., Keinan, E., Livneh, Z., Shapiro, E.: Programmable and autonomous computing machine made of biomolecules. Nature 414, 430–434 (2001)

    Article  Google Scholar 

  5. Wong, P.C., Wong, K.K., Foote, H.: Organic Data Memory Using the DNA Approach. Communications of the ACM 46(1), 95–98 (2003)

    Article  Google Scholar 

  6. Baum, E.B.: Building an Associative Memory Vastly Larger Than the Brain. Science 268, 583–585 (1995)

    Article  Google Scholar 

  7. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C., Wickham, G.S.: Experimental Construction of Very Large Scale DNA Databases with Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA Computing. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  8. Neel, A., Garzon, M.H., Penumatsa, P.: Improving the Quality of Semantic Retrieval in DNA-Based Memories with Learning. In: Negoita, M.G., Howlett, R.J., Jain, L.C. (eds.) KES 2004. LNCS (LNAI), vol. 3213, pp. 18–24. Springer, Heidelberg (2004)

    Google Scholar 

  9. Chen, J., Deaton, R., Wang, Y.Z.: A DNA-based memory with in vitro learning and associative recall. Natural Computing 4(2), 83–101 (2005)

    Article  MathSciNet  Google Scholar 

  10. Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A., Hierarchical, D.N.A.: Memory based on Nested PCR. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 112–123. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  11. Kashiwamura, S., Yamamoto, M., Kameda, A., Shiba, T., Ohuchi, A.: Potential for enlarging DNA memory: The validity of experimental operations of scaled-up nested primer molecular memory. BioSystems 80, 99–112 (2005)

    Article  Google Scholar 

  12. Kashiwamura, S., Yamamoto, M., Kameda, A., Ohuchi, A.: Experimental Challenge of Scaled-up Hierarchical DNA Memory Expressing a 10,000-Address Space. In: Preliminary Proceeding of 11th International Meeting on DNA Based Computers. vol. 396 (2005)

    Google Scholar 

  13. Clelland, C.T., Risca, V., Bancroft, C.: Hiding message in DNA microdots. Nature 399, 533–544 (1999)

    Article  Google Scholar 

  14. Hashiyada, M.: Development of Biometric DNA Ink for Authentication Security. Tohoku J. Exp. Med. 204, 109–117 (2004)

    Article  Google Scholar 

  15. Hashiyada, M., Itakura, Y., Nagashima, T., Nata, M., Funayama, M.: Polymorphism of 17 STRs by multiplex analysis in Japanese population. Forensic Sci. Int. 133, 250–253 (2003)

    Article  Google Scholar 

  16. Itakura, Y., Hashiyada, M., Nagashima, T., Tsuji, S.: Proposal on Personal Identifiers Generated from the STR Information of DNA. Int. J. Information Security 1, 149–160 (2002)

    Article  MATH  Google Scholar 

  17. Kameda, A., Kashiwamura, S., Yamamoto, M., Ohuchi, A., Hagiya, M.: Combining randomness and a high-capacity DNA memory. DNA13 (submitted 2007)

    Google Scholar 

  18. Kashiwamura, S., Kameda, A., Yamamoto, M., Ohuchi, A.: Two-Step Search for DNA Sequence Design. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sciences E87-A (6), 1446–1453 (2004)

    Google Scholar 

  19. Deaton, R., Murphy, R.C., Garzon, M., Franceschetti, D.R., Stevens Jr, S.E.: Good Encoding for DNA-Based Solutions to Combinatorial Problems. In: Landweber, L.F., Baum, E.B. (eds.) DNA Based Computers II. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 44, pp. 247–258 (1999)

    Google Scholar 

  20. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of nucleic acid sequences for DNA computing based on a thermodynamic approach. Nucleic Acids Research 33, 903–911 (2005)

    Article  Google Scholar 

  21. Tulpan, D.C., Hoos, H.H., Condon, A.: Stochastic Local Search Algorithms for DNA word Design. In: Hagiya, M., Ohuchi, A. (eds.) DNA Computing. LNCS, vol. 2568, pp. 229–241. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  22. Lyngso, L.B., Zuker, M., Pedersen, C.N.: Fast evaluation of internal loops in RNA secondary structure prediction. Bioinformatics 15, 440–445 (1999)

    Article  Google Scholar 

  23. SantaLucia, J., Allawi, H.T., Seneviratne, P.A.: Improved nearest-neighbor parameters for predicting DNA duplex stability. Biochemistry 35, 3555–3562 (1996)

    Article  Google Scholar 

  24. Sugimoto, N., Nakano, S., Yoneyama, M., Honda, K.: Improved thermodynamic parameters and helix initiation factor to predict stability of DNA duplexes. Nucleic Acids Research 24, 4501–4505 (1996)

    Article  Google Scholar 

  25. Zuker, M., Stiegler, P.: Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research 9, 133–148 (1981)

    Article  Google Scholar 

  26. McPherson, M.J., Hames, B.D., Taylor, G.R.: PCR A Practical Approach. IRL Press (1995)

    Google Scholar 

  27. McPherson, M.J., Hames, B.D., Taylor, G.R.: PCR2 A Practical Approach. IRL Press (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max H. Garzon Hao Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Yamamoto, M., Kashiwamura, S., Ohuchi, A. (2008). DNA Memory with 16.8M Addresses. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77962-9_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77961-2

  • Online ISBN: 978-3-540-77962-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics