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Abstract. In this paper, we present a specific use of the Particle-based Belief
Propagation (PBP) algorithm as an approximation scheme for the joint distribu-
tion over many random variables with very large or continuous domains. After
formulating the problem to be solved as a probabilistic graphical model, we show
that by running loopy Belief Propagation on the whole graph, in combination
with an MCMC method such as Metropolis-Hastings sampling at each node, we
can approximately estimate the posterior distribution of each random variable
over the state space. We describe in details the application of PBP algorithm to
the problem of sparse Structure from Motion and the dense Stereo Vision with
unknown camera constraints. Experimental results from both cases are demon-
strated. An experiment with a synthetic structure from motion arrangement shows
that its accuracy is comparable with the state-of-the-art while allowing estimates
of state uncertainty in the form of an approximate posterior density function.

Keywords: Belief Propagation, Particle filter, Structure from Motion, Dense
Stereo Vision.

1 Introduction

Graphical models are considered a powerful tool to represent structures in distributions
over many random variables. Such a structure can then be used to efficiently com-
pute or approximate many quantities of interest such as the posterior modes, means,
or marginals of the distribution, often using “message-passing” algorithms such as be-
lief propagation [1]. Traditionally, most such work has focused on systems of many
variables, each of which has a relatively small state space (number of possible val-
ues), or particularly nice parametric forms (such as jointly Gaussian distributions). For
systems with continuous-valued variables, or discrete-valued variables with very large
domains, one possibility is to reduce the effective state space through gating, or discard-
ing low-probability states [2,3,4], or through random sampling [5,6,7,8,9]. The best-
known example of the latter technique is particle filtering, defined on Markov chains,
in which each distribution is represented using a finite collection of samples, or par-
ticles. It is therefore natural to consider generalizations of particle filtering applicable
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to more general graphs (“particle” belief propagation); several variations have thus far
been proposed, corresponding to different choices for certain fundamental questions.

As an example, consider the question of how to represent the messages computed
during inference using particles. Broadly speaking, one might consider two possible
approaches: to draw a set of particles for each message in the graph [5,7,8], or to
create a set of particles for each variable, e.g., representing samples from the poste-
rior marginal [6]. This decision is closely related to the choice of proposal distribu-
tion in particle filtering; indeed, choosing better proposal distributions from which to
draw the samples, or moving the samples via Markov chain Monte Carlo (MCMC)
to match subsequent observations, comprises a large part of modern work on particle
filtering [10,11,12,13,14].

Either method can be made asymptotically consistent, i.e., will produce the correct
answer in the limit as the number of samples becomes infinite. However, consistency
is a weak condition—fundamentally, we are interested in the behavior of particle be-
lief propagation for relatively small numbers of particles, ensuring computational effi-
ciency. So far, little theory describes the finite sample behavior of these algorithms.

In this work, we demonstrate the application of the Particle-based Belief Propagation
algorithm, most closely related to that described in [6], for the problem of Structure
from Motion and Dense Stereo Vision with unknown camera constraints. Experimental
results show proofs of the convergence for the accuracy of such a generic PBP algorithm
with finite samples. In addition to accuracy, the PBP algorithm also allows us to estimate
various properties of the distribution, thereby allows us to represent state uncertainty,
although at some computational cost.

2 Review of Belief Propagation

Let G be an undirected graph consisting of nodes V = {1, . . . , k} and edges E, and let
Γs denote the set of neighbors of node s in G, i.e., the set of nodes t such that {s, t}
is an edge of G. In a probabilistic graphical model, each node s ∈ V is associated
with a random variable Xs taking on values in some domain, Xs, and the structure of
the graph is used to represent the Markov independence structure of the joint distribu-
tion p(X1, . . .Xn). Specifically, the Hammersley-Clifford theorem [15] tells us that if
p(·) > 0, the distribution factors into a product of potential functions ψc(·) defined on
the cliques (fully connected subsets) of G. For simplicity of notation, we further as-
sume that these clique functions are pairwise. Now we can assume that each node s and
edge {s, t} are associated with potential functions Ψs and Ψs,t respectively, and given
these potential functions we define a probability distribution on assignments of values
to nodes as

P (
→
x) =

1
Z

(∏
s

Ψs(
→
x s)

) ⎛
⎝ ∏

{s,t}∈E

Ψs,t(
→
x s,

→
x t)

⎞
⎠ . (1)

Here
→
x is an assignment of values to all k variables,

→
xs is the value assigned to Xs by

→
x , and Z is a scalar chosen to normalize the distribution P (also called the partition
function). We consider the problem of computing marginal probabilities, defined by
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Ps(xs) =
∑

→
x :

→
x s=xs

P (
→
x) . (2)

In the case where G is a tree and the sets Xs are small, the marginal probabilities can
be computed efficiently by belief propagation [1]. This is done by computing messages
mt→s each of which is a function on the state space of the target node, Xs. These
messages can be defined recursively as

mt→s(xs) =
∑

xt∈Xt

Ψt,s(xt, xs)Ψt(xt)
∏

u∈Γt\s

mu→t(xt) . (3)

When G is a tree this recursion is well founded (loop-free) and the above equation
uniquely determines the messages. We will use an unnormalized belief function defined
as follows.

Bs(xs) = Ψs(xs)
∏
t∈Γs

mt→s(xs) . (4)

When G is a tree the belief function is proportional to the marginal probability Ps

defined by (2). It is sometimes useful to define the “pre-message” Mt→s as follows for
xt ∈ Xt.

Mt→s(xt) = Ψt(xt)
∏

u∈Γt\s

mu→t(xt) . (5)

Note that the pre-message Mt→s defines a weighting on the state space of the source
node Xt, while the message mt→s defines a weighting on the state space of the desti-
nation, Xs. We can then re-express (3)–(4) as

mt→s(xs) =
∑

xt∈Xt

Ψt,s(xt, xs)Mt→s(xt) Bt(xt) = Mt→s(xt)ms→t(xt) .

Although we develop our results for tree–structured graphs, it is common to apply
belief propagation to graphs with cycles as well (“loopy” belief propagation). We note
connections to and differences for loopy BP in the text where appropriate.

Loopy belief propagation maintains a state which stores a numerical value for each
message value mt→s(xs). In loopy BP one repeatedly updates one message at a time.
More specifically, one selects a directed edge t → s and updates all values mt→s(xs)
using equation (3). Loopy BP often involves a large number of message updates. As
the number of updates increases message values typically diverge — usually tending
toward zero but possibly toward infinity if the potentials Ψs and Ψt,s are large. This typ-
ically results in floating point underflow or overflow. For reasons of numerical stability,
it is common to normalize each message mt→s so that it has unit sum. However, such
normalization of messages has no other effect on the (normalized) belief functions (4).
We can normalize an entire state by normalizing each message. It is important to note
that normalization commutes with update. More specifically, normalizing a message,
updating, and then normalizing the resulting state, is the same as updating (without
normalizing) and then normalizing the resulting state. This implies that any normalized
state of the system can be viewed as the result of running unnormalized updates and
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then normalizing the resulting state only at the end. Thus for conceptual simplicity in
developing and analyzing particle belief propagation we avoid any explicit normaliza-
tion of the messages; such normalization can be included in the algorithms in practice.

Additionally, for reasons of computational efficiency it is helpful to use the alter-
native expression mt→s(xs) =

∑
Ψt,s(xt, xs)Bt(xt)/ms→t(xt) when computing

the messages. By storing and updating the belief values Bt(xt) incrementally as in-
coming messages are re-computed, one can significantly reduce the number of opera-
tions required. Although our development of particle belief propagation uses the update
form (3), this alternative formulation can be applied to improve its efficiency as well.

3 Particle Belief Propagation

We now consider the case where |Xs| is too large to enumerate in practice and define a
generic particle (sample) based algorithm. This algorithm essentially corresponds to a
non-iterative version of the method described in [6].

The procedure samples a set of particles x
(1)
s , . . ., x

(n)
s with x

(i)
s ∈ Xs at each node

s of the network1, drawn from a sampling distribution (or weighting) Ws(xs) > 0
(corresponding to the proposal distribution in particle filtering). First we note that (3)
can be written as the following importance-sampling corrected expectation.

mt→s(xs) = Ext∼Wt

[
Ψs,t(xs, xt)Ψt(xt)

∏
u∈Γt\s mu→t(xt)

Wt(xt)

]
. (6)

Given a sample x
(1)
t , . . ., x

(n)
t of points drawn from Wt we can estimate mt→s(x

(i)
s ) as

follows where w
(i)
s = Ws(x

(i)
s ).

m̂
(i)
t→s =

1
n

n∑
j=1

Ψt,s(x
(j)
t , x

(i)
s )Ψt(x

(j)
t )

∏
u∈Γt\s m̂

(j)
u→t

w
(j)
t

. (7)

Equation (7) represents a finite sample estimate for (6). Alternatively, (7) defines a
belief propagation algorithm where messages are defined on particles rather than the
entire set Xs. As in classical belief propagation, for tree structured graphs and fixed
particle locations there is a unique set of messages satisfying (7). Equation (7) can
also be applied for loopy graphs (again observing that message normalization can be
conceptually ignored). In this simple version, the sample values x

(i)
s and weights w

(i)
s

remain unchanged as messages are updated.
We now show that equation (7) is consistent—it agrees with (3) in the limit as n → ∞.

For any finite sample, define the particle domain X̂s and the count ci(x) for x ∈ X̂s as

1 It is also possible to sample a set of particles {x
(i)
st } for each message ms→t in the network

from potentially different distributions Wst(xs), for which our analysis remains essentially un-
changed. However, for notational simplicity and to be able to apply the more computationally
efficient message expression described in Section 2, we use a single distribution and sample
set for each node.
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X̂s = {xs ∈ Xs : ∃k x(i)
s = xs} cs(xs) = |{k : x(i)

s = xs}| .

Equation (7) has the property that if x
(i)
s = x

(i′)
s then m

(i)
t→s = m

(i′)
t→s; thus we can

rewrite (7) as

m̂t→s(xs) =
1
n

∑
xt∈X̂t

ct(xt)
Wt(xt)

Ψt,s(xt, xs)Ψt(xt)
∏

u∈Γt\s

m̂u→t(xt) xs ∈ X̂s . (8)

Since we have assumed Ws(xs) > 0, in the limit of an infinite sample X̂t becomes all
of Xt and the ratio (ct(xt)/n) converges to Wt(xt). So for sufficiently large samples
(8) approaches the true message (3). Fundamentally, we are interested in particle-based
approximations to belief propagation for their finite–sample behavior, i.e., we hope that
a relatively small collection of samples will give rise to an accurate estimate of the
beliefs - the true marginal Pt(xt). At any stage of BP we can use our current marginal
estimate to construct a new sampling distribution for node t and draw a new set of
particles {x

(i)
t }. This leads to an iterative algorithm which continues to improve its

estimates as the sampling distributions become more accurately targeted, although such
iterative resampling processes often require more work to analyze; see e.g. [9].

In [6], the sampling distributions were constructed using a density estimation step
(fitting mixtures of Gaussians). However, the fact that the belief estimate M̃t(xt) can
be computed at any value of xt allows us to use another approach, which has also been
applied to particle filters [13,14] with success. By running a short MCMC simulation
such as the Metropolis-Hastings algorithm, one can attempt to draw samples directly
from the weighting M̃t. This manages to avoid any distributional assumptions inherent
in density estimation methods, but has the disadvantage that it can be difficult to assess
convergence during MCMC sampling.

4 Experimental Results

In this section, we describe the application of Particle Belief Propagation (PBP) to the
problem of Structure from Motion (SfM) and the problem of Dense Stereo Vision with
unknown camera constraints.

4.1 Particle Belief Propagation for SfM

In SfM, given a set of 2D images of the same scene, the objective is to simultaneously
recover both the camera trajectories and the 3D structure of the scene. For this problem,
it is commonly accepted that Bundle Adjustment (BA) [16] is the Gold standard. There
has been a lot of work on this problem [17,18,19], mostly using geometric based meth-
ods. All of this work demonstrated that their result using BA as the last step is much
better than without BA. With each camera pose and each map object 3D location be-
ing represented as a finite set of particles, we show that PBP can successfully estimate
their true states by estimating their posterior distributions over the state space given
the image observations. The algorithm was tested on both real and synthetic data. An
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Fig. 1. The representation of the Structre from Motion problem as a bipartite graphical model

experiment on synthetic data, when the ground truth is available, allows us to compare
the performance of our method with BA.

First, we represent the problem of SfM in the context of PBP. For each observed
image, we detect a sparse set of special image keypoints. These points should be high-
level image features, obtained by a feature detector (such as corner detector or SIFT
detector [20]). The correspondences of image points between images are automatically
obtained using a feature matching method, such as an efficient nearest neighbour algo-
rithm [20]. The obtained matching result also defines the correspondences between the
image points and the map points. The 3D scene can now be represented as a sparse set
of 3D points. Each camera pose is assigned to a 3D location, combined with 3 angles
of rotation, which define the rotation of the camera about 3 axes. Our method is based
on the assumption that given a set of image observations and the estimate of all map
points (resp. camera poses), there exists a probability distribution for each camera pose
(resp. map points) over its state space. The true state of map points and camera poses
are hidden variables that we want to estimate. Let Pi denote the random variable for
the ith camera pose. Let Yj denote the random variable for the jth map point. The ob-
served data are image points and their correspondences. We denote xij the image point
variable associated with map point Yj as seen from camera Pi.

Our graphical model G(V, E) consists of two types of nodes. Each camera node i is
associated with a camera variable Pi, each map node j is associated with a map variable
Yj . For simplicity of notation we name each node after its variable. We add to E every
edge connecting each camera node and a map point node it observes. No edge connects
any two camera nodes, or any two map nodes. If each camera has an entire view of the
whole set of map points, we have a complete bipartite graph. Each edge in the graph is
associated with a binary potential function, denoted Ψi,j(pi, yj). More specifically, for
an edge connecting camera node Pi and map node Yj , we have:

Ψi,j(pi, yj) = e
−‖Q(pi,yj)−xij‖2

2∗σ2 . (9)

where Q(pi, yj) is the reprojection function that takes a camera pose and a map point
and returns the reprojected image point, xij is the image observation of map point yj as
seen from camera pi, σ2 is the variance of the Gaussian image noise. This is equivalent
to assuming a normal distribution of the true observation around the given observation.
This allows us to represent the uncertainty of observation.
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At this point the message function and belief function on G are well defined us-
ing (3) and (4). However, the state space of each hidden variable in G is too large to do
inference with BP. In order to use PBP, we discretize the state space of each variable into
a relatively small number of states, each of which is represented by a particle. These
states can be sampled from a normal distribution with some initial mean and variance.
For example, we can initialize the state of each 3D map point by sampling from a 3D
line going through the first camera centre point and the corresponding image point. As
we assume that the camera motion is smooth, the initial states of the next camera pose
can be sampled from a region nearby the previous one.

Now we have at each camera node Pi, a set of M particles: p
(1)
i , . . ., p

(M)
i , at each

map node Yj , a set of N particles: y
(1)
j , . . ., y

(N)
j . If we assume no unary potential at

each node, we can define the message going from camera node i to map node j in G
by (7) as follows:

m̂
(k)
i→j =

1
M

M∑
h=1

w
(h)
t Ψi,j(p

(h)
i , y

(k)
j )

∏
u∈Γi\j

m̂
(h)
u→i . (10)

At the beginning, all particles in a node are assigned uniform weights and no message
has been computed, equation (10) becomes:

m̂
(k)
i→j =

1
M

M∑
h=1

Ψi,j(p
(h)
i , y

(k)
j ) . (11)

This can be interpreted as the marginal probability
∑M

h=1 P (Yj = y
(k)
j |xij , Pi = p

(h)
i ).

It follows that the belief of a map node becomes the marginal probability over all as-
signments of its neighbouring camera nodes, conditioned on relevant observations:

B̂j(y
(k)
j ) =

∏
i∈Γj

M∑
h=1

P (Yj = y
(k)
j |x, Pi = p

(h)
i ) =

∑
p

P (Yj = y
(k)
j |x, p) . (12)

where p is an assignment of values to all neighbouring pose nodes. The message from
a map node to a pose node and the belief of a pose node can be interpreted similarly. As
PBP proceeds, the information from one node is sent to all other nodes in the graph. This
allows (2) to be approximated by (12). As shown in section 3, the posterior marginal
estimated by PBP is almost guaranteed to converge to the true posterior marginal dis-
tribution estimated by BP. In addition to PBP, the samples at each node are iteratively
updated by Metropolis-Hastings sampling from the estimated posterior marginal distri-
bution at that node. Metropolis-Hastings sampling allows particles to freely explore the
state space and thus compensates the inadequacy of representing a large state space by
a small number of samples.

