Skip to main content

Hardware Acceleration for Thermodynamic Constrained DNA Code Generation

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4848))

Abstract

Reliable DNA computing requires a large pool of oligonucleotides that do not cross-hybridize. In this paper, we present a transformed algorithm to calculate the maximum weight of the 2-stem common subsequence of two DNA oligonucleotides. The result is the key part of the Gibbs free energy of the DNA cross-hybridized duplexes based on the nearest-neighbor model. The transformed algorithm preserves the physical data locality and hence is suitable for implementation using a systolic array. A novel hybrid architecture that consists of a general purpose microprocessor and a hardware accelerator for accelerating the discovery of DNA under thermodynamic constraints is designed, implemented and tested. Experimental results show that the hardware system provides more than 250X speed-up compared to a software only implementation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L.M.: Molecular Computation of Solutions to Combinatorial Problems. Science 266, 1021–1024 (1994)

    Article  Google Scholar 

  2. Mansuripur, M., Khulbe, P.K., Kuebler, S.M., Perry, J.W., Giridhar, M.S., Peyghambarian, N.: Information Storage and Retrieval using Macromolecules as Storage Media. In: Optical Data Storage (2003)

    Google Scholar 

  3. Brenner, S., Lerner, R.A.: Encoded Combinatorial Chemistry. Natl. Acad. Sci. USA 89, 5381–5383 (1992)

    Article  Google Scholar 

  4. Deaton, R., Garzon, M.: Thermodynamic Constraints on DNA-based Computing. In: Computing with Bio-Molecules: Theory and Experiments, Springer, Heidelberg

    Google Scholar 

  5. Brenneman, A., Condon, A.: Strand Design for Biomolecular Computation. Theoretical Computer Science 287, 39–58 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  6. Tanaka, F., Kameda, A., Yamamoto, M., Ohuchi, A.: Design of Nucleic Acid Sequences for DNA Computing based on a Thermodynamic Approach. Nucleic Acids Research 33(3), 903–911 (2005)

    Article  Google Scholar 

  7. Santalucia, J.: A Unified View of polymer, dumbbell, and oligonucleotide DNA nearest neighbor thermodynamics. In: Natl. Acad. Sci. Biochemistry, pp. 1460–1465 (1998)

    Google Scholar 

  8. Qiu, Q., Burns, D., Wu, Q., Mukre, P.: Hybrid Architecture for Accelerating DNA Codeword Library Searching. In: IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology (2007)

    Google Scholar 

  9. Annapolis Micro System, http://www.annapmicro.com/

  10. SantaLucia Jr., J., Hicks, D.: The thermodynamics of DNA Structural Motifs. Annu. Rev. Biophys. Biomol. Struct. 33, 415–440 (2004)

    Article  Google Scholar 

  11. Bishop, M.A., Macula1, A.J., Renz, T.E.: SynDCode: Cooperative DNA Code Generating Tool. In: 3rd Annual Conference of Foundations of Nanoscience (2006)

    Google Scholar 

  12. D’yachkov, A.G., Macula, A.J., Pogozelski, W.K., Renz, T.E., Rykov, V.V., Torney, D.C.: A Weighted Insertion-Deletion Stacked Pair Thermodynamic Metric for DNA Codes. In: Ferretti, C., Mauri, G., Zandron, C. (eds.) DNA Computing. LNCS, vol. 3384, pp. 90–103. Springer, Heidelberg (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max H. Garzon Hao Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Qiu, Q., Mukre, P., Bishop, M., Burns, D., Wu, Q. (2008). Hardware Acceleration for Thermodynamic Constrained DNA Code Generation. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77962-9_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77961-2

  • Online ISBN: 978-3-540-77962-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics