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Abstract. Despite many advances, today’s software model checkers andex-
tended static checkers still do not scale well to large code bases, when verify-
ing properties that depend on complex interprocedural flow of data. An obvious
approach to improve performance is to exploit software structure. Although a
tremendous amount of work has been done on exploiting structure at various
levels of granularity, the fine-grained shared structure among multiple verifica-
tion conditions has been largely ignored. In this paper, we formalize the notion
of shared structure among verification conditions, proposea novel and efficient
approach to exploit this sharing, and provide experimentalresults that this ap-
proach can significantly improve the performance of verification, even on path-
and context-sensitive and dataflow-intensive properties.

1 Introduction

Verification conditions (VCs) are logical formulas, constructed from a system and de-
sired correctness properties, such that the validity of verification conditions corresponds
to the correctness of the system. Constructing and proving VCs are both essential steps
in software verification, and both have been active areas of research. In this paper, we
focus on proving the validity of VCs more efficiently.

The trend today is to use automated decision procedures to prove or disprove the
computed VCs. Unfortunately, this process is computationally extremely expensive and
is the main bottleneck to the wider application of formal andsemi-formal software
verification methods. Previous work has focused on the computation of VCs (e.g. [11,
15]), abstraction to make the VCs simpler for the decision procedure (e.g. [4, 5]), and
the efficiency of the decision procedures themselves (e.g. [9, 3, 12, 19, 20]).

In our previous work [1], we showed how the structure of a single interprocedural
verification condition can be exploited at a coarse functionlevel. This paper explores
a different direction for improving efficiency — namely, exploiting shared structure
among multiple VCs at the level of individual expressions — and proposes a technique
that exploits this structure. Since solving VCs is typically expensive, elimination of this
redundancy has the potential to significantly improve performance of static checking. In
this paper, we present our insights, formalize the notion ofshared structure, propose an
algorithm for exploiting this shared structure, and provide experimental evidence that
our approach can cut runtime by almost one third and reduce the number of timeouts.



1.1 Background and Related Work

Static CheckingThe work in this paper fits in the context of static checking ofsoftware.
The distinction between static checking and model checkingis fuzzy, but historically,
static checking has emphasized fast bug hunting and scalability to large software, at
the expense of precision (and often soundness and/or completeness), whereas model
checking has emphasized precision and soundness, with the primary research challenge
being scalability. Our overall goal is to maintain the precision of a bit-accurate software
model checker like CBMC [14], while matching or exceeding the scalability of static
checkers like Boogie [17] or Saturn [27].

We use our static checker CALYSTO, but the contribution of this paper can be ap-
plied to any static checker that uses a decision procedure, assuming some reasonable
properties of VCs (see Sec. 2). Boogie and Saturn are the closest relatives of CA-
LYSTO. Boogie is a mature tool that performsintraproceduralanalysis and requires
user-provided function/class interface invariants. Boogie uses abstract interpretation to
compute sound invariants of certain types of loops found in programs, while others are
unrolled and terminated with an assumption that the loop test is false [16]. CALYSTO is
less mature and handles loops either by unrolling them (unsound) as in ESC/Java [10]
or by considering all loop-carried values unconstrained (sound). Standard, more precise
loop invariant computation techniques can be used to replace loops with loop invari-
ants, as a CALYSTO-preprocessing technique. The most significant differenceis that
CALYSTO requires no user-provided interface invariants. Instead,CALYSTO performs
path- and context-sensitiveinterproceduralanalysis. Such analysis is inherently more
expensive than the intraprocedural analysis in Boogie, so we focus on exploiting struc-
ture at various levels of granularity to achieve scalability. For instance, in our previous
work [1], we showed how structure can be exploited to avoid the exponential blowup
of context-sensitive analysis in many cases. Saturn is path-sensitive, but performs only
partially context-sensitive analysis by computing summaries as projections onto a set
of predicates. CALYSTO, on the other hand, is fully context sensitive, which means that
it can handle dataflow-related properties more precisely. Saturn demonstrated that SAT
solvers can be used to prove VCs, but it uses off-the-shelf SAT solvers. In our experi-
ence, we have found that tight integration of the static checker with a custom-tailored
decision procedure offers significant performance improvements, hence our research on
exploiting structural properties of VCs by the decision procedures.

Verification ConditionsTraditionally, VCs are computed by Dijkstra’s weakest precon-
dition transformer [8], as is done for example in ESC/Java [10] and Boogie. A naı̈ve
representation of VCs computed by the weakest preconditioncan be exponential in the
size of the code fragment being checked, but this blow-up canbe avoided by the in-
troduction of fresh variables to represent intermediate expressions [26, 11, 15]. Equiv-
alently, we can keep the formulas in the form of graphs that correspond to the abstract
syntax trees of the parsed formulas, with common sub-expressions shared. Such graphs
make structural reasoning easier, so we shall use the graph representation in this paper.
This representational difference is otherwise insignificant.

Two things set our research apart from previous work on VCs. First, as mentioned
above, we do not assume user-provided interface invariants, but rather perform context-



sensitive interprocedural analysis. Second, we focus on exploiting common subexpres-
sions shared among multiple VCs. Our goal is to explore how much we can learn from
solving a set of VCs and how we can apply that knowledge to solve the remaining VCs
more efficiently.

Learning Our contribution can be viewed as an automatic learning technique. Given a
set of VCs, the technique learns from the implicants that a decision procedure implied,
and attempts to reuse that knowledge later if the remaining VCs share some subexpres-
sions with the already solved ones.

Learning is an efficient technique for speeding up decision procedures, and has been
especially effective in boolean satisfiability (SAT) solvers [28]. The new aspect of the
problem that we are considering iscontext-dependence— facts learned about a shared
subgraph while solving one VC might not hold in the context ofothers.

Stump and Dill [25] proposed context-dependent caching andproof compression for
an Edinburgh LF decision procedure, but they considered caching only for subgraphs
of a single formula and did not consider sharing between multiple formulas. While
solving each individual VC, our static checker CALYSTO already eliminates common
subexpressions, and our SAT-based decision procedure SPEAR features its ownintra-
VC learning (caching) mechanism. In contrast, the contribution of the present paper is
inter-VC learning.

Structure ExploitationMany researchers have looked into how to exploit structure for
more efficient verification. Starting from the coarsest level of granularity, Rountev at
al. [23] observed that large libraries change less frequently than the applications that
use them, so the libraries can be pre-analyzed for speeding up verification of the appli-
cations. Conway et al. [6] observed that programs are usually modified in small incre-
mental steps. So, after the application was verified once, only the modified functions
and functions that transitively call them have to be re-verified. Our work explores a
new dimension of the problem that has not (to the best of our knowledge) been ex-
plored before. Namely, we are interested in elimination of redundancy at a finer level
of granularity — individual expressions. This redundancy is inherent to any software
verification technique simply because a large majority of execution paths share some
common sequence of statements. Our technique is orthogonalto the above mentioned
approaches, and can be combined with them.

2 Preliminaries

In this section, we give definitions of some basic concepts required for understanding
the rest of the paper and present the assumptions on which ourmethod relies.

Decision ProcedureWe are interested in bit-precise software verification in order to
be able to catch frequent integer under/over-flow bugs1. So, all of our analysis will be
assuming modular (machine bit-vector) arithmetic. Our decision procedure SPEAR2 is

1 For instance, the 2004 JPEG security exploit (see e.g. [2]).
2 http://www.domagoj.info/indexspear.htm



based on a SAT solver and supports all standard modular arithmetic operators on finite
bit-vectors, including expensive operators (like multiplication and division). Although
we use modular arithmetic, the contribution is largely independent of the chosen logic.

When automated decision procedures are used for proving VCs, the validity of a
verification conditionVC is usually being proven by asking the decision procedure to
prove unsatisfiability of the formulaVC = false. Its satisfiability means that there is a
possible bug in the program from which the VC was constructed.

RepresentationAs mentioned, we represent VCs as acyclic graphs. This representation
simplifies the reasoning about the structure of the formulas. In addition, using simple
node hash tables, we eliminate all common subexpressions. Such graphs, in which all
redundancies have been eliminated, are known as maximally-shared graphs:

Definition 1 (Maximally-Shared Graph).
Given an acyclic graph G= (N,E), let L stand for a labeling functionL : N −→
string. Define the arity of a node n, denoted as|n|, as the number of outgoing edges. The
outgoing edges are ordered, and the i-th edge of a node n will be denoted as childi(n).
Two operator nodes n1 and n2 are defined to be equivalent (n1 , n2) if and only if|n1|=
|n2|, L (n1) = L (n2), and∀i : 0≤ i ≤ |n1| : childi(n1) , childi(n2). (This is standard
bisimulation equivalence, but applied to a graph representing the static structure of
a VC, rather than the more typical application to a transition system.) Graph G is
maximally-shared if¬∃n1,n2 ∈ N : n1 6= n2∧n1 , n2.

CALYSTO computes verification conditions directly as maximally-shared graphs. The
graph representation can be transformed into a conjunctionof expressions by standard
renaming. We shall identify nodes in the graph with the variables used for renaming.
This is a one-to-one mapping. We shall represent equality (resp. inequality) in formulas
and algorithms as= (resp.6=), while in the code snippets and graphs= will stand for
assignment, and== (resp.!=) for equality (resp. inequality).

Graph RelationsIf there is an edge connecting two nodes,n−→ m∈ E, thenn is a
predecessorof m, andm is asuccessorof n. The set of predecessors of a noden will be
denoted asPred(n), and the set of its successors asSucc(n). The nodes in the transitive
closure ofPred(n) areancestorsof n, and the nodes in the transitive closure ofSucc(n)
aredescendantsof n, denotedDesc(n).

To analyze the shared subgraphs, we rely upon the dominance relation [21]:

Definition 2 (Dominance Relation).
A node n dominates node m if and only if all the paths from the entry node to m go
through n, written as n≫m. If n 6= m, n strictly dominates m, denoted n≫m.

The dominance relation is a partial order (reflexive, antisymmetric, and transitive)
and can be computed inO(Nα(E,N)) [18] time, whereα is the extremely slowly grow-
ing inverse of Ackermann’s function. In practice, a simplerO(E logN) algorithm [18]
is faster, even for very large graphs, and that is what we are using for the results in this
paper.

The dominance relation, as defined above, requires a unique entry node. The tech-
nique presented in this paper always considers the root nodethat represents a single VC
to be the entry node for the computation of the dominance relation.



AssumptionsThe work presented in the paper relies on several assumptions, which are
either almost always satisfied in practice or can be satisfiedwith a trivial amount of
post-processing.

First, as mentioned already, we assume that the VCs are representable by acyclic
graphs corresponding to abstract syntax trees obtained by parsing the formula. Most
software static checking tools (including Saturn, ESC/Java, Boogie, and CALYSTO)
produce VCs that have such structure. An example of a graph representation of two
VCs that share some subgraphs is shown in Fig. 1.

Second, the decision procedure must be able to identify facts of the formvariable=
constantthat are implied by formulas being solved. For instance, if the decision proce-
dure is based on a SAT solver, learned unit literals are such facts. Decision procedures
based on the Nelson-Oppen [20] framework generate conjunctions of equalities (pro-
viding that the individual theories are convex), and it is easy to extract the equalities
that satisfy our requirement.

Third, we assume complete propagation of equalities with constants, i.e. we require
that the decision procedure generates facts of the forma= 7,b= 7,c= 7 instead ofa=
7,b = a,c = b. This is trivial to accomplish by a linear time constant propagation post-
processing even if the decision procedure does not make suchguarantees. Assuming
that the formula is satisfiable, both SAT solvers and E-graphs [7], on which the Nelson-
Oppen framework is based, satisfy this requirement.

Fourth, we assume that the proper subexpressions of a VC are logically consistent.
Every expression that can be translated into an acyclic circuit-like representation sat-
isfies this requirements because circuits themselves are logically consistent — every
input produces some output. Two small examples provide the intuition behind this as-
sumption.

Example 1.Consider an obviously inconsistent formulaa < 0∧a> 0. By introduction
of fresh variablesn0, · · · ,n2 we get:

n0 = a < 0

n1 = a > 0

n2 = n0∧n1

This is a logically consistent set of constraints which corresponds to the circuit-like
representation in Fig. 1. Note that the constraints forcen2 to be alwaysfalse, but the
constraints themselves are satisfiable. Variablen2 corresponding to the root node in
Fig. 1 can be seen as acircuit output.

As mentioned earlier, the goal is to prove validity of a VC, i.e., that the value of the
output node is always true. We can check this by adding constraint root node= false

and then check satisfiability. If the resulting formula is satisfiable, the original VC is not
valid. Only by adding the additional constraint can the constraints become inconsistent,
as in the next example.
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Fig. 1. Small maximally-shared graph repre-
senting a < 0∧ a > 0. Successors of non-
commutative operators are ordered in the nat-
ural order (from left to right). Operator nodes
are labelled with the operator (inscribed) and
the name of corresponding variable used in
renaming (adjacent to the node).
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Fig. 2.Graph corresponding to the set of con-
straints in Example 2.

Example 2.Given the formula:VC = (a > b⇒ a≥ b), we can construct the set of
constraints:

n0 = a > b

n1 = a≥ b

n2 = n0⇒ n1

which is consistent. Now, to check validity, we add constraint n2 = false to the set,
forcing the output tofalse. The set of constraints becomes unsatisfiable, meaning that
the original VC was valid.

If the consistency assumption were violated, then the decision procedure could im-
ply arbitrary implicants, becausefalse can imply anything. The consistency assumption
ensures that the implicants derived from a subexpression are meaningful.

3 Exploiting Shared Structure

In software, many paths share common statements, which means that computed VCs
will share common subexpressions. However, it is less obvious how to exploit that struc-
ture.

A direct approach is to construct a disjunction of all (negated) verification condi-
tions, give it to the theorem prover, and for each solution, report a bug, then add a
blocking clause to eliminate that disjunct from further consideration. Everything that
the theorem prover learns can be re-used, so this is a “perfect solution”. Unfortunately,
it suffers from the same problem as clause learning in a SAT solver: there is too much
information that is learned, with very little of it being useful later. Instead, we seek to
distill out implicants learned while solving one VC that areuseful for solving another
VC. However, not all implicants can be re-used, because theycan depend on the context
of the first VC, which might not be true of the other VC.



The crux of the problem is that decision procedures can propagate information in
any direction. Consider the VC shown in Fig. 2 with the additional constraintn2 = false.
Most decision procedures would start solving the VC by propagating constants. From
n2 = false, it follows that n0 = true and n1 = false. From n1 = false it follows that
a < b. The last implicant contradictsa > b, hence the set of constraints represented
by the graph is unsatisfiable. This propagation of information from aboveintroduces
assumptions that might not hold in all other contexts. Any other VC that contains the
subexpression represented byn2 and does not enforcen2 = false cannot reuse the pre-
viously computed solution.

Intuitively, we want a way to figure out which implicants wereimplied from be-
low. For instance, if a decision procedure can infer that noden2 is alwaystrue just by
considering its descendants, then the same decision procedure will be able to infer the
same result ifn2 appears as a subexpression of any other VC. In other words,n2 = true

becomes acontext-independent invariant.
The concept of “context” can be defined in many ways. Since we study the fine-

grained structure of expressions computed from software, it is helpful to define context
on the maximally-shared graphs as follows: We say that an expression represented by
a node in a maximally-shared graph is context-independent if its value is uniquely im-
plied by its sub-expressions, otherwise the relation is context-dependent. For instance,
in Example 2 (Fig. 2) the implicantn0 = true is context-dependent because the impli-
cation chain came from the predecessorn2. On the other hand,n2 = true is a context-
independent invariant as it follows from the nodes belown2.

Decision procedures can generate a large number of implicants. For example, SAT
solvers usually generate a single implicant per conflict. Keeping even only 10% of im-
plicants from each VC requires excessive amounts of memory.In addition, not all impli-
cants are context-independent invariants. So, we use a morerestricted form of invariants
to represent learned facts:

Definition 3. Let n be some node in a maximally-shared graph andψ an invariant
derived by the decision procedure of the form n= constant. We shall say that n isfixed
by the decision procedure. Define predicate fixDP (n) to be true iff n is fixed by the
decision procedure. If fixDP (n) = true, define operator FixValDP (n) to be an operator
that returns the constant to which the node n was fixed.

The invariants derived by the decision procedure representknowledge gained about
the solved VC; these invariants can be either context-dependent or context-independent.
We need to separate out the context-independent ones, as those can be used later when
other VCs are solved. So, we define a subset of nodes that were fixed by the decision
procedure in a context-independent manner as:

Definition 4. Let n be a node fixed by the decision procedure to FixValDP (n). If the
invariant n= FixValDP (n) was derived only by considering a subgraph rooted at n, we
shall say that n wasfixed from below. Define predicate fix↑ (n) to betrue iff n is fixed
from below.

There are two basic approaches to establishing context independence. First, the de-
cision procedure could record the implication graph for each inferred relation. Second,



one could attempt to reconstruct the chain of reasoning fromthe relations produced
by the decision procedure once it terminates. In our experience, the first approach is
impractical for decision procedures based on SAT solvers, as it requires excessive re-
sources, and slows down the core of the solver by several orders of magnitude. However,
it might be a viable approach within the Nelson-Oppen framework if all the combined
theories are convex [20]3. We present a reconstruction-based approach: a simple algo-
rithm that given a set of nodes fixed by the decision procedure, efficiently computes a
safe approximation of the set of nodes fixed in a context-independent manner.

It is worth noting that simple incrementality [13] cannot beused for handling mul-
tiple contexts. When the contexts are changed, assumptionsand their implicants un-
related to the new context have to be removed, so the implication graphs have to be
recorded — exactly what we are trying to avoid. Some automated theorem provers, like
Yices [9] and CVC [24], feature push/pop commands that allowundoing logical rea-
soning since the last checkpoint (push). Even with these commands, we would need to
push a new context for each potentially shared node, which would be prohibitively ex-
pensive. Furthermore, if lazy construction of VCs is used, then it is not knowna priori
which nodes will end up being shared, so every single subexpression would need to be
pushed as a new context.

3.1 Algorithm

Depending on the client, the queries to the decision procedures might be available all at
once, or computed in a lazy manner. For example, a static checker that relies on some
form of abstraction might compute incrementally more refined VCs, or process the call
graph of the verified application in an incremental manner. Other clients, like invariant
generators, might construct a number of queries at once, andask for invariants common
to all the queries. Because CALYSTO performs lazy structural abstraction [1], we focus
on the case where queries are posed in an online manner: VCs are checked one-by-one
and future queries are not known. Obviously, the same algorithm can also handle the
the case where all VCs are available in advance.

Algorithm 1 computes a safe approximation of the set of nodesthat are fixed from
below. The values of nodes fixed from below are stored in an associative tableFixed,
indexed by the nodes. Later, if another VC contains a noden that exists in the table, the
value that is read from the table,Fixed[n], is used to create an additional constraintn =
Fixed[n]. Adding this additional constraint to the set of constraints representing the VC
being solved saves computation effort because the decisionprocedure can immediately
start propagating theFixed[n] constant.

Line 4 performs some basic technical checks. The value of theroot node is fixed
from above (tofalse because we are checking for unsatisfiability), so the root node is
eliminated from consideration. Note that there is no reasonwhy the root node couldn’t
be fixed from below as well. However, in that case, our analysis is not capable to resolve

3 Modular arithmetic, as well as the theory of integers, are not convex, so even decision pro-
cedures based on Nelson-Oppen framework would need some form of bookkeeping, similar
to implication graphs, to be able to exactly identify a set ofassumptions from which each
implicant was implied.



Algorithm 1 Approximation of the set of nodes fixed from below. Predicate
isConstant(n) returnstrue if the noden is a constant node, predicateisRoot(n) re-
turnstrue if the noden represents a VC (root of the graph), whileisOperator(n) is true
iff n represents an operator. Results of the analysis are stored in the tableFixed, indexed
by nodes. The set of descendants (resp. predecessors) of a noden is denoted asDesc(n)
(resp.Pred(n)).
1: procedure FIX (n,Fixed)
2: for each s∈ Succ(n) do
3: FIX(s,Fixed)

4: if ¬isRoot(n)∧ isOperator(n)∧fixDP (n) then
5: for each d ∈ Desc(n) do
6: if ¬isConstant(d)∨n 6≫ d then
7: return
8: for each p∈ Pred(n) do
9: if fixDP (p) then

10: return
11: Fixed[n]← FixValDP (n)

whether the implication chain came from above or from below.In order to resolve this
ambiguity, the theorem prover would need to track implication graphs — a technique
which we consider too expensive.

Only three basic types of nodes can be present in the expression graph: constants,
variables, and operators. Constants are always fixed from below, variables are always
considered unconstrained, so it makes sense to attempt to fixthe values of only the
operator nodes.

Intuitively, the algorithm works as follows. Lines 5–7 check whether the node dom-
inates all its descendants. Ifn does not dominate some descendantd, it follows thatd
is reachable from the root of the graph by at least one path that does not go throughn.
Consequently,d appears in at least two contexts (one represented by the paththat passes
throughn and the other by path that avoidsn). Without reconstructing the implication
graph that led the decision procedure to implyn= FixValDP (n), it is not possible to dis-
tinguish between these cases: (1) The invariant was impliedfrom below, relying only
on the descendants ofn. (2) The invariant was implied from above, possibly all the way
from the root node. (3) The constant propagation chain came from above, avoidingn,
fixed the value of some descendant ofn, which in turn implied the invariant. The domi-
nance test eliminates the third case. The purpose of lines 8–10 is to eliminate the second
case. Obviously, if no predecessor ofn was fixed, the constant propagation chain must
have come from below. Remember that we assume complete propagation of constants,
so each constant propagation chain has to have its beginningand its end. The nodes that
pass both tests can be safely considered fixed from below.

Implementations should mark visited nodes and avoid revisiting them. As each node
has to be visited only once, and each node can have at most|N| descendants and prede-
cessors together (G is acyclic), the worst case complexity isO(|N|2), but that is a very
pessimistic bound. We found that in practice the algorithm runs almost in linear time
if a depth-first-search is used to iterate over the descendants in lines 5–7. Intuitively,
the deeper the node is, the larger the probability that it is shared (simpler expressions



are more frequently shared than complex ones). Hence, the probability of running into
a node not dominated byn is becoming larger as we get further away fromn (down-
wards). The dominance relation can be computed inO(|N|α(|N|, |E|)), as noted before.

How good is the approximation? The algorithm is able to fix only the nodes that
are at the end of a constant propagation chain. Intuitively,the last fixed node in the
constant propagation chain is the node that required the largest amount of reasoning.
For instance, letn1, · · · ,nk be a sequence of nodes whose values were fixed from below,
all lying on the same path. Assume that there arek VCs such that first containsn1,
secondn2 but notn1, and so on. The last VC contains onlynk. Since all node values
were fixed from below, it is likely that the decision procedure will repeat the same steps
while solving each of thosek VCs, so eventually, all nodes in the constant propagation
chain might become fixed from below, and constraintsni = FixValDP (ni) can be used
later if any of theni nodes becomes a part of other VCs. Even though this approximation
is crude, it is very fast even for large VCs. In Sec. 4, we will evaluate whether the
algorithm is fast enough and can find enough context-independent invariants to improve
overall performance.

To prove that Alg. 1 really computes a set of nodes fixed from below, we start with
the following lemma.

Lemma 1. Let n be the subgraph of graph G such that n is fixed by the decision proce-
dure fixDP (n) = true. Assume that∀p∈Pred(n) : ¬fixDP (p) and∀d∈Desc(n) : n≫ d,
then fix↑ (n) = true

Proof. As n dominates all descendants, the decision procedure could have inferred that
n = FixValDP (n) by a chain of constant propagations either from the descendants inG
of n or from its ancestors. Due to the definition of dominance, theconstant propagation
chain can enter the subgraph rooted atn only passing throughn, or has to start in the
subgraph and propagate upwards. According to our assumptions (Sec. 2), the decision
procedure completely propagates constants. So, if the the chain starts in some ancestor
of n, at least one predecessor has to be fixed. If that’s not the case, we can deduce that
n = FixValDP (n) must have been implied from the descendants ofn.

Theorem 1. All of the expressions n= FixValDP (n) computed by Alg. 1 are context-
independent invariants.

Proof. Follows from Lemma 1

Finally, we give the overall algorithm (Alg. 2) to verify multiple VCs with sharing,
as implemented in CALYSTO. Given a graph representation of a VC, the main loop first
translates the graph into the form suitable for the given decision procedure, producing
a set of constraintsC, and negates the VC. For each noden whose value was fixed from
below, the algorithm adds the corresponding constraintn = FixValDP (n) to the set of
constraints. The decision procedure is called with the set of constraints as a parameter.
If the decision procedure finds the negated VC satisfiable, itreports a possible bug
and continues. In the last step, Alg. 1 visits the nodes in thegraph, and computes an
approximation of the set of nodes whose values were fixed frombelow by the most
recent call to the decision procedure, for use in solving subsquent VCs.



Algorithm 2 Checking the Validity of VCs with Shared Structure. Function TRANS-
LATE translates the graph representation to a representation suitable for the decision
procedure. SOLVE is the call to the decision procedure with the set of constraintsC.
1: clear tableFixed
2: for each VCi do
3: C← TRANSLATE(VCi)∪VCi = false

4: for each n∈ Desc(VCi) do
5: if n is a valid index into tableFixed then
6: C←C∪n = Fixed[n]

7: status←SOLVE(C)
8: if status= satisfiablethen
9: Report bug

10: FIX(VCi ,Fixed)

3.2 Example

In this section, we go through an example that is similar to what we have found in
practice. The example illustrates expression sharing among VCs. Variablesa,b,c are
machine integers, ands,t,u,v,y,x are boolean variables. All operators used in theexam-
ple are standard C-like operators.4

1 i n t f ( i n t a , i n t b , bool s , bool t ) {
2 i f ( a % 2) { a ++; }
3 i f ( b % 2) { b ++; }
4

5 i n t c = a ∗ b ;
6 i n t d = c & 3 ;
7 bool u = ( d != 0 ) ;
8 bool v = ( s == t ) ;
9 bool y = ( u | | s ) ;

10 bool x = ( y | | v ) ;
11

12 i f ( x ) {
13 a s s e r t ( t ) ; / / VC1
14 . . .
15 } e l s e {
16 a s s e r t ( ( a + b ) % 2 == 0 ) ; / / VC2
17 . . .
18 }
19 . . .
20 }

There are two assertions in the example: the first assertion can be violated, while
the second can’t. Lines 2–3 increment odd numbers, so at line5 botha andb are even.
Thus, their product is a multiple of four. Therefore, the last two bits of the product will
be zero, even in the case of an overflow. Hence,d is always zero.

In our implementation, the VCs are computed directly as maximally-shared graphs,
as shown in Fig. 3, from the SSA [22] provided by the compiler front-end. A large part

4 Operator % is the modulo operator, & is bitwise-and,|| is logical-or, and++ is post-increment.



Benchmark KLOC #VCs Base Approach New Approach
Time (sec)Timeouts Time (sec)Timeouts

Bftpd v1.6 4 1130 725.8 0 582.5 0
HyperSAT v1.7 9 1363 5.3 0 5.1 0
Licq v1.3.4 20 2009 199.6 0 214.5 0
Dspam v3.6.5 37 8627 3478.6 8 3157.6 6
Xchat v2.6.8 76 8090 368.5 0 365.8 0
Wine v0.9.27 126 9000 1881.4 2 1266.7 0

Table 1.The first column gives the name and version of the benchmark. KLOC is the number of
source code lines, in thousands, before preprocessing. #VCs is the number of checked VCs. As
is typical, almost all VCs are UNSAT, since satisfiable VCs correspond to bug reports. The next
four columns give the total VC checking time in seconds (including timeouts) and the number of
timeouts, for the base approach (i.e., the same system without the newly proposed method) vs. the
newly proposed method. The timeout limit was 300 secs. Experiments were on a dual-processor
AMD X2 4600+ machine with 2 GB RAM, running Linux 2.6.15. Memory consumption was not
a bottleneck on any of the benchmarks.

of the graph is shared. This sharing is especially valuable when expensive operations
are shared, like multiplication.

How would a SAT-based decision procedure handle these constraints? Each VC is
solved independently of the others, and additional constraints are kept only for nodes
fixed from below. We start solvingVC1 by adding the constraintVC1 = false. The deci-
sion procedure could deduce by constant propagation from the root:x = true,t = false,
and those are all the invariants that can be found by trivial constant propagation. A typi-
cal SAT solver could continue with enumeration of possible solutions that would satisfy
nodec, which corresponds to the product of two conditionally defined variables. Ifa
(resp.b) is odd, it will be incremented, soa (resp.b) is even at line 5. As mentioned
previously, the least significant bit of even numbers is zero, so the two least significant
bits of a product of even numbers are zero as well. Hence, the decision procedure even-
tually impliesd = 0. By constant propagation it follows thatu = false. At that point,
the decision procedure has to make another case split, and bysettings= true, VC1 is
satisfied, meaning that the assertion can be violated. WhenVC1 is being solved, node
u dominates all leaves of its subgraph (each root node is solved independently, so VC2
still doesn’t exist at this point). Nodeu was not fixed from above, but considering the
subgraph rooted atu, the decision procedure was able to infer thatu= false. Since both
conditions required by the Alg. 1 are met,u can be marked as fixed from below. Later,
whenVC2 is constructed, the additional constraintu = false can be added to the set of
constraints. Adding the constraint quickly prunes away most of the left branch ofVC2,
focusing the effort on the right branch. Since the sum of two even numbers is divisible
by two, the right branch istrue, meaning thatVC2 = false is unsatisfiable. Hence, the
second assertion is valid.

4 Experimental Results

To test our approach, we used CALYSTO to generate VCs for six real-world, publicly-
available C/C++ applications, ranging in size from 4 to 126 thousand lines of code
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Fig. 3. Maximally-shared graph representing two negated VCs. To simplify the graph layout,
some constants are not shared. Edges of if-then-else (ITE) nodes are labelled withif for the
condition branch, andT (resp.F) for true (resp.false) branches.

(KLOC) before preprocessing. The benchmarks are the Bftpd ftp server, the Dspam
spam filter, our boolean satisfiability solver HYPERSAT, the Licq ICQ chat client, the
Wine Windows OS emulator, and the Xchat IRC client. For each program, for each
pointer dereference, we generated a VC to check that the pointer is non-NULL (omit-
ting VCs that were solved trivially by our expression simplifier). Although we demon-
strate our approach on checking for NULL pointers, our method is independent of the
property being verified, as long as the assumptions in Sec. 2 are met.

The experimental results are given in Table 1. The runtimes represent the time our
SAT-based modular arithmetic decision procedure SPEAR needed for solving all the
VCs and include computation of the dominance relation. On only one of the smaller
benchmarks, Licq, was the new approach somewhat slower. In all other cases, the new
approach is faster. On Wine, the largest benchmark, the proposed approach speeds up
the solving phase by 32%. There were also fewer timeouts withthe new approach
(meaning that the reported results are lower bounds on the speedup).

The key question is whether the derived context-independent invariants are able to
accelerate the solver enough to overcome the cost of deriving them. The results show



that the overhead of our approach is very low, yet in some cases, it provides a substantial
speedup. SPEAR was already highly optimized, and features several techniques (like
abstraction, lazy interpretation [1], gate-optimal VC encoding, and several others) that
result in significant performance improvements over a standard, direct “bit-blasting”
translation of the VCs into SAT. The results presented in Table 1 show that exploiting
shared structure can push a state-of-the-art static checker even further.

5 Future Work

It would be useful to improve the quality of approximation ofthe set of nodes fixed
from below, while maintaining the low computational cost. Since we observed more
structure-sharing in practice than our technique is able toexploit, we believe that im-
provements in that direction could provide even more significant speedups.

Finding more expressive context-independent invariants could also boost the perfor-
mance of static checking. Such context-independent learning would probably run into
similar problems as learning in decision procedures — whichimplicants to keep and
for how long. Considering that learning has proven itself inSAT solvers as an indis-
pensable technique without which no solver today is competitive, we believe that this
direction is particularly promising.

We have focused on the case where VCs are solved one-by-one. If multiple VCs are
available all at once, solving the VCs in a different, heuristically-chosen order might
allow deriving more context-independent invariants. Furthermore, it should be possible
to analyze the maximally shared graph to quickly find the shared subgraphs between
the multiple VCs. Only these nodes need to be considered as candidates to be context-
independent invariants, reducing the overhead of our approach.

6 Conclusion

We have demonstrated a novel way to exploit shared, expression-level structure avail-
able in verification conditions. The approach relies on simple invariants inferred by
automatic decision procedures. The proposed technique computes a subset of those in-
variants which can be used safely in a context-independent manner. Our experimental
results demonstrate that the technique can substantially improve the performance of
static checking. As scalability is the primary limitation of automatic software verifi-
cation tools, these results are a step towards more widely applicable, practical formal
verification of software.
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