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Abstract. Prosody has been actively studied as an important knowl-
edge source for speech recognition and understanding. In this paper, we
are concerned with the question of exploiting prosody for language mod-
els to aid automatic speech recognition in the context of meetings. Using
an automatic syllable detection algorithm, the syllable-based prosodic
features are extracted to form the prosodic representation for each word.
Two modeling approaches are then investigated. One is based on a fac-
tored language model, which directly uses the prosodic representation
and treats it as a ‘word’. Instead of direct association, the second ap-
proach provides a richer probabilistic structure within a hierarchical
Bayesian framework by introducing an intermediate latent variable to
represent similar prosodic patterns shared by groups of words. Four-
fold cross-validation experiments on the ICSI Meeting Corpus show that
exploiting prosody for language modeling can significantly reduce the
perplexity, and also have marginal reductions in word error rate.

1 Introduction

Prosody has long been studied as a knowledge source for speech understanding,
and has been successfully used for a variety of tasks, including topic segmentation
[1], disfluency detection [2], speaker verification [3], and speech recognition [4–6].

Recently there has been an increasing research interest in multiparty con-
versations, such as group meetings. Speech in meetings is more natural and
spontaneous than read or acted speech. The prosodic behaviours for speech in
meetings are therefore much less regular. Can prosody aid the automatic pro-
cessing of multiparty meetings? Shriberg et al. [2] gave the answer ‘yes’ to this
question, from the evidence of successfully exploiting prosodic features for pre-
dicting punctuation, disfluencies, and overlappings in meetings. It has also been
noted that prosodic features can serve as an efficient non-lexical feature stream
for tasks such as dialogue acts (DA) segmentation and classification, speech sum-
marization, and topic segmentation and classification in the meetings domain.

This paper is concerned with the question of exploiting prosody to aid auto-
matic speech recognition (ASR) in the context of meetings. Three essential com-
ponents in a state-of-the-art ASR system, namely the acoustic model, language



model (LM), and lexicon, can all potentially serve to accommodate prosodic fea-
tures. In this paper we are interested in exploiting prosodic features in language
models for ASR in meetings.

The goal of a language model is to provide a predictive probability distribu-
tion for the next word conditioned on the strings seen so far, i.e., the immediately
preceding n − 1 words in a conventional n-gram model. In addition to the pre-
vious words, prosodic information associated with the audio stream, which is
parallel to the word stream, can act as a complementary knowledge source for
predicting words in LMs. This understanding is the initial motivation for this
work.

Due to the large vocabulary size in LMs (typically greater than 10,000 words),
incorporating prosodic information in language models is more difficult than in
other situations such as DA classification which has a much smaller number
of target classes (typically several tens). To exploit prosody for LMs, a central
question is how the relationship between prosodic features F and the word types
W , P (W |F ), may be modeled. In this paper, two models will be investigated,
namely the factored language model (FLM) [7] and the hierarchical Bayesian
model (HBM) [8]. In the FLM-based approach, conditional probabilities P (W |F )
are directly estimated from the co-occurrences of words and prosody features via
maximum likelihood estimation (MLE). The HBM-based approach provides a
richer probabilistic structure by introducing an intermediate latent variable—in
place of a direct association between words and prosodic features—to represent
similar prosodic patterns shared by groups of words. This work is characterised
by an automatic and unsupervised modeling of prosodic features for LMs in two
senses. First, the prosodic features, which are syllable-based, are automatically
extracted from audio. Second, the association of words and prosodic features is
learned in an unsupervised way.

The rest of this paper is organized as follows. The next section reviews some
related work on exploiting prosody for ASR. The ICSI Meeting Corpus, used
throughout this paper, is described in Sect.3. The extraction of prosodic features
is discussed in Sect.4. Section 5 focuses on the modeling approaches, including
FLM-based and HBM-based methods. Experiments and results are reported in
Sect.6, followed by a discussion in the final section.

2 Related Work

It is well accepted that humans are able to understand prosodic structure without
lexical cues. Sub-lexical prosodic analysis [9] attempts to mimic this human
ability using syllable finding algorithms based on band pass energy. Prosodic
features are then extracted at the syllable level. The extraction of syllable-based
prosodic features is attractive, because the syllable is accepted as a means of
structuring prosodic information. This approach was verified on DA and hotspot
categorization [9], which encourages us to utilize syllable-based prosodic features
in LMs for ASR.



A basic approach to incorporate prosodic features in acoustic models for
ASR uses “early integration”, in which the prosodic features are appended to
the standard acoustic features [10]. Early work to utilize prosody in language
models used prosodic features to evaluate possible parses for recognized words,
which in turn would be the basis for reordering word hypotheses [11]. More
recently, approaches that integrate prosodic features with LMs have emerged,
in which LMs are conditioned on prosodic evidence by introducing intermedi-
ate categories. Taylor et al. [12] took the dialogue act types of utterances as
the intermediate level, by first using prosodic cues to predict the DA type for
an utterance and then using a DA-specific LM to constrain word recognition.
Stolcke et al. [4] instead used prosodic cues to predict the hidden event types
(filled pause, repetition, deletion, repair) at each word boundary with hidden
event n-gram model, and then conditioned the word portion of the n-gram on
those hidden events. Chan et al. [6] proposed to incorporate prosody into LMs
using maximum entropy. However, the prosodic features they used were derived
from manual ToBI transcriptions. An example of using prosody in the lexicon
was provided by Chen et al. [5], where prosodic features, such as stress and
phrase boundary, were included in the vocabulary. Each word had different vari-
ations corresponding to stress and whether or not it precedes a prosodic phrase
boundary. This approach attempted to capture the effects of how prosodic fea-
tures affect the spectral properties of the speech signal and the co-occurrence
statistics of words.

Most research on using prosodic features for ASR has been applied to small
and task-oriented databases. The goal of effectively using prosody for large-
vocabulary speech recognition, such as recognition of meeting speech, still re-
mains elusive. There has been little work in this direction in the meeting domain.
One reason for this is due to the difficulty of modeling the relationship between
symbolic words and normally non-symbolic prosodic features. Therefore, to find
an approximate prosodic representation for each word in the vocabulary is one
way to use prosodic features for ASR.

Realizing the difficulty of modeling prosody via intermediate representations,
Shriberg et al. proposed direct modeling of prosodic features [13]. In this ap-
proach, prosodic features are extracted directly from the speech signal. Machine
learning techniques (such as Gaussian Mixture Models, and decision trees) then
determine a statistical model to use prosodic features in predicting the target
classes of interest. No human annotation of prosodic events is required in this
case. However, using prosodic features to predict very large number of target
categories like words will again fail in capturing the prosodic discriminabilities.

3 Meeting Corpus

The experiments reported here were performed using the ICSI Meeting Corpus
[14], which is a corpus of 75 naturally-occurring, unrestricted, and fairly un-
structured research group meetings, each averaging about an hour in length. We
performed our experiments using a four-fold cross-validation procedure in which



we trained on 75% of the data and tested on the remaining 25%, rotating until
all the data was tested on. The corpus was divided into four folds, first by or-
dering all the sentences in sequence, and then for each fold sequentially selecting
every fourth sentence. After further removing the sentences that are too short
in length to extract prosodic features, this procedure resulted in the data set
summarised in Table 1.

Table 1. The summary of the four-fold cross-validation setup on the ICSI Meeting
Corpus used in this paper.

Fold Number of Sentences Number of Tokens

0-fold 27,985 209,766

1-fold 27,981 208,554

2-fold 27,968 208,294

3-fold 27,975 205,944

4 Prosodic Feature

A notable aspect of the prosodic features used here is that they are syllable-
based. It is reasonable to address prosodic structures at the syllable level, because
prosodic features relating to the syllable reflect more clearly perceptions of ac-
cent, stress and prominence. The syllable segments were automatically detected
based solely on the parallel acoustic signals using an automatic syllable detection
algorithm. The framework for the extraction of syllable-based prosodic features
is shown in Fig.1, which follows an approach to automatic syllable detection
suggested by Howitt [15], which in turn was originated in work by Mermelstein
[16].
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Fig. 1. The framework of the extraction of syllable-based prosodic features.



1. Front-end Processing The speech signal was first framed using a 16 ms
Hamming window with a shift period of 10 ms. The raw energy before win-
dowing and pre-emphasis was computed for each frame and saved in log
magnitude representation for subsequent silence detection. A 256-point FFT
was used to compute the power spectrum.

2. Silence Detection The raw energy data was smoothed using a 6th-order
low-pass 50 Hz filter. Each frame was classified into either speech or silence
based solely on whether or not the log frame energy was above a threshold.
A running window consisting of 10 consecutive frames was used to detect the
onsets of speech and silence. The detected speech segments, which were fur-
ther extended by 5 frames at both sides, were fed into the following syllable
detection.

3. Intensity Feature Extraction A single measure of intensity was computed,
following Howitt’s adjusted features [15]. A 300–900 Hz band-pass filter was
used to filter out energy not belonging to vowels. By a weighted summation
(converted to magnitude squared forms) of the spectral bins within 300–900
Hz frequencies from the spectrogram, an intensity track (converted back to
decibels) was computed for syllable detection, which again was smoothed by
a low-pass 50 Hz filter to help reduce small peaks and noise.

4. Automatic Syllable Detection The recursive convex hull algorithm [16],
which is a straightforward and reliable syllable detection algorithm, was used
to find the nuclei by detecting peaks and dips in the intensity track computed
in the above step. The syllables were then obtained by extending the nuclei
on both sides, until a silence or a boundary of adjacent nuclei is detected.

5. Prosodic Feature Extraction Four prosodic features were extracted for
each syllable consisting of the duration of syllable, the average energy, the
average F0, and the slope of F0 contour. F0 information was obtained using
the ESPS get f0 program.

We ran vector quantization (VQ), with 16 codewords (labeled ‘s0’ to ‘s15’)
over all the 892,911 observations of syllable-based prosodic features in the ICSI
Meeting Corpus. Before running VQ, each feature was normalized to unit variance.

The syllables belonging to an individual word were obtained by aligning
the word with the syllable stream according to a forced time alignment at the
word level, and selecting those syllables whose centres were within the begin
and end times of words. By concatenating relevant VQ indices for syllables, we
obtained the symbolic representations of prosodic features at the word level,
which can then serve as potential cues for language modeling. For example, the
prosodic representation for word ‘ACTUALLY’ might be the symbol ‘s10s12s6’,
or ‘s10s15s6’ in other contexts.

5 Modeling Approach

5.1 Factored Language Model

One straightforward method for modeling words and prosodic features is to use
MLE based on the co-occurrences of words W and the prosodic representations



F , i.e., training a unigram model P (W |F ) = Count(F,W )

Count(F )
. This unigram model

can then be interpolated with conventional n-gram models. More generally, we
can use the FLM [7] to model words and prosody deterministically. The FLM,
initially developed to address the language modeling problems faced by mor-
phologically rich or inflected languages, is a generalization of standard n-gram
language models, in which each word wt is decomposed into a bundle of K
word-related features (called factors), wt ≡ f1:K

t = {f1
t , f1

t , . . . , fK
t }. Factors

may include the word itself. Each word in an FLM is dependent not only on
a single stream of its preceding words, but also on additional parallel streams
of factors. Combining with interpolation or generalized parallel backoff (GPB)
[7] strategies, multiple backoff paths may be used simultaneously. The FLM’s
factored representation can potentially accommodate the multimodal cues, in
addition to words, for language modeling—in this case the prosodic representa-
tions. This configuration allows more efficient and robust probability estimation
for those rarely observed word n-grams.

Supposing the word wt itself is one of the factors {f1
t , f1

t , . . . , fK
t }, the joint

probability distribution of a sequence of words (w1, w2, . . . , wT ) in FLMs can
be represented as the formalism shown in (1), according to the chain rule of
probability and the n-gram-like approximation.

P (w1, w2, . . . , wT ) = P (f1:K
1 , f1:K

2 , . . . , f1:K
T )

=
T∏

t=1

P (f1:K
t |f1:K

t−1 , f1:K
t−2 , . . . , f1:K

1 )

≈
T∏

t=1

P (wt|f1:K
t−n+1:t−1) (1)

There are two key steps to use FLMs. First an appropriate set of factor
definitions must be chosen. We employed two factors: the word wt itself and
the syllable-based prosodic representation ft, as shown in Fig.2(A). Second it is
necessary to find the suitable FLM models (with appropriate model parameters
and interpolation/GPB strategy) over those factors. Although this task can be
described as an instance of the structure learning problem in graphical models,
we heuristically designed the model structure for FLMs. It is convenient to regard
this FLM-based model as an interpolation of two conventional n-gram models
P (wt|wt−1, wt−2) and P (wt|wt−1, ft):

PFLM(wt|wt−1, wt−2, ft) = λFLMP (wt|wt−1, wt−2)+(1−λFLM)P (wt|wt−1, ft) (2)

Figure 2(B) shows the parallel backoff graph used in the experiments for factors
wt and ft. We perform the interpolation in a GPB framework, as depicted in
Fig.2, manually forcing the backoff from P (wt|wt−1, wt−2, ft) to two parallel
paths by setting a very large value of gtmin for P (wt|wt−1, wt−2, ft).
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FLM over factors including words wt, the prosodic representations ft. (B) The gener-
alized parallel backoff graph for wt and ft used in the experiments.

5.2 Hierarchical Bayesian Model

We argue that it is essential but difficult to find intermediate symbolic repre-
sentations to associate words and low-level prosodic features for language mod-
eling. In this paper, we have categorized syllable-based prosodic features into 16
classes, and represented the prosodic features for each word as a concatenation
of indices for syllables belonging to that word. The FLM-based approach uses
this prosodic information by directly associating word and prosodic represen-
tations. One limitation of this FLM-based approach is that there may be too
many varieties of prosodic representations for individual words, due to the er-
rors introduced by the automatic syllable detection and forced alignment. For
example, the word ‘ABSOLUTELY’ in the ICSI Meeting Corpus has more than
100 different prosodic representations. Language models trained via MLE us-
ing such prosodic representations will be more likely to overfit to the training
data. Rather than the direct association of words and prosodic representations,
we introduce a latent variable between word and prosody and assume a gen-
erative model that generates words from prosodic representations through the
latent variable. This probabilistic generative models is investigated within the
framework of hierarchical Bayesian models [8].

Topic models have recently been proposed for document modeling to find the
latent representation (topic) connecting documents and words. Latent Dirichlet
allocation (LDA) [17] is one such topic model. LDA is a three-level hierarchical
Bayesian model, in which each document is represented as a random mixture
over latent topics, and each topic in turn is represented as a mixture over words.
The topic mixture weights θ are drawn from a prior Dirichlet distribution:

P (θ|α) =
Γ (

∑K
i=1 αi)∏K

i=1 Γ (αi)
θα1−1
1 . . . θαK−1

K (3)

where α = {α1, . . . , αK} represents the prior observation count of the K latent
topics with αi > 0. The LDA model is based on the “bag-of-words” assumption,



that is, words in a document exchangeably co-occur with each other according
to their coherent semantic meanings. In this sense, LDA can be considered as
a probabilistic latent semantic analysis model. However what if we assume that
words in a document exchangeably co-occur with each other according to their
coherent prosodic patterns? This is the intuition of our use of LDA for the
probabilistic association of words and prosody, which we call the prosody-topic
model.

In a prosody-topic model, a document in the corpus is composed by including
all those words that have the same prosodic representation (i.e., ‘s10s12s6’).
The prosodic representation is then served as the author of that document. If
we apply LDA over this corpus, we can extract the latent ‘topics’ connecting
words and prosodic representations. Each topic is expected to have coherent
prosodic patterns. Considering our prosodic representations in this paper, for
example, words in one individual topic are expected to have the same number
of syllables whose pronunciations are similar. Unlike LDA, we need to explicitly
retain the prosodic representations in the prosody-topic model. On the other
hand, if we regard the prosodic representations as the ‘authors’ for corresponding
documents, the prosody-topic model leads to the author-topic model [18], in
which each document has only one unique author.

In short, the general idea of the prosody-topic model is that each prosodic rep-
resentation is represented by a multinomial distribution over latent topics, and
each topic is represented as a multinomial distribution over words. Prosody thus
serves the same role as semantics, being the guideline to cluster co-occurring
words in a document. The goal of a prosody-topic model is to learn the dis-
tribution of words for each topic, which therefore finds the latent representa-
tions association the word and prosodic representations. The graphical model
for prosody-topic model is shown in Fig.3, and the generative process for each
document d can be described as follows.

1. Select the unique prosodic representation (author) label f for document d.
2. Choose topic proportions θ|{f,θ1:F } for document d according to f , each

θf ∼ Dirichlet(α)
3. For each of the Nd words wn in document d:

(a) Choose a topic zn|θ ∼ Mult(θ).
(b) Choose a word wn|{zn,φ1:K} ∼ Mult(φzn

), φzn
∼ Dirichlet(β).

Since each document only has a single author, the probability of words wt

given prosodic representations ft in a prosody-topic model can be easily obtained
by integrating out latent topics, as shown in (4):

PHBM(wt|ft) =
K∑

k=1

P (tk|ft)P (wt|tk) =
K∑

k=1

θfttk
φtkft

(4)

where tk is one of the K topics, θfttk
and φtkft can be learned by approximate

inference methods, such as variational EM or Gibbs sampling. This unigram-like
probability can be interpolated with conventional n-gram models:

PHBM(wt|wt−1, wt−2, ft) = λHBMP (wt|wt−1, wt−2) + (1− λHBM)PHBM(wt|ft) (5)
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Fig. 3. The graphical model representation for the prosody-topic model (right) and
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‘plates’ representing the replications of a corresponding substructure.

6 Experiment and Result

We evaluated the FLM- and HBM-based approaches on the 4-fold cross-validation
ICSI Meeting Corpus as described in Sect.3, in terms of perplexity (PPL) and
word error rate (WER) respectively.

The FLM models were trained using the SRILM [19] toolkit1, which has an
extension for FLMs. Some modifications were made to the FLM toolkit regarding
the manner of dealing with some special symbols such as ‘<s>’, ‘</s>’, and
‘NULL’, e.g., we manually set P (wt|wt−1, wt−2,NULL) = P (wt|wt−1, wt−2), and
scored the end-of-sentence ‘</s>’ in perplexity calculations to account for the
large number of short sentences in the meeting corpus. The FLM models share a
common closed vocabulary of 50,000 word types with the AMI-ASR system [20].
The smoothing methods and parameters for FLM models are shown in Fig.2.

The prosody-topic models were trained using a publicly available Matlab
topic modeling toolbox2. The algorithm for inference is Gibbs sampling [21], a
Markov chain Monte Carlo algorithm to sample from the posterior distribution.
We chose the number of topics K = 100, and ran the Gibbs sampling algorithm
for 2500 iterations, which took around one hour to finish the inference on a 3-fold
ICSI data. Instead of automatically estimating the hyperparameters α and β,
we fixed these two parameters to be 50/K and 0.01 respectively, as in [18].

The PPL results were obtained by successively testing on the specific fold
with the language model trained on the other three folds. The interpolation
weights λFLM and λHBM were both set to 0.5. Table 2 shows the PPL results on the
4-fold cross-validation ICSI Meeting Corpus. Both FLM-based and HBM-based
approaches produce some reduction in PPL, especially the HBM-based approach

1 http://www.speech.sri.com/projects/srilm/
2 http://psiexp.ss.uci.edu/research/programs data/toolbox.htm



has over 10% relative reduction in PPL than the baseline trigram model. One
interesting thing we found during analysing the PPL results sentence-by-sentence
is that those having higher probabilities than baseline trigrams normally have
reasonable prosodic representations for words, i.e., representing the right number
of syllables in a word.

Table 2. PPL results for 4-fold cross-validation experiments. BASELINE-3G denotes
the baseline trigram results using the FLM toolkit. FLM-3G-F denotes the results for
the FLM-based model, while HBM-3G-F for the HBM-based prosody-topic model.

TRAIN-TEST BASELINE-3G FLM-3G-F HBM-3G-F

123 – 0 78.4 73.6 70.5

023 – 1 78.9 73.9 70.7

013 – 2 78.3 73.4 70.1

012 – 3 78.3 73.3 70.8

AVERAGE 78.5 73.5 70.5

Table 3 shows the WER results of n-best rescoring on the ICSI Meeting
Corpus. It should be noted that the BASELINE-2G WER results were obtained
during the first-pass decoding of the AMI-ASR system using an interpolated
bigram LM trained on seven text corpora including Hub4, Switchboard, ICSI
Meeting, and a large volume (around 1GB in size) of web data. The lattices were
generated using this interpolated bigram LM. By retaining the time information
for candidate words, the lattices were then used to produce n-best lists with
time stamps for subsequent rescoring experiments via the lattice-tool program
in the SRILM toolkit. In our experiments, the 500-best lists were produced from
the lattices, which were then aligned with the syllable streams to get prosodic
representation for each word, and finally reordered according to scores of different
interpolated LMs to search for the best hypothesis. Marginal reductions in WER
were observed in our experiments.

Table 3. Word error rate results, which share the same notations as in Table 2, except
that the BASELINE-2G column represents the baseline results from the first-pass
AMI-ASR decoding using an interpolated bigram model.

TRAIN-TEST BASELINE-2G BASELINE-3G FLM-3G-F HBM-3G-F

123–0 29.8 29.5 29.2 29.1

023–1 29.6 29.3 29.1 29.0

013–2 29.5 29.2 29.0 28.9

012–3 29.4 29.2 29.1 29.0

AVERAGE 29.6 29.3 29.1 29.0



7 Discussion and Future Work

In this paper we have investigated two unsupervised methods to exploit syllable-
based prosodic features in language models for meetings. Experimental results
on the ICSI Meeting Corpus showed our modeling approaches, both FLM-based
and HBM-based, have significant reductions in PPL and marginal reductions in
WER. The limited gains in WER may be partly caused by the following reasons.
First, there are inevitably some errors in automatic syllable detection. It is hard
for us to carry out evaluations on our syllable detection algorithm because of the
lack of annotated data with syllable information. Second, additional errors are
introduced by the forced alignment due to the overlapping cross-talk in meetings,
which occasionally assigned an unreasonable number (i.e., more than 10) of
syllables to a simple word. Third, the lattices were generated by an interpolated
bigram model trained on a large corpus. This might prevent the recovery of more
probable hypotheses from those n-best lists produced by a generalized LM, using
specific LMs only trained on ICSI meeting data for rescoring.

Considering the two modeling approaches, we are more interested in the
HBM-based method. Bayesian language models [22], which provide an inter-
nally coherent probabilistic models and fit well in the hierarchical Bayesian
model framework, have been proved to have comparable performance to the
conventional n-gram models. In future, we will consider more tighter incorpora-
tion rather than simple interpolation, i.e., investigating the prosody-topic model
and (Bayesian) language models in one united generative model within the hi-
erarchical Bayesian framework. Moreover, meeting-specific cues will be taken
into consideration for the prosody-topic model. For example, prosody encodes
some information for DAs. DA in meetings normally has well-defined types. It is
interesting to extend the prosody-topic model by investigating the relationship
between word, prosody, and DA in one generative model.
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