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Abstract. Software engineers often need to identify and correct de-
sign defects, i.e., recurring design problems that hinder development and
maintenance by making programs harder to comprehend and/or evolve.
While detection of design defects is an actively researched area, their
correction — mainly a manual and time-consuming activity — is yet to
be extensively investigated for automation. In this paper, we propose an
automated approach for suggesting defect-correcting refactorings using
relational concept analysis (rca). The added value of rca consists in
exploiting the links between formal objects which abound in a software
re-engineering context. We validated our approach on instances of the
Blob design defect taken from four different open-source programs.
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1 Introduction

Design defects are “bad” solutions to recurring design problems that generate
negative consequences on the quality characteristics of object-oriented (OO)
software systems, such as evolvability and maintainability, and therefore increase
the cost of software development [5,16]. Design defects, such as antipatterns [28]
(e.g., the Blob addressed below), are distinguished from low-level defects, such
as code smells [5] (e.g., long methods and large classes). Automatic detection
and correction of design defects are thus keys for the improvement of software
quality.

We proposed a systematic method to specify design defects consistently and
precisely and to generate detection algorithms from their specifications auto-
matically [17]. We specified a language based on rules that allows to define these
specifications with structural, semantic, and measurable properties that char-
acterize a design defect. This method was a first step towards the systematic
detection of design defects. Yet both detection and correction of such defects are
time-consuming and error-prone activities hence leaving room for automated
techniques and tools. On the one hand, approaches exist for detecting design de-
fects, for instance, using metrics [15,21], coupled with visualisation tools [13,14]
and/or structural data [9]. On the other hand, to the best of our knowledge,



none of them attempts to correct discovered defects in a semi- or fully auto-
mated manner.

Thus, design defects are still dealt with manually through tedious code analy-
ses and transformations, which divides into three main steps, possibly repeated
through trials and errors: (1) Identification of the modifications to correct the
design defects, (2) Application of the modifications on the program, (3) Evalu-
ation of the resulting modified program. Step two of correction has been made
easier by the recent introduction of refactorings [5], i.e., changes performed on
the source code of a program to improve its internal structure without changing
its external behaviour. Thus, possible transformations are now well understood
and documented and the emphasis lies on step one, i.e., the decision of which
modifications (or refactorings) to apply.

In the literature, Trifu et al. [27] proposed correction strategies mapping
design defects to possible solutions. However, a solution is only an example of
how the program should have been implemented to avoid a defect rather than a
list of steps that a software engineer could follow to correct the defect. Huchard
and Leblanc [11] used formal concept analysis (fca) to suggest class hierarchy
restructuring so as to maximise the sharing of specifications and code and to
remove code smells (see [6] for a broader discussion on the restructuring of class
hierarchies through fca). In summary, both approaches address important issues
with design defects but none attempts to suggest refactorings to correct them.

We propose to apply rca, that extends fca with the processing of individuals
with links, on a suitable representation of a program to help identify appropriate
refactorings for specific design defects. In particular, we examine the benefits of
rca for the correction of a very common design defect, the Blob [28, p. 73–
83], also known as God Class [22]. The Blob reveals a procedural design (and
thinking) implemented with an OO programming language. It manifests itself
through a large controller class that plays a God-like role in the program by
monopolizing the computation, and which is surrounded by a number of smaller
data classes providing many attributes but few or no methods.

Blobs are common and rca is particularly well-suited to suggest refactorings
to correct them. Indeed, correcting a Blob amounts to splitting the Blob class
into smaller cohesive sets by grouping class members that collaborate to realize
a specific responsibility of the Blob class. In our context, cohesive sets are iden-
tified using formal concepts whose intents involve both proper characteristics
and inter-member links, such as calls between methods. Our enhanced approach
is illustrated using a running example of a library management system, which
includes a Blob.

The present work builds upon a previous study described in [18] that relied
on standard fca. Its contribution is three-fold. First, a more powerful approach
is adopted based on finer and richer modeling of the problem through rca. Then,
a set of enhanced rules for candidate class extraction out of the concept sets is
designed, each rule is provided with an effective algorithm. Third, a mechanism
to automatically interpret the results is introduced to suggest the refactorings
to apply. A validation thereof involving Blobs from four different open-source



programs is also presented. The results show that rca suggests a high rate of
relevant refactorings and we briefly discuss the application of our method on
further design defects.

The paper starts by a short presentation of design defects correction (Section
2). Follow a summary on rca (Section 3) and the description of our approach
(Section 4). Section 5 presents the results of a preliminary empirical study of the
approach validity. Related work is summarised in Section 6 while future research
directions are given in Section 7.

2 The Defect Correction Problem

In the following, we relate design defects to general quality criteria for OO
designs using an occurrence of the Blob as running example. The defects are
shown to decrease scores on these criteria. The improvement brought by the
fca-based refactorings is discussed in later sections.

2.1 Quality Criteria

Design defects are the results of bad practices that transgress good OO principles.
Thus, we use the degree of satisfaction of those principles before and after the
correction as a measure of improvement. We rely on quantification of coupling
and cohesion, which are among the most widely acknowledged software quality
characteristics, keys for maintainability [2].

The cohesion of a class reflects how closely the methods are related to the
instance variables in the class [4] and is typically measured by the LCOM metric
(Lack of COhesion Metric: between 0 and 1) which uses the number of disjoint
sets of methods [4]. A low LCOM score characterises a cohesive class whereas a
value close to 1 indicates a lack of cohesion and suggests the class might better
be split into cohesive sets. The coupling of a class to the rest of a program is
defined as the degree of its reliance on services provided by other classes [4].
It is measured by the CBO metric (Coupling Between Objects) [3] that counts
the classes to which a class is coupled. A well-designed program exhibits high
average cohesion and low average coupling, but it is widely known that these
criteria are antinomic hence a trade-off is usually sought.

2.2 Further Design Defects

We choose to illustrate our approach with the Blob because it impacts nega-
tively both cohesion and coupling: blobs show low cohesion and high coupling.
Moreover, it is a frequent defect in OO programs. For example, a previous study
revealed 1,146 Blobs in the Eclipse IDE [19] even though it is recognised for the
quality of its design.

Yet, we found that a good number of other design defects are infected by
low cohesion and high coupling, e.g., Divergent Change [5, page 79], Feature
Envy [5, page 80], Inappropriate Intimacy [5, page 85], Lazy Class [5, page 83],



Shotgun Surgery [5, page 80], or Swiss Army Knife [28, page 197]. Therefore,
our approach could be adapted to these defects.

2.3 Running Example

Our running example (see Figure 1) was inspired by a simple library management
system, which includes a Blob (described in [28]). The large controller class is
the class Library Main Control that accesses to data of the two surrounding data
classes Book and Catalog.

Fig. 1. Library Blob class diagram.

Refactoring a Blob consists in moving class members away from the large
controller class to its surrounding classes or to new specifically designed classes.
For the class Library Main Control, we notice that all methods and fields related
to Book or Catalog could be moved to their respective data classes. As a result,
data classes gain more behaviour while the large class becomes less complex.
However, the process of choosing and applying refactoring is long and tedious:
software engineers need to go through all methods and fields of the large class
to identify the subsets thereof that form consistent cohesive sets. Yet it is a
necessary pain because the result of the process may substantially improve the
quality of the program.



3 Relational Concept Analysis

fca offers a framework to derive conceptual hierarchies from sets of individuals
based on the properties that these individuals share4.

3.1 Formal Concept Analysis

fca describes (formal) concepts both extensionally and intentionally, i.e., as sets
of individuals and sets of shared properties, and organizes them hierarchically—
according to a generality relation—into a complete lattice, called the concept
lattice. The lattice structure allows easy navigation and search as well as optimal
representation of information comparable to the classical OO requirement of
maximal factorisation (each property/individual is canonically represented by a
unique concept). For instance, the table on the left-hand side of Fig. 2 illustrates
a binary context derived from the class Library Main Control where individuals
are the Blob methods while properties are methods and accessed fields5. Fig. 3
depicts a simplified (reduced) labeling of the concept lattice derived from this
context, yet enriched by additional properties as described later in this section.

Fig. 2. Left: Context of methods. Right: Binary relation ‘call’ between methods.

Formal concepts naturally endow “cohesiveness” because their extents com-
prise members sharing all the properties in the respective intents. Conversely,
4 We use individuals for objects and properties for attributes to avoid confusion with

OO objects and attributes.
5 The prefixes R- and W- that appear in the field names specify the access mode, i.e.,

read and write, respectively.



concept extents are maximal sets for the respective intent. In order to iden-
tify highly cohesive sets that could jointly replace the Blob class and hence
improve the overall quality, a suitable formalization consists in using class meth-
ods as individuals and instance variables as properties. For example, the concept
({open Library(), close Library()},{W-library opened}) (concept c9 in Fig. 3)
could generate a smaller, hence more cohesive, class.

Furthermore, in an attempt to reduce coupling in the resulting OO code,
we consider the links between class members such as method calls (see Fig. 2,
on the right). For instance, both methods borrow Book() and reserve Book() call
check Availability Book(). Assigning the first two methods to the same class
inevitably decreases the class coupling in the OO code. Therefore, we would like
to define an approach that allows grouping these methods. We use rca to do
so because grouping individuals based on the links they share, i.e., the calls of
same or comparable methods, is beyond the scope of classical fca.

3.2 Bringing Relations to Concept Intents

Relational concept analysis (rca) is an approach for extracting formal concepts
from sets of individuals described by properties, called also local properties, and
links. rca comes up with formal concepts that are connected in the same way
that description logics concepts are connected, i.e., by means of role restrictions
involving logical quantifiers. rca input data is organized within a structure called
relational context family (rcf) that comprises a set of binary contexts Ki =
(Oi, Ai, Ii) and set of binary relations rk ⊆ Oi × Oj , where Oi and Oj are the
individual sets of Ki (domain) and Kj (range), respectively. For instance, the
context encoding the access of fields by methods and the binary relation call
that links methods of the Blob with one another form a sample rcf (see Fig. 2).

A scaling mechanism is used to translate links into context properties: rela-
tions are interpreted as features whose values are sets of individuals, hence the
target properties are predicates describing these sets. The predicates are derived
from the available concept lattice on the underlying context. Thus, for a given
relation seen as a function r : Oi → 2Oj , new properties, called relational, of the
form qr:c, are added to Ki, where c is concept on Kj and q a scaling operator
(comparable to role restriction connectors in description logics). An individual
o ∈ Oi gets a property qr:c depending on the relationship between its link set
r(o) and the extent of c = (X, Y ). The relationship can be either inclusion,
i.e., r(o) ⊆ X (called universal scaling schema, q is ∀), or non-empty intersec-
tion, i.e., r(o) ∩X (called existential scaling schema, q is ∃). Formally, given a
context Ki=(Oi, Ai, Ii), a relation r ⊆ Oi × Oj and the lattice Lj of Kj , the
image of Ki for the existential scaling operator is: sc∃(Ki) = (Oi, A

+
i , I+

i ), where
A+

i = Ai ∪ {∃r : c|c ∈ Lj} and I+
i = Ii ∪ {(o,∃r : c)|o ∈ Oi, c = (X, Y ) ∈

Lj , r(o)∩X 6= ∅}). In the present study, as in the vast majority of software engi-
neering applications of rca, current or anticipated, only the existential scaling
is suitable. Hence we shall be systematically omitting the ∃ sign in attribute
names to keep notations simple.



call:c0 call:c2 call:c4 call:c5 call:c6 call:c11

borrow Book() × × ×
issue LibraryCard() × ×
reserve Book() × × ×
sort Catalog() × × × ×

Table 1. Scaling of the Blob context along the relation call. For space limitation,
individuals that are not affected by relational scaling are omitted.

For example, assume methods are scaled along relation call regarding the
lattice of the context in the left hand side of Fig. 2, which is composed of the
concepts {c0, c2, c4, c5, c6, c11} and the respective precedence links illustrated
in Fig. 3. Since the method sort Catalog() calls the method add Book() which
appears in the extent of concepts c0, c2 and c5 and calls the method remove -

Book() which belong to the extent of concepts c11 and c5, the Blob context is
extended by the relational properties call:c0, call:c2, call:c5 and call:c11. Table 1
presents the integration of the relation call to the Blob context.

The scaling mechanism is only one step in the global analysis process which,
given a rcf, yields a set of lattices, one per context, called relational lattice family
(rlf). The rlf is defined as the set of lattices whose concepts jointly reflect all
the shared properties and links among individuals of the rcf. Its construction
is an iterative process because the scaling mechanism modifies contexts and
thereby the corresponding lattices, which in turn may require a new scaling to
reflect the newly formed concepts and the link sharing they provoke. Iterations
stop whenever a fixed point is reached, i.e., further scaling leaves all the lattices
in the rlf unchanged.

Lattice evolution is illustrated though the analysis of the Blob rcf in Fig. 2:
rca yields the concept lattice illustrated in Fig. 3. The final lattice of the Blob is
different from the initial one due to the relational information inserted into the
scaled version of the Blob context. Indeed, the individuals are assigned relational
properties that lead to the sharing of more properties among these individuals.
By factoring out the new properties into concept intents, links between individu-
als are lifted up to the concept level, yielding relations between concepts6. Thus,
in Fig. 3, previously existing concepts obtain new properties while completely
new concepts emerge. For example, the concept c16 that represents the method
sort catalog() has been assigned the relational properties call:c0 and call:c11,
which means that sort catalog() calls methods in the extent of concept c0 and
c11, namely add book() and remove book(). Furthermore, methods borrow Book()

(concept c3) and reserve Book() (concept c12) have top concept as immediate
successor in the initial lattice. Their link with the method check Availability -

Book() (concept c4) has been revealed through scaling. They form a new concept

6 Observe that for compactness reasons, only non-redundant relational properties are
visualized in concept intents, i.e., those referring to the most specific concepts.



c19 (see Fig. 3) that represents the set of methods that call check Availability -

Book().

Fig. 3. The lattice of the context of methods shown in Fig. 2.

4 Correction of Design Defects using RCA

Our intuition is that design defects resulting in high coupling and low cohesion
could be improved by redistributing class members among existing or new classes
to increase cohesion and/or decrease coupling. rca provides a particularly suit-
able framework for the redistribution because it can discover strongly related
sets of individuals with respect to shared properties and inter-individual links
and hence supports the search of cohesive subsets of class members. Fig. 4 de-
picts our approach for the identification of refactorings to correct design defects
in general and the Blob in particular. It shows the tasks of detection of design
defects and of correction of user-validated defects.



4.1 Overall process

We define a three-step rca-based correction process that follows a two-step
defect detection process. First, we build a model of the program that is simpler
to manipulate than the raw source code and therefore eases the subsequent
activities of detection and correction. The model is instantiated from a meta-
model to describe OO programs. Next, we apply well-known algorithms based
on metrics and–or structural data on this model to single out suspicious classes
having potential design defects [17]. For each suspicious class, we automatically
extract a rcf that encodes relationships among class members from the model
of the program. Then, the obtained rcf is fed into a rca engine that derives
the corresponding concept lattices. Finally, the discovered concepts are explored
using some simple algorithms, which apply a set of refactoring rules that allow
the identification of cohesive sets of fields and methods. The approach suggests a
set of refactorings that jointly amount to splitting the Blob into as many classes
as there are cohesive sets and merge the content of the surrounding classes with
the new classes whenever appropriate.

Detection

RCA Engine

Code Representation

RCF Modeling Interpretation

        Code

Model

1

Suspicious Classes

Relational Context Family Relational Lattice Family

Refactorings

2

3 4 5

PADL MetamodelMetric-based Detection

RCA-based Correction

Fig. 4. RCA-based Workflow for the Detection and Correction of Design Defects.

4.2 RCF Extraction

To correct design defects, we need to identify cohesive sets of methods with
respect to the mode of usage of fields, i.e., read or write, and call between
methods. Hence, the individuals are methods of the large class and properties
are its fields. The incidence relation represent the access of fields in read/write
mode. In order to differentiate between the two access modes, the prefixes R-
and W- are added to the name of the fields as illustrated in Fig. 2. Method
invocations within the large class are encoded by a dedicated inter-individuals
relation denoted call (see the table in the right hand side of Fig. 2).

The formal attributes were derived from names of methods and added to the
method context. These attributes allow the emergence of a single concept for each



method, called method concept7, in the corresponding lattice. Beside listing the
entire set of properties of a given method, the concept method helps preserving
one-to-one invocation between methods. These details can be lost during the
scaling step that aims at integrating the relation call into the context of the
large class by substituting one-to-many invocations for those of type one-to-one.

4.3 Deriving the lattice

Fig. 3 represents the concept lattice obtained by the rcf engine from the context
given in Fig. 2. The concepts of the lattice represent the refactoring opportuni-
ties of the design defect. Indeed, concepts such as c9 exhibit group of methods
using the same sets of fields and fields used by cohesive sets of methods. These
concepts are considered as class candidates because they are cohesive. In addi-
tion, concepts such as c3 and c12 highlight subsets of cohesive methods, because
methods calling the same set of other methods are highly cohesive. A third
category of concepts such as c9 and c13 represent the use-relationship between
methods of the large class and the surrounding data classes. The study of these
concepts allow to assess the coupling between the large class and its surrounding
data classes. Thus, we can identify which methods and fields of the large class
should be moved to surrounding classes.

4.4 Suggesting Refactorings

The rlf of the Blob is used to interpret the inner structure of the Blob and then
suggest refactorings. More specifically, we apply algorithms looking for concepts
that reflect the presence of highly cohesive and weakly coupled sets. Intuitively,
shared usages of fields and calls of methods is a sign of cohesion whereas coupling
is directly expressed by the reliance of a method on a surrounding class (method
and-or field). Following these design guidelines, we correct the Blob in two ways.
First, we move disjoint and cohesive sets of methods and-or fields that are related
to a data class in that data class. Two refactorings describe such migration
between classes: Move Method [5, p.142] and Move Field [5, p.146]. Second, we
organise cohesive subsets that are not related to data classes in separate classes.
In addition to the two previous refactorings, we use the refactoring Extract Class
[5, p.149], which consists in creating a new class and moving the chosen fields
and methods from the old class to the new class using the two first previous
refactorings.

We have specified three refactoring rules to build incrementally cohesive sets
by visiting the concept lattice of methods. These rules are applied in sequence,
i.e., we apply the two first rules that deal with the access of fields by methods
in read-write mode and then the rule that handle method calls.

Rule 1. Methods accessing in write mode the same set of fields are gathered in
a single cohesive set.
7 The smallest extent in the lattice containing this method.



Rule 2. Methods accessing in read mode the same set of fields are gathered in
a single cohesive set if the number of common fields that they access is higher
than the number of fields they access separately.

These two rules are inspired from the object identification approach described
in [23] where grouping of methods is based on the accessed fields, with respect
to the number of fields they access separately. The obtained cohesive sets are
merged according to the following rule:

Rule 3. Methods that call the same set of methods are put in a single cohesive
set if the number of jointly called methods is higher than the number of methods
called separately.

For example, by applying the three previous rules on the running example of
the library Blob class, we obtain several cohesive sets as illustrated in Fig. 5,
on the left. The cohesive sets that should be migrated in the data classes are
shown in Fig. 5 on the right. This last step is currently performed manually but
planned to be automated.

