Skip to main content

Toward Minimum Size Self-Assembled Counters

  • Conference paper
DNA Computing (DNA 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4848))

Included in the following conference series:

Abstract

DNA self-assembly is a promising paradigm for nanotechnology. In this paper we study the problem of finding tile systems of minimum size that assemble a given shape in the Tile Assembly Model, defined by Rothemund and Winfree [14]. We present a tile system that assembles an N×⌈log2 N⌉ rectangle in asymptotically optimal Θ(N) time. This tile system has only 7 tiles. Earlier constructions need at least 8 tiles [7]. We managed to reduce the number of tiles without increasing the assembly time. The new tile system works at temperature 3.

The new construction was found by the combination of exhaustive computerized search of the design space and manual adjustment of the search output.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adleman, L., Cheng, Q., Goel, A., Huang, M.: Running time and program size for self-assembled squares. In: Proceedings of the thirty-third annual ACM symposium on Theory of computing, pp. 740–748. ACM Press, New York (2001)

    Chapter  Google Scholar 

  2. Aggarwal, G., Goldwasser, M., Kao, M., Schweller, R.T.: Complexities for generalized models of self-assembly. In: Proceedings of symposium on discrete algorithms, ACM Press, New York (2004)

    Google Scholar 

  3. Cheng, Q., Moisset de Espanés, P.: Resolving two open problems in the self-assembly of squares. Technical Report 03-793, University of Southern California (2003)

    Google Scholar 

  4. Moisset de Espanés, P., Goel, A.: Toward minimum size self-assembled counters. In: 13th International Meeting on DNA Computing (2007)

    Google Scholar 

  5. Moisset de Espanés, P.: Computerized exhaustive search for optimal self-assembly counters. In: FNANO 2005: Proccedings of the 2nd Annual Foundations of Nanoscience Conference, pp. 24–25 (2005)

    Google Scholar 

  6. Moisset de Espanés, P.: Systems self-assembly: Multidisciplinary snapshots, N. Krasnogor, S. Gustafson, D. Pelta, J.L. Verdegay (eds.) Elsevier (2007)

    Google Scholar 

  7. Goel, A., Chen, H., Cheng, Q., Moisset de Espanés, P.: Invadable self-assembly, combining robustness with efficiency. In: Proceedings of symposium on discrete algorithms, ACM Press, New York (2004)

    Google Scholar 

  8. Kao, M.-Y., Schweller, R.: Reducing tile complexity for self-assembly through temperature programming (2006)

    Google Scholar 

  9. Rothemund, P., Cook, M., Winfree, E.: Self assembled circuit patterns. In: Proceedings of DNA Computing, Springer, Heidelberg (2003)

    Google Scholar 

  10. Goel, A., Cheng, Q., Moisset de Espanés, P.: Optimal self-assembly of counters at temperature two. In: Foundation of Nanoscience (2004)

    Google Scholar 

  11. Rothemund, P.: Theory and Experiments in Algorithmic Self-Assembly. PhD thesis, University of Southern California (2001)

    Google Scholar 

  12. Rothemund, P.W., Papadakis, N., Winfree, E.: Algorithmic self-assembly of dna sierpinski triangles. PLoS Biol. 2(12) (December 2004)

    Google Scholar 

  13. Rothemund, P.W.K.: Design of dna origami. In: ICCAD 2005: Proceedings of the 2005 IEEE/ACM International conference on Computer-aided design, pp. 471–478. IEEE Computer Society, Washington (2005)

    Chapter  Google Scholar 

  14. Rothemund, P.W.K., Winfree, E.: The program-size complexity of self-assembled squares (extended abstract). In: Proceedings of the thirty-second annual ACM symposium on Theory of computing, pp. 459–468. ACM Press, New York (2000)

    Chapter  Google Scholar 

  15. Wang, H.: Proving theorems by pattern recognition ii. Bell Systems Technical Journal 40, 1–42 (1961)

    Google Scholar 

  16. Winfree, E.: Algorithmic Self-Assembly of DNA. PhD thesis, California Institute of Technology, Pasadena (1998)

    Google Scholar 

  17. Winfree, E., Liu, F., Wenzler, L., Seeman, N.: Design and self-assembly of two-dimensional dna crystals (6 pages). Nature 394, 539–544 (1998)

    Article  Google Scholar 

  18. Winfree, E., Yang, X., Seeman, N.: Universal computation via self-assembly of dna: Some theory and experiments. In: Proceedings of the Second Annual Meeting on DNA Based Computers, Princeton University (June 1996)

    Google Scholar 

  19. Winfree, E., Bekbolatov, R.: Proofreading tile sets: Error correction for algorithmic self-assembly. In: DNA, pp. 126–144 (2003)

    Google Scholar 

  20. Yurke, B., Turberfield, A., Mills Jr, A., Simmel, F., Neumann, J.: A dna-fuelled molecular machine made of DNA. Nature 406, 605–608 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Max H. Garzon Hao Yan

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Goel, A., Moisset de Espanés, P. (2008). Toward Minimum Size Self-Assembled Counters. In: Garzon, M.H., Yan, H. (eds) DNA Computing. DNA 2007. Lecture Notes in Computer Science, vol 4848. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77962-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77962-9_5

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77961-2

  • Online ISBN: 978-3-540-77962-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics