Exploiting Shared Structure in
Software Verification Conditions

Domagoj Babi¢t and Alan J. Hu

Computer Science Department
University of British Columbia

Abstract. Despite many advances, today’s software model checkerseand
tended static checkers still do not scale well to large caked, when verify-
ing properties that depend on complex interprocedural flbdata. An obvious

approach to improve performance is to exploit softwarecstime. Although a

tremendous amount of work has been done on exploiting steiclt various

levels of granularity, the fine-grained shared structurersgnmultiple verifica-

tion conditions has been largely ignored. In this paper, ovenéilize the notion

of shared structure among verification conditions, promsevel and efficient
approach to exploit this sharing, and provide experimergsiilts that this ap-
proach can significantly improve the performance of verificg even on path-
and context-sensitive and dataflow-intensive properties.

1 Introduction

Verification conditions (VCs) are logical formulas, constied from a system and de-
sired correctness properties, such that the validity dfieation conditions corresponds
to the correctness of the system. Constructing and provibg &fe both essential steps
in software verification, and both have been active areassdarch. In this paper, we
focus on proving the validity of VCs more efficiently.

The trend today is to use automated decision procedureot@ @r disprove the
computed VCs. Unfortunately, this process is computatipeatremely expensive and
is the main bottleneck to the wider application of formal asini-formal software
verification methods. Previous work has focused on the coatipn of VCs (e.g. [11,
15]), abstraction to make the VCs simpler for the decisiacpdure (e.g. [4,5]), and
the efficiency of the decision procedures themselves (.8, L2, 19, 20]).

In our previous work [1], we showed how the structure of a nigterprocedural
verification condition can be exploited at a coarse funckewel. This paper explores
a different direction for improving efficiency — namely, éajting shared structure
among multiple VCs at the level of individual expressions rd garoposes a technique
that exploits this structure. Since solving VCs is typigakpensive, elimination of this
redundancy has the potential to significantly improve panénce of static checking. In
this paper, we present our insights, formalize the notioshafred structure, propose an
algorithm for exploiting this shared structure, and prevekperimental evidence that
our approach can cut runtime by almost one third and reduceumber of timeouts.

1.1 Background and Related Work

Static CheckingTlhe work in this paper fits in the context of static checkingaitware.
The distinction between static checking and model checisrigzzy, but historically,
static checking has emphasized fast bug hunting and sklabilarge software, at
the expense of precision (and often soundness and/or ctanphs), whereas model
checking has emphasized precision and soundness, withitharg research challenge
being scalability. Our overall goal is to maintain the psém of a bit-accurate software
model checker like CBMC [14], while matching or exceeding Htalability of static
checkers like Boogie [17] or Saturn [27].

We use our static checkeraCysTo, but the contribution of this paper can be ap-
plied to any static checker that uses a decision procedssendng some reasonable
properties of VCs (see Sec. 2). Boogie and Saturn are thestloslatives of @-
LYSTO. Boogie is a mature tool that perfornrgraproceduralanalysis and requires
user-provided function/class interface invariants. Beases abstract interpretation to
compute sound invariants of certain types of loops founddagmmms, while others are
unrolled and terminated with an assumption that the lodpddalse [16]. Q\LYSTO is
less mature and handles loops either by unrolling them (um$oas in ESC/Java [10]
or by considering all loop-carried values unconstrainedi(sl). Standard, more precise
loop invariant computation techniques can be used to regtamps with loop invari-
ants, as a BLYSTO-preprocessing technique. The most significant differéadbat
CALYSTO requires no user-provided interface invariants. Inst€xd,ysTo performs
path- and context-sensitiveterproceduralanalysis. Such analysis is inherently more
expensive than the intraprocedural analysis in Boogie,es&oaus on exploiting struc-
ture at various levels of granularity to achieve scalapilor instance, in our previous
work [1], we showed how structure can be exploited to avoedkponential blowup
of context-sensitive analysis in many cases. Saturn isgatBitive, but performs only
partially context-sensitive analysis by computing sunigsaas projections onto a set
of predicates. &LYsTO, on the other hand, is fully context sensitive, which meaas t
it can handle dataflow-related properties more preciselur@ demonstrated that SAT
solvers can be used to prove VCs, but it uses off-the-shélf §Avers. In our experi-
ence, we have found that tight integration of the static kbewith a custom-tailored
decision procedure offers significant performance impmosets, hence our research on
exploiting structural properties of VCs by the decisionqatures.

Verification ConditionsTraditionally, VCs are computed by Dijkstra’s weakest jprec
dition transformer [8], as is done for example in ESC/Jayy Hind Boogie. A naive
representation of VCs computed by the weakest precondiiarbe exponential in the
size of the code fragment being checked, but this blow-upbeaavoided by the in-
troduction of fresh variables to represent intermediafressions [26, 11, 15]. Equiv-
alently, we can keep the formulas in the form of graphs thatespond to the abstract
syntax trees of the parsed formulas, with common sub-egjresshared. Such graphs
make structural reasoning easier, so we shall use the geppésentation in this paper.
This representational difference is otherwise insignifica

Two things set our research apart from previous work on V@st,Fas mentioned
above, we do not assume user-provided interface invariamtsather perform context-

sensitive interprocedural analysis. Second, we focus ploiixig common subexpres-
sions shared among multiple VCs. Our goal is to explore howimwe can learn from
solving a set of VCs and how we can apply that knowledge tcesthig remaining VCs
more efficiently.

Learning Our contribution can be viewed as an automatic learningtiecie. Given a
set of VCs, the technique learns from the implicants thatcsn procedure implied,
and attempts to reuse that knowledge later if the remainiig $hare some subexpres-
sions with the already solved ones.

Learning is an efficient technique for speeding up decisioggdures, and has been
especially effective in boolean satisfiability (SAT) salw¢28]. The new aspect of the
problem that we are consideringdentext-dependenee facts learned about a shared
subgraph while solving one VC might not hold in the contexbibfers.

Stump and Dill [25] proposed context-dependent cachingsaodf compression for
an Edinburgh LF decision procedure, but they considerelliogonly for subgraphs
of a single formula and did not consider sharing betweenipialformulas. While
solving each individual VC, our static checkeaysTo already eliminates common
subexpressions, and our SAT-based decision procedrearsfeatures its owrintra-
VC learning (caching) mechanism. In contrast, the contrilbutif the present paper is
inter-VClearning.

Structure ExploitationMany researchers have looked into how to exploit structare f
more efficient verification. Starting from the coarsest lafegranularity, Rountev at
al. [23] observed that large libraries change less fredydiman the applications that
use them, so the libraries can be pre-analyzed for speegingrification of the appli-
cations. Conway et al. [6] observed that programs are ysoaddified in small incre-
mental steps. So, after the application was verified ondg, tbie modified functions
and functions that transitively call them have to be refieti Our work explores a
new dimension of the problem that has not (to the best of oomerige) been ex-
plored before. Namely, we are interested in eliminationesfundancy at a finer level
of granularity — individual expressions. This redundargyniherent to any software
verification technique simply because a large majority afoetion paths share some
common sequence of statements. Our technique is orthogotied above mentioned
approaches, and can be combined with them.

2 Preliminaries

In this section, we give definitions of some basic concemsired for understanding
the rest of the paper and present the assumptions on whichethod relies.

Decision ProcedureWe are interested in bit-precise software verification ideorto
be able to catch frequent integer under/over-flow Bu§s, all of our analysis will be
assuming modular (machine bit-vector) arithmetic. Ourisien procedure SEAR? is

1 For instance, the 2004 JPEG security exploit (see e.qg. [2]).
2 http://www.domagoj.info/indexsspear.htm

based on a SAT solver and supports all standard modulanegitb operators on finite
bit-vectors, including expensive operators (like muitigtion and division). Although
we use modular arithmetic, the contribution is largely ipeledent of the chosen logic.

When automated decision procedures are used for proving ¥€ssalidity of a
verification conditionvVC is usually being proven by asking the decision procedure to
prove unsatisfiability of the formulelC = false. Its satisfiability means that there is a
possible bug in the program from which the VC was constructed

RepresentatiorAs mentioned, we represent VCs as acyclic graphs. Thisseptation
simplifies the reasoning about the structure of the formutaaddition, using simple
node hash tables, we eliminate all common subexpressioeh. @aphs, in which all
redundancies have been eliminated, are known as maxirsiadlged graphs:

Definition 1 (Maximally-Shared Graph).

Given an acyclic graph G= (N,E), let ¥ stand for a labeling functionZ : N —
string. Define the arity of a node n, denotedsas the number of outgoing edges. The
outgoing edges are ordered, and the i-th edge of a node n witlénoted as chil@n).
Two operator nodes;rand rp are defined to be equivalenty(h: ny) if and only if|ny | =
Iz, Z(ny) = Z(ny), andVi : 0 <i < |my| : child;(ny) £ child;(ny). (This is standard
bisimulation equivalence, but applied to a graph represgnthe static structure of
a VC, rather than the more typical application to a transitisystem.) Graph G is
maximally-shared if-3ny,np € N:ny # np Ang £ no.

CALYSTO computes verification conditions directly as maximallgs#d graphs. The
graph representation can be transformed into a conjunofierpressions by standard
renaming. We shall identify nodes in the graph with the \J@éa used for renaming.
This is a one-to-one mapping. We shall represent equadigp(rinequality) in formulas
and algorithms as- (resp.#), while in the code snippets and graphsvill stand for
assignment, and= (resp.! =) for equality (resp. inequality).

Graph Relationslf there is an edge connecting two nodas;— m < E, thennis a
predecessoof m, andmis asuccessoof n. The set of predecessors of a nadsill be
denoted a®red(n), and the set of its successorsaagc¢n). The nodes in the transitive
closure ofPred(n) areancestorf n, and the nodes in the transitive closuresafcg¢n)
aredescendantsf n, denotedesdn).

To analyze the shared subgraphs, we rely upon the dominalat®n [21]:

Definition 2 (Dominance Relation).
A node n dominates node m if and only if all the paths from ttieyerode to m go
through n, written as)3»m. If n# m, n strictly dominates m, denotedsam.

The dominance relation is a partial order (reflexive, amtis\etric, and transitive)
and can be computed #i(Na (E,N)) [18] time, wherex is the extremely slowly grow-
ing inverse of Ackermann’s function. In practice, a simpi&iE logN) algorithm [18]
is faster, even for very large graphs, and that is what we sirggdor the results in this
paper.

The dominance relation, as defined above, requires a unigaerde. The tech-
nique presented in this paper always considers the rootthatieepresents a single VC
to be the entry node for the computation of the dominancé¢ioala

AssumptionsThe work presented in the paper relies on several assungptigrich are
either almost always satisfied in practice or can be satisfitlt a trivial amount of
post-processing.

First, as mentioned already, we assume that the VCs aresageble by acyclic
graphs corresponding to abstract syntax trees obtainedusng the formula. Most
software static checking tools (including Saturn, ESGiJ&800gie, and GLYSTO)
produce VCs that have such structure. An example of a grgmiesentation of two
VCs that share some subgraphs is shown in Fig. 1.

Second, the decision procedure must be able to identifg &f¢he formvariable=
constanthat are implied by formulas being solved. For instancééfdecision proce-
dure is based on a SAT solver, learned unit literals are sacts.fDecision procedures
based on the Nelson-Oppen [20] framework generate congurscdf equalities (pro-
viding that the individual theories are convex), and it isyeto extract the equalities
that satisfy our requirement.

Third, we assume complete propagation of equalities wittstamts, i.e. we require
that the decision procedure generates facts of the oen7,b=7,c= 7 instead o=
7,b=a,c=Dh. This is trivial to accomplish by a linear time constant pagation post-
processing even if the decision procedure does not makeguetantees. Assuming
that the formula is satisfiable, both SAT solvers and E-gsdph on which the Nelson-
Oppen framework is based, satisfy this requirement.

Fourth, we assume that the proper subexpressions of a V@gioally consistent.
Every expression that can be translated into an acyclicitili&e representation sat-
isfies this requirements because circuits themselves grealty consistent — every
input produces some output. Two small examples providerttugtion behind this as-
sumption.

Example 1.Consider an obviously inconsistent formalac 0Aa > 0. By introduction
of fresh variablesy, - -- ,n, we get:

n=a<o
nn=a>0
N2 =Ng ANy

This is a logically consistent set of constraints which esponds to the circuit-like
representation in Fig. 1. Note that the constraints forc® be alway<alse, but the
constraints themselves are satisfiable. Variableorresponding to the root node in
Fig. 1 can be seen asacuit output []

As mentioned earlier, the goal is to prove validity of a V@, ithat the value of the
output node is always true. We can check this by adding cainstoot_node= false
and then check satisfiability. If the resulting formula issfable, the original VC is not
valid. Only by adding the additional constraint can the ¢ists become inconsistent,
as in the next example.

n2 n

2
©

n0 nl nQ nl

ofjo oy
ORG 080

Fig. 1. Small maximally-shared graph repre- Fig. 2. Graph corresponding to the set of con-
sentinga < 0Aa > 0. Successors of non- straints in Example 2.

commutative operators are ordered in the nat-

ural order (from left to right). Operator nodes

are labelled with the operator (inscribed) and

the name of corresponding variable used in

renaming (adjacent to the node).

Example 2.Given the formulaVC = (a > b = a > b), we can construct the set of
constraints:

n=a>b
nn=a>b
N2 =Np= N1

which is consistent. Now, to check validity, we add consirap = false to the set,
forcing the output tdfalse. The set of constraints becomes unsatisfiable, meaning that
the original VC was valid. []

If the consistency assumption were violated, then the aec@ocedure could im-
ply arbitrary implicants, becaus$alise can imply anything. The consistency assumption
ensures that the implicants derived from a subexpressemaaningful.

3 Exploiting Shared Structure

In software, many paths share common statements, whichaiteancomputed VCs
will share common subexpressions. However, it is less atsfmw to exploit that struc-
ture.

A direct approach is to construct a disjunction of all (negtverification condi-
tions, give it to the theorem prover, and for each soluti@port a bug, then add a
blocking clause to eliminate that disjunct from further soleration. Everything that
the theorem prover learns can be re-used, so this is a “paedkdion”. Unfortunately,
it suffers from the same problem as clause learning in a SMesahere is too much
information that is learned, with very little of it being daklater. Instead, we seek to
distill out implicants learned while solving one VC that arseful for solving another
VC. However, not all implicants can be re-used, becausedheylepend on the context
of the first VC, which might not be true of the other VC.

The crux of the problem is that decision procedures can gateanformation in
any direction. Consider the VC shown in Fig. 2 with the additil constrainh, = false.
Most decision procedures would start solving the VC by pgapiag constants. From
ny = false, it follows thatng = true and n; = false. Fromn; = false it follows that
a < b. The last implicant contradicts > b, hence the set of constraints represented
by the graph is unsatisfiable. This propagation of infororafrom aboveintroduces
assumptions that might not hold in all other contexts. ArfyeotvVC that contains the
subexpression representedrigyand does not enfora® = false cannot reuse the pre-
viously computed solution.

Intuitively, we want a way to figure out which implicants weneplied from be-
low. For instance, if a decision procedure can infer that ngds alwaystrue just by
considering its descendants, then the same decision pracedll be able to infer the
same result ifi, appears as a subexpression of any other VC. In other woydstrue
becomes @ontext-independent invariant

The concept of “context” can be defined in many ways. Since tweysthe fine-
grained structure of expressions computed from softwhighelpful to define context
on the maximally-shared graphs as follows: We say that anesgn represented by
a node in a maximally-shared graph is context-indepenfléatialue is uniquely im-
plied by its sub-expressions, otherwise the relation igexdrdependent. For instance,
in Example 2 (Fig. 2) the implicanty = true is context-dependent because the impli-
cation chain came from the predecessgorOn the other handy, = true is a context-
independent invariant as it follows from the nodes betpw

Decision procedures can generate a large number of impdicBar example, SAT
solvers usually generate a single implicant per conflicepdeg even only 10% of im-
plicants from each VC requires excessive amounts of mertroagldition, not all impli-
cants are context-independentinvariants. So, we use anegirieted form of invariants
to represent learned facts:

Definition 3. Let n be some node in a maximally-shared graph gndn invariant
derived by the decision procedure of the form: gonstant. We shall say that nfized

by the decision procedur®efine predicate fpp (n) to betrue iff n is fixed by the
decision procedure. If fpp (n) = true, define operator FixVak (n) to be an operator
that returns the constant to which the node n was fixed.

The invariants derived by the decision procedure reprdsewledge gained about
the solved VC; these invariants can be either context-digrgmor context-independent.
We need to separate out the context-independent ones,sesaao be used later when
other VCs are solved. So, we define a subset of nodes that wetkly the decision
procedure in a context-independent manner as:

Definition 4. Let n be a node fixed by the decision procedure to Fiy/al). If the
invariant n= FixValpp (n) was derived only by considering a subgraph rooted at n, we
shall say that n wasixed from below Define predicate fixn) to betrue iff n is fixed
from below.

There are two basic approaches to establishing contexpémdkence. First, the de-
cision procedure could record the implication graph foheiaterred relation. Second,

one could attempt to reconstruct the chain of reasoning fiteenrelations produced
by the decision procedure once it terminates. In our expeeiethe first approach is
impractical for decision procedures based on SAT solverd, @equires excessive re-
sources, and slows down the core of the solver by severaloofimagnitude. However,

it might be a viable approach within the Nelson-Oppen fraoriif all the combined
theories are convex [28]We present a reconstruction-based approach: a simple algo
rithm that given a set of nodes fixed by the decision procedifieiently computes a
safe approximation of the set of nodes fixed in a contextpeddent manner.

It is worth noting that simple incrementality [13] cannotdmeed for handling mul-
tiple contexts. When the contexts are changed, assumpiathgheir implicants un-
related to the new context have to be removed, so the imjgicgraphs have to be
recorded — exactly what we are trying to avoid. Some autodifeorem provers, like
Yices [9] and CVC [24], feature push/pop commands that allmdoing logical rea-
soning since the last checkpoint (push). Even with thesentamals, we would need to
push a new context for each potentially shared node, whialidume prohibitively ex-
pensive. Furthermore, if lazy construction of VCs is uskdntit is not knowra priori
which nodes will end up being shared, so every single sulessjprn would need to be
pushed as a new context.

3.1 Algorithm

Depending on the client, the queries to the decision praesduight be available all at
once, or computed in a lazy manner. For example, a statidkehéeat relies on some
form of abstraction might compute incrementally more refiN€s, or process the call
graph of the verified application in an incremental mannéne©clients, like invariant
generators, might construct a number of queries at oncegglnfibr invariants common
to all the queries. BecausenCrsTO performs lazy structural abstraction [1], we focus
on the case where queries are posed in an online manner: ¥Chacked one-by-one
and future queries are not known. Obviously, the same dlgorcan also handle the
the case where all VCs are available in advance.

Algorithm 1 computes a safe approximation of the set of ndldasare fixed from
below. The values of nodes fixed from below are stored in aociest$/e tableFixed,
indexed by the nodes. Later, if another VC contains a mothat exists in the table, the
value that is read from the tableixedn], is used to create an additional constraint
Fixedn]. Adding this additional constraint to the set of constrsnepresenting the VC
being solved saves computation effort because the degstmedure can immediately
start propagating thEixedn] constant.

Line 4 performs some basic technical checks. The value ofdbenode is fixed
from above (tofalse because we are checking for unsatisfiability), so the roders
eliminated from consideration. Note that there is no reagonthe root node couldn’t
be fixed from below as well. However, in that case, our angligsiot capable to resolve

3 Modular arithmetic, as well as the theory of integers, areaomvex, so even decision pro-
cedures based on Nelson-Oppen framework would need someofobookkeeping, similar
to implication graphs, to be able to exactly identify a selas§umptions from which each
implicant was implied.

Algorithm 1 Approximation of the set of nodes fixed from below. Predicate
isConstantn) returnstrue if the noden is a constant node, predicasRoot(n) re-
turnstrue if the noden represents a VC (root of the graph), whd@©perator(n) is true
iff nrepresents an operator. Results of the analysis are stotied iable~ixed, indexed
by nodes. The set of descendants (resp. predecessors)@éaisalenoted aBesdn)
(resp.Pred(n)).
1: procedure Fix(n, Fixed)
for each s € Sucgn) do
Fix (s, Fixed)
if —isRoot(n) AisOperator(n) Afixpp (n) then
for eachd € Desgn) do
if misConstan{d) v n } d then
return
for each p € Pred(n) do
if fixpp (p) then
return
Fixed[n] < FixValpp (n)

FESoo~Nouhs wN

whether the implication chain came from above or from belovarder to resolve this
ambiguity, the theorem prover would need to track implmatjraphs — a technique
which we consider too expensive.

Only three basic types of nodes can be present in the expnegsaph: constants,
variables, and operators. Constants are always fixed frdowpeariables are always
considered unconstrained, so it makes sense to attempt toefixalues of only the
operator nodes.

Intuitively, the algorithm works as follows. Lines 5—7 clkaghether the node dom-
inates all its descendants.rifdoes not dominate some descenddrit follows thatd
is reachable from the root of the graph by at least one pathdties not go through.
Consequentlyd appears in at least two contexts (one represented by théheaiasses
throughn and the other by path that avoids Without reconstructing the implication
graph that led the decision procedure to imphky FixValpp (n), it is not possible to dis-
tinguish between these cases: (1) The invariant was imfiged below, relying only
on the descendants nf(2) The invariant was implied from above, possibly all thew
from the root node. (3) The constant propagation chain caore &bove, avoiding,
fixed the value of some descendantpfvhich in turn implied the invariant. The domi-
nance test eliminates the third case. The purpose of linE8 i8-+to eliminate the second
case. Obviously, if no predecessonoivas fixed, the constant propagation chain must
have come from below. Remember that we assume completegatiga of constants,
so each constant propagation chain has to have its begianahigs end. The nodes that
pass both tests can be safely considered fixed from below.

Implementations should mark visited nodes and avoid tavisihem. As each node
has to be visited only once, and each node can have at|/Mjad¢scendants and prede-
cessors togethe(is acyclic), the worst case complexityd&(|N|?), but that is a very
pessimistic bound. We found that in practice the algoritumsralmost in linear time
if a depth-first-search is used to iterate over the desceadatines 5—7. Intuitively,
the deeper the node is, the larger the probability that ihégsexd (simpler expressions

are more frequently shared than complex ones). Hence, thapility of running into
a node not dominated hyis becoming larger as we get further away fraonfdown-
wards). The dominance relation can be compute@(N|a (|N|, |[E|)), as noted before.
How good is the approximation? The algorithm is able to fixyathle nodes that
are at the end of a constant propagation chain. Intuitivbly,last fixed node in the
constant propagation chain is the node that required tigesaamount of reasoning.
For instance, lety, - - - ,ng be a sequence of nodes whose values were fixed from below,
all lying on the same path. Assume that there laMCs such that first containg,,
secondn, but notn;, and so on. The last VC contains omly. Since all node values
were fixed from below, it is likely that the decision proceglwill repeat the same steps
while solving each of thoskVCs, so eventually, all nodes in the constant propagation
chain might become fixed from below, and constramts- FixValpp (nj) can be used
later if any of then; nodes becomes a part of other VCs. Even though this apprtinima
is crude, it is very fast even for large VCs. In Sec. 4, we withleate whether the
algorithm is fast enough and can find enough context-indégmininvariants to improve
overall performance.
To prove that Alg. 1 really computes a set of nodes fixed frolovaene start with
the following lemma.

Lemma 1. Let n be the subgraph of graph G such that n is fixed by the decmsbce-
dure fixpp (N) = true. Assume thatp € Pred(n) : —fixpp (p) andVvd € Desdn) : n>>d,
then fix (n) = true

Proof. As ndominates all descendants, the decision procedure cowiti@rred that

n = FixValpp (n) by a chain of constant propagations either from the descesdaG

of nor from its ancestors. Due to the definition of dominancecthrestant propagation
chain can enter the subgraph rootedh @inly passing through, or has to start in the
subgraph and propagate upwards. According to our assumsgiec. 2), the decision
procedure completely propagates constants. So, if thehthia starts in some ancestor
of n, at least one predecessor has to be fixed. If that’s not thee wascan deduce that
n = FixValpp (n) must have been implied from the descendants of

Theorem 1. All of the expressions & FixValpp (n) computed by Alg. 1 are context-
independent invariants.

Proof. Follows from Lemma 1

Finally, we give the overall algorithm (Alg. 2) to verify migle VCs with sharing,
as implemented in £.YsTO. Given a graph representation of a VC, the main loop first
translates the graph into the form suitable for the givernsilerc procedure, producing
a set of constrainis, and negates the VC. For each nodeghose value was fixed from
below, the algorithm adds the corresponding constraiatFixValpp (n) to the set of
constraints. The decision procedure is called with the sebstraints as a parameter.
If the decision procedure finds the negated VC satisfiablegpbrts a possible bug
and continues. In the last step, Alg. 1 visits the nodes ingtiagh, and computes an
approximation of the set of nodes whose values were fixed fselow by the most
recent call to the decision procedure, for use in solvinggubnt VCs.

© ® N o O A W N B

11

12

13

14

15

16

17

18

19

20

Algorithm 2 Checking the Validity of VCs with Shared Structure. FUnotibRANS-
LATE translates the graph representation to a representati@bleufor the decision
procedure. SLVE is the call to the decision procedure with the set of constisél.

1: clear tablerixed

2: for each VG do

3: C — TRANSLATE(VG)UVC; = false

4 for eachn € Desg¢VC;) do

5: if nis a valid index into tabl&ixedthen
6: C — CUn = Fixedn]|
7
8
9

status—SoLVE(C)
if status= satisfiablethen
Report bug

10: Fix (VG Fixed)

3.2 Example

In this section, we go through an example that is similar t@atwke have found in
practice. The example illustrates expression sharing giv@s. Variables, b, ¢ are
machine integers, arglt,u,v,y,x are boolean variables. All operators used iretkeem-
ple are standard C-like operatdrs.
int f(int a, int b, bool s, bool t) {

if (a% 2){ a++; }

if (b% 2) { b++; }

int ¢c = ax b;
int d =cé& 3;
bool u = (d '= 0);
bool v = (s == t);
bool y = (u || s);
bool x = (y || v);
it (x) {
assert(t); // VC1
} else {
assert((a + b) % 2 == 0);// VvC2

There are two assertions in the example: the first asseréiorbe violated, while
the second can't. Lines 2—3 increment odd numbers, so ab lbwha andb are even.
Thus, their product is a multiple of four. Therefore, the tag bits of the product will
be zero, even in the case of an overflow. Herkcis, always zero.

In our implementation, the VCs are computed directly as maly-shared graphs,
as shown in Fig. 3, from the SSA [22] provided by the compitenf-end. A large part

4 Operator % is the modulo operator, & is bitwise-afjdk logical-or, and++ is post-increment.

Benchmark |KLOC|#VCs| Base Approach New Approach
Time (sec)Timeoutg Time (sec)Timeouts
Bftpd v1.6 4{ 113(Q 725.9 0 582.5 0
HyperSAT v1.7 9| 1363 5.3 0 5.1 0
Licqvl.3.4 20| 2009 199.6 0 2145 0
Dspam v3.6.5 37| 8627 3478.4 8 3157.4 6
Xchat v2.6.8 76| 8090 368.5 0 365.9 0
Wine v0.9.27 126/ 900(Q 1881.4 2 1266.71 0
Table 1. The first column gives the name and version of the benchmdrk®is the number of

source code lines, in thousands, before preprocessings #8/the number of checked VCs. As
is typical, almost all VCs are UNSAT, since satisfiable VCeespond to bug reports. The next
four columns give the total VC checking time in seconds (idoig timeouts) and the number of
timeouts, for the base approach (i.e., the same systemwtitt®newly proposed method) vs. the
newly proposed method. The timeout limit was 300 secs. Hixgaits were on a dual-processor
AMD X2 4600+ machine with 2 GB RAM, running Linux 2.6.15. Memyacconsumption was not
a bottleneck on any of the benchmarks.

of the graph is shared. This sharing is especially valualllenraexpensive operations
are shared, like multiplication.

How would a SAT-based decision procedure handle thesereamst? Each VC is
solved independently of the others, and additional comtsrare kept only for nodes
fixed from below. We start solvingC1 by adding the constraitdC; = false. The deci-
sion procedure could deduce by constant propagation fremoidi:x = true,t = false,
and those are all the invariants that can be found by trivinktant propagation. A typi-
cal SAT solver could continue with enumeration of possibletsons that would satisfy
nodec, which corresponds to the product of two conditionally dedivariables. I
(resp.b) is odd, it will be incremented, sa (resp.b) is even at line 5. As mentioned
previously, the least significant bit of even numbers is zeodhe two least significant
bits of a product of even numbers are zero as well. Hence gbisidn procedure even-
tually impliesd = 0. By constant propagation it follows that= false. At that point,
the decision procedure has to make another case split, as€lttiygs = true, VCL is
satisfied, meaning that the assertion can be violated. Wi#nis being solved, node
u dominates all leaves of its subgraph (each root node is dahkependently, so VC2
still doesn't exist at this point). Node was not fixed from above, but considering the
subgraph rooted at, the decision procedure was able to infer that false. Since both
conditions required by the Alg. 1 are matcan be marked as fixed from below. Later,
whenVC2 is constructed, the additional constraint false can be added to the set of
constraints. Adding the constraint quickly prunes awaytrobthe left branch o¥/C2,
focusing the effort on the right branch. Since the sum of twenenumbers is divisible
by two, the right branch isrue, meaning thaVVC, = false is unsatisfiable. Hence, the
second assertion is valid.

4 Experimental Results

To test our approach, we used¥sTo to generate VCs for six real-world, publicly-
available C/C++ applications, ranging in size from 4 to 1B6usand lines of code

VC1 vC2

Fig. 3. Maximally-shared graph representing two negated VCs. fiplfy the graph layout,
some constants are not shared. Edges of if-then-else (ld@snare labelled withf for the
condition branch, andl (resp.F) for true (resp.false) branches.

(KLOC) before preprocessing. The benchmarks are the Bfipdédrver, the Dspam
spam filter, our boolean satisfiability solveryBERSAT, the Licq ICQ chat client, the
Wine Windows OS emulator, and the Xchat IRC client. For eacgmm, for each
pointer dereference, we generated a VC to check that thegoesnnon-NULL (omit-
ting VCs that were solved trivially by our expression sirfipli). Although we demon-
strate our approach on checking for NULL pointers, our métisandependent of the
property being verified, as long as the assumptions in See at.

The experimental results are given in Table 1. The runtimpsasent the time our
SAT-based modular arithmetic decision procedureE&R needed for solving all the
VCs and include computation of the dominance relation. Oy one of the smaller
benchmarks, Licq, was the new approach somewhat slowel.dthar cases, the new
approach is faster. On Wine, the largest benchmark, theogezbapproach speeds up
the solving phase by 32%. There were also fewer timeouts thithnew approach
(meaning that the reported results are lower bounds on #exisyp).

The key question is whether the derived context-indeperideariants are able to
accelerate the solver enough to overcome the cost of dgriliem. The results show

that the overhead of our approach is very low, yet in somesgéggovides a substantial
speedup. BEAR was already highly optimized, and features several tectasiqlike
abstraction, lazy interpretation [1], gate-optimal VC eding, and several others) that
result in significant performance improvements over a stethddirect “bit-blasting”
translation of the VCs into SAT. The results presented inéfalshow that exploiting
shared structure can push a state-of-the-art static chegka further.

5 Future Work

It would be useful to improve the quality of approximationtbé set of nodes fixed
from below, while maintaining the low computational cosin we observed more
structure-sharing in practice than our technique is abkexfmoit, we believe that im-
provements in that direction could provide even more sigaifi speedups.

Finding more expressive context-independentinvarisouicalso boost the perfor-
mance of static checking. Such context-independent legmbuld probably run into
similar problems as learning in decision procedures — wimigblicants to keep and
for how long. Considering that learning has proven itselSHI solvers as an indis-
pensable technique without which no solver today is cortipetiwe believe that this
direction is particularly promising.

We have focused on the case where VCs are solved one-byfomdtiple VCs are
available all at once, solving the VCs in a different, heticély-chosen order might
allow deriving more context-independentinvariants. Rernnore, it should be possible
to analyze the maximally shared graph to quickly find the ethaubgraphs between
the multiple VCs. Only these nodes need to be considerednalidzdes to be context-
independent invariants, reducing the overhead of our a@mbro

6 Conclusion

We have demonstrated a novel way to exploit shared, expressiel structure avail-
able in verification conditions. The approach relies on $@mpvariants inferred by
automatic decision procedures. The proposed techniqupuigs a subset of those in-
variants which can be used safely in a context-independanter. Our experimental
results demonstrate that the technique can substantiafiyove the performance of
static checking. As scalability is the primary limitatiofi @utomatic software verifi-
cation tools, these results are a step towards more widglljcaple, practical formal
verification of software.

References

1. D. Babit and A. J. Hu. Structural abstraction of softweeefication conditions. CAV,
volume 4590 oLNCS pages 371-383, Berlin, 2007. Springer. To appeatr.

2. D. Babit and M. Musuvathi. Modular Arithmetic DecisiomoBedure. Technical Report
TR-2005-114, Microsoft Research Redmond, 2005.

3. T. Ball, S. K. Lahiri, and M. Musuvathi. Zap: Automated ¢hem proving for software
analysis. INLPAR volume 3835 of.NCS pages 2—-22. Springer, 2005.

10.

11.

12.

13.

14.

15.
16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

26.

27.

28.

. T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Auotatic predicate abstraction of
C programs. IPLDI, volume 36 ofACM SIGPLAN Noticepages 203-213, 2001.

. R. E. Bryant, D. Kroening, J. Ouaknine, S. A. Seshia, Gc&tnan, and B. Brady. Deciding
bit-vector arithmetic with abstraction. ACAS volume 4424 ofLNCS pages 358-372.
Springer, 2007.

. C. L. Conway, K. S. Namjoshi, D. Dams, and S. A. Edwards.rdmental Algorithms for
Inter-procedural Analysis of Safety Properties.QAV, volume 3576 oLNCS pages 449—
461, Berlin, 2005. Springer.

. D. Detlefs, G. Nelson, and J. S. Saxe. Simplify: A Theorawover for Program Checking.
Technical report, HP Laboratories Palo Alto, Technical &eplPL-2003-148, 2003.

. E. W. Dijkstra and C. S. ScholterPredicate calculus and program semanticSpringer-
Verlag New York, Inc., New York, NY, USA, 1990.

. B. Dutertre and L. M. de Moura. A Fast Linear-Arithmetich&os for DPLL(T). In CAV,

volume 4144 oLNCS pages 81-94. Springer, 2006.

C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson,B.. Saxe, and R. Stata. Extended

static checking for Java. IALDI, ACM SIGPLAN Notices, pages 234—-245, 2002.

C. Flanagan and J. B. Saxe. Avoiding exponential exptogjenerating compact verification

conditions. INPOPL, pages 193—-205. ACM Press, 2001.

H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras,@ndinelli. DPLL(T): Fast Deci-

sion Procedures. I6AV, volume 3114 oL NCS pages 175-188. Springer, 2004.

J. N. Hooker. Solving the incremental satisfiabilitylgemn. J. Log. Program.15(1-2):177—

186, 1993.

D. Kroening, E. Clarke, and K. Yorav. Behavioral Coreisty of C and Verilog Programs

Using Bounded Model Checking. DAC, pages 368—-371. ACM Press, 2003.

K. R. M. Leino. Efficient weakest preconditionsf. Process. Let;.93(6):281-288, 2005.

K. R. M. Leino and F. Logozzo. Loop invariants on demand.lYi, editor, APLAS volume

3780 of LNCS pages 119-134. Springer, 2005.

K. R. M. Leino and P. Milller. A verification methodologgrfmodel fields. In P. Sestoft,

editor,ESOR volume 3924 of NCS pages 115-130. Springer-Verlag, 2006.

T. Lengauer and R. E. Tarjan. A fast algorithm for findimgnihators in a flowgraphACM

Trans. Program. Lang. Systl(1):121-141, 1979.

M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and SlikaChaff: engineering an

efficient SAT solver. I'DAC, pages 530-535. ACM Press, 2001.

G. Nelson.Techniques for program verificatio®hD thesis, Stanford University, 1979.

R. T. Prosser. Applications of boolean matrices to tladyais of flow diagrams. IRProceed-

ings of the Eastern Joint Computer Conferenuages 133—-138. Spartan Books, 1959.

B. K. Rosen, M. N. Wegman, and F. K. Zadeck. Global valualmers and redundant com-

putations. InPOPL, pages 12—-27. ACM Press, 1988.

A. Rountev, S. Kagan, and T. J. Marlowe. Interproceddasflow analysis in the presence

of large libraries. In A. Mycroft and A. Zeller, editor§C, volume 3923 oLNCS pages

2-16. Springer, 2006.

A. Stump, C. Barrett, and D. Dill. CVC: A Cooperating \éity Checker. InCAV, 2002.

A. Stump and D. L. Dill. Faster Proof Checking in the Edirgh Logical Framework. In

A. Voronkov, editor,CADE, volume 2392 oL.NCS pages 392-407. Springer, 2002.

G. S. Tseitin. On the complexity of derivation in propimgial calculus. In J. Siekmann

and G. Wrightson, editorgyutomation of Reasoning 2: Classical Papers on Computation

Logic 1967-1970pages 466—-483. Springer, 1983.

Y. Xie and A. Aiken. Scalable error detection using baalsatisfiability. INPOPL, pages

351-363. ACM Press, 2005.

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malik. &#nt conflict driven learning

in a boolean satisfiability solver. ICCAD, pages 279-285. IEEE Press, 2001.