Fig. 5. Left: The cohesive sets obtained from class Library Main Control depicted in
Fig. 1 . Right: Moving these cohesive Sets to existing data-classes or new-classes.

We provide the implementation details of these rules in the following.

Implementing Rule 1. We iterate the lattice and record all concepts related
to fields with the prefix W-. We mark all these concepts as visited. We sort this
list in reverse order by the number of fields with W-. Thus, fields that are accessed
in write mode by a high number of methods are processed first. For example,
the concept c3 in Fig. 3 is processed first because of the related concept c13.
For each concept of the list, we create a new cohesive set and apply the method
applyRuleWrite(). This method consists in moving the current(s) field(s)
(borrow date book et return date book in concept c13) with the refactoring



Move Field and for each method in the intent of the current concept (borrow -
Book()) that has not yet been included in a set (i.e., not yet visited), we move it
to the current cohesive set using the refactoring Move Method. Then, recursively,
we check the parents of the current concept and the children of a parent if
interesting to explore. The children of a parent are interesting to explore if the
parent contains at least one W- field also contained in the current concept. For
example, only the children of the parent c13 of the concept c3 are interesting to
explore. We reapply the rule applyRuleWrite() on the children.

Implementing Rule 2. This rule consists in finding the best cohesive set of
methods that access to a common set of fields in read mode. For each concept
related to common fields in read mode and not yet visited i.e., not processed
when applying Rule 1, and thus not included in a set, we calculate a ratio. The
ratio corresponds to the number of fields in common with their total number of
fields. We calculate the mean of all the ratios corresponding to each concept and
retain only groups of concepts that have a mean higher than 0.5, i.e., concepts
whose methods accessing a common number of fields is higher than their own
number of fields in average. We obtain thus a list of candidate sets of concepts
that we sort in reverse order to process first concepts with a greater ratio. For
each sets of concepts, we create a new cohesive set by moving the methods
and fields with the respective appropriate refactorings (Move Field and Move
Method).

Implementing Rule 3. This rule is similar to rule 2. The difference is that
we identify common methods called by one or several methods of the resulting
cohesive sets built from Rules 1 and 2. We calculate also a ratio and select the
best candidates, and then merge the cohesive sets according to the value of their
ratio.

5 Experimental Study

We use PADL [10] to model source code and Galicia v.2.1 [20], to construct
and visualize the concept lattices. PADL is the meta-model at the heart of the
Ptidej tool suite (Pattern Trace Identification, Detection, and Enhancement in
Java) [8]. Galicia is a multi-tool open-source platform for creating, visualizing,
and storing concept lattices [20]. Both tools communicate by means of XML
files describing data and results. Thus, an add-on to Ptidej generates contexts
in the XML format of Galicia, which are then transformed by the tool into
lattices and shown on screen for exploration.

In order to validate the proposed approach for the detection and correction
of Blob design defects, we consider four different open-source programs. We use
freely available programs to ease comparisons and replications of our experi-
ments. We provide some information on these programs in Table 2

In Azureus, we found 41 Blobs by applying our detection algorithms. We
notice that the underlying classes are difficult to understand, maintain, and



Name Version Lines of Code
Number of Number of

Classes Interfaces
Azureus 2.3.0.6 191,963 1,449 546
A peer-to-peer client implementing the BitTorrent protocol
Log4J 1.2.1 10,224 189 14

A logging Java package
Lucene 1.4 10,614 154 14

A full-featured text-search Java engine
Nutch 0.7.1 19,123 207 40

An open-source web search engine, based on Lucene

Table 2. List of Programs.

reuse because they have a large number of fields and methods. For example,
the class DHTTransportUDPImpl in the package com.aelitis.azureus.core.-
dht.transport.udp.impl, which implements a distributed sloppy hash table
(DHT) for storing peer contact information over UDP, has an atypically large
size. It declares 42 fields and 66 methods for 2,049 lines of code. It has a medium-
to-high cohesion of 0.542 and a high coupling of 81 (8th highest value among
1,626 classes). The data classes that surround this large class are: Average,
HashWrapper in package org.gudy.azureus2.core3.util and IpFilterMan-
agerFactory in package org.gudy.azureus2.core3.ipfilter.

Table 3 provides the results of applying our rules on three different Blobs
classes detected in Azureus and on two Blobs classes in the three other programs.
It is noteworthy that the results provided by our method have been assessed
manually: Among the set of all cohesive sets in the output we identified those
whose semantics could be clearly established and it confirmed their cohesiveness.
A measure for the precision of our method is the ratio of the real cohesive sets
to the total number of sets output by the method. As Table 3 indicates, the
precision may vary within a wide range (from 30 to 70 % of correct guesses).
The cohesive sets suggested by our approach include an important number of
small cohesive sets, which include generally at most one field and one or two
methods. This explains why we did not get a good precision. The other concise
sets gather between 10 and 20 fields/methods and are good candidates for the
creation of new classes because they define a specific responsibility or semantics.

To increase the robustness of our approach, we need to define additional
rules related to the access of fields and methods by methods not only within
one class but also located in other associated classes. Moreover, our analysis is
purely static. Thus, we need to enhance our method with a dynamic analysis
to preserve the behavior of the program. Finally, the restructuring should be
semi-supervised by an expert because only experts could assess the relevance
of grouping elements. The method should be seen as a support for restructur-
ing huge number of data. Thus, we share Snelting’s opinion that an interactive
restructuring performed by the software engineer is more appropriate [24].
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Azureus v2.3.0.6
DHTTransportUDPImpl (42+66) 108 2,049 0.542 81 (27+32) 59 10 7
DHTControlImpl (47+80) 127 1,868 0.52 67 (35+62) 97 19 11
TRTrackerBTAnnouncerImpl (36+47) 83 1,393 0.948 54 (24+33) 57 16 5

Log4j v1.2.1
LogBrokerMonitor (29+105) 134 1,591 0.479 86 (23+85) 108 31 17
Category (9+53) 62 1,042 0.831 46 (8+44) 52 18 9

Lucene v1.4
IndexReader (7+52) 59 593 0.661 68 (5+30) 35 4 2
QueryParser (36+48) 84 1,085 0.3 26 (24+37) 61 13 10

Nutch v0.7.1
FSNamesystem (24+35) 59 1,211 0.908 23 (17+25) 42 18 9
JobTracker (22+31) 53 910 0.938 21 (17+18) 35 11 8

Table 3. Blob Classes in Four Different Programs and the Number of Cohesive Sets

6 Related Work

Few studies have explored the semi-automatic correction of design defects. Thus,
we only list work related to design defects and to the use of fca in software
maintenance.

Sahraoui et al. in [23] proposed an approach for identifying objects in pro-
cedural code, a problem that is similar to the split of a Blob (in this case the
Blob corresponds to the entire application or to a module thereof). The approach
combines metrics calculation with several FCA-based analysis steps in class iden-
tification and further graph-based reasoning to detect associations among newly
identified classes.

Snelting and Tip [24] proposed a FCA-based method for adapting a class
hierarchy to a specific usage thereof. It comprises a study of the way class mem-
bers are used in the client code of a set of applications. The study enables the
identification of anomalies in the design of class hierarchies, e.g., class members
that are redundant or that can be moved into a derived class. In contrast, we
detect design defects at a higher level as specified in the literature. Moreover,
beyond pure hierarchies, we are interested in classes with associations.

Godin and Mili [7] used concept lattices for class hierarchy redesign based
on classes signatures. Yet like [11], they find useful hierarchy restructuring and
member redistribution but ignore any possible relationships among the members
of a class.

Marinescu [16] presented an approach based on detection strategies which ap-
plies metrics computation. Combinations of metrics through filtering and compo-
sition are used to capture deviations from good design principles and heuristics.
Yet the method is inherently limited as design flaws admit no easy detection
exclusively by metrics: the structure of a design matters and it is impossible to
capture in numbers. In contrast, our approach relies on a combination of metrics



for the detection of design defects with a clustering and visualisation technique,
fca, that allows the design structure to be fully comprehended.

The work of Kirk et al. [12] comes close to ours. Yet they use attribute slicing
to refactor large classes, i.e., they slice the variable set of the class into subsets
based on the usage of variables by methods. The approach was designed to deal
with the Large Class code smell and hence has a scope of a single class whereas
Blob involves multiple classes. Conversely, they use an intra-method slicing tech-
niques that allows the precise set of instruction manipulating a instance variable
to be detected and the isolated. The practical validation of the approach is yet
to be done.

Tonella and Antoniol used fca to infer recurring patterns in program models
[26]. Their study yielded impressive results in terms of groups of classes having
common structural relations. However, their approach seems of limited interest
for us because it detects only structural relations, whereas design defects are of-
ten characterised by measurable properties (e.g., a large class has a large number
of fields and methods). fca is not devised to deal with numerical measurement,
hence it could benefit from metrics-based techniques.

Arévalo et al. [1] applied fca to identify implicit dependencies among classes
in program models (extracted from source code). A set of views at different levels
of abstraction are built: At the class level, views show the access of methods
to variables and the patterns of calls among methods in a class, hence they
help to assess the class cohesion. At the class hierarchy level, views highlight
common and irregular forms of hierarchies so as to deduce possible refactorings.
At the program level, they refined and extended the approach of Tonella et al.
to any (recurring) regularities such as design patterns, architectural constraints,
idioms, etc. Our approach is similar in that it detects flaws, but our choices of
the elements and properties to be analysed are guided by the descriptions of the
defects.

7 Conclusion

We proposed an approach that uses RCA to suggest appropriate refactorings to
correct certain design defects. In particular, we showed how our approach can
help refactoring programs with Blob design defects. Unlike other FCA-based re-
structuring approaches, we worked on whole lattice regions rather than on sep-
arate concepts because candidate refactoring are inferred from several concepts
in the lattice. We illustrated our approach using an example of a Library man-
agement system and validated it on Azureus v2.3.0.6 and three other programs.
We showed that using RCA, our approach could suggest relevant refactorings to
improve the program. The generalisation of our results to other design defects
is briefly discussed and will be developed in future work. Future work will also
include assessing more programs via our approach and discussing the proposed
refactorings with their developers and apply them. We also plan to performed
quantitative studies on the trade-off between cohesion and coupling.
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11. Marianne Huchard and Hervé Leblanc. Computing interfaces in java. In Proceed-
ings of ASE, pp 317–320, 2000.

12. D. Kirk, M. Roper, and N. Walkinshaw. Using attribute slicing to refactor large
classes. In Seminar Proceedings of Beyond Program Slicing, number 05451, 2006.

13. M. Lanza. CodeCrawler—Lessons learned in building a software visualization tool.
In Proceedings of CSMR, pp 409–418, 2003.

14. M. Lanza. Object-Oriented Reverse Engineering – Coarse-grained, Fine-grained,
and Evolutionary Software Visualization. PhD thesis, Institute of Computer Sci-
ence and Applied Mathematics, May 2003.

15. R. Marinescu. Measurement and Quality in Object-Oriented Design. PhD thesis,
Politehnica University of Timisoara, Oct 2002.

16. R. Marinescu. Detection strategies: Metrics-based rules for detecting design flaws.
In Proceedings of ICSM, pp 350–359, 2004.

17. N. Moha, Y.-G. Guéhéneuc, and P. Leduc. Automatic generation of detection
algorithms for design defects. In Proceedings of ASE, 2006.

18. N. Moha, J. Rezgui, Y.-G. Guéhéneuc, P. Valtchev, and G. El Boussaidi. Using
FCA to suggest refactorings to correct design defects. In Proceedings of CLA, 2006.

19. Object Technology International / IBM. Eclipse platform – A universal tool plat-
form, 2001.

20. Galicia, Sept 2005. http://sourceforge.net/projects/galicia/.
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