4.2 Comparison with Bundle Adjustment

The objective of this experiment is to compare PBP with the well known method BA
in terms of reconstruction accuracy, by measuring the deviation of their reconstruction
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Method Error

BA (Map) 185.81 ± 66.43
PBP (Map) 194.00 ± 63.02
BA (Pose) 11.88 ± 4.40
PBP (Pose) 11.56 ± 4.39
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Fig. 2. Comparing bundle adjustment to PBP in structure from motion. (a) Estimated mean and
standard deviation of reconstruction errors for camera pose and map positions; (b) example pos-
terior for one camera pose and (c) for one map point using PBP.

estimates from the ground truth. The model for bundle adjustment is a pairwise graph-
ical model over poses pi and object positions yj given observed locations xij in the
images:

P ({pi}, {yj}) =
∏

ψi,j(pi, yj) Ψi,j(pi, yj) = e
−‖Q(pi,yj )−xij‖2

2∗σ2 .

Bundle adjustment then searches for a local maximum (i.e., a mode) of the posterior dis-
tribution over the {pi, yj}. However, if the intent is to minimize the expected squared
error loss, we should prefer the mean estimate of the posterior distribution instead of its
mode. Note that these two quantities can be very different in problems where the poste-
rior distribution is very skewed or multi-modal; in such cases, it may be advantageous
to estimate the posterior distribution and its mean using methods such as belief prop-
agation. Additionally, an explicit representation of uncertainty can be used to assess
confidence in the estimate.

We show a comparison between estimates given by BA2 and PBP on synthetic struc-
ture from motion data in Figure 2. For the data, we generate a fixed set of map points
and a few camera poses. Each point’s observations are obtained by projecting the point
on each camera’s image planes and adding Gaussian noise. We assume that the camera
calibration parameters and the image correspondences are known, and initialize the es-
timates for both algorithms to ground truth, then run each to convergence and compare
the resulting error.

Figure 2(a) shows the estimated mean and standard deviation of reconstruction errors
of BA and PBP from 200 different runs (units are synthetic coordinates). This shows
that, at the same level of image noise and from the same initial conditions, PBP produces
essentially the same accuracy as BA for both camera and map points. However, we
expect that in less idealized cases (including, for example, incorrect feature associations
or outlier measurements), PBP may perform much better [22]. Moreover, PBP does not
require an initialization step to provide a good initial state vales, as we allow the set
of initial states to be chosen randomly. In addition, PBP provides an estimate of state
uncertainty (although at some computational cost). Figure 2(b)–(c) shows the estimated
posterior distributions given by PBP for a camera pose and map point, respectively,

2 We use the sba package in [21].
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Fig. 3. The graphical representation of the Dense Stereo Vision problem

(a) (b)

Fig. 4. (a) left image of the stereo pair; (b) estimated depth map at convergence of PBP

along with the mean found via PBP (circle), mode found via BA (diamond), and true
position (square).

4.3 Particle Belief Propagation for Dense Stereo with Unknown Camera
Constraints

Classical dense two-frame Stereo algorithms compute a dense disparity map for each
pixel given a pair of images under known camera constraints (i.e. the configuration of
the 2 cameras and the distance between them are known) [23]. Here, given a pair of
stereo images with unknown camera constraints, we use PBP to simultaneously com-
pute the dense depth map of the first image, and the configuration of the second camera
relative to the first. Belief propagation [24,25] has been successfully applied to standard
binocular stereo. To obtain computational efficiency, we take advantage of the algorith-
mic techniques in [25] which considerably speed up the the standard BP algorithm.

The formulation of the graphical model in this case is quite similar to the previous
problem. There are 2 camera nodes, and the number of map nodes equals the number of
pixels in the first image. An edge is added between every pixel node and every camera
node. (see Figure 3). A new energy function, which evaluates the quality of the labeling
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Fig. 5. Estimated posterior distribution of the camera pose over time

of both the camera poses and the 3D depth of each image point, has the following
similar form,

E(z, c) =
∑

(p,q)∈N

V (zp, zq) +
∑
p∈P

D(zp, c) . (13)

where P is the set of all pixels in the first image, N contains all edges connecting 2
pixel nodes, the labeling z is a function which assigns a depth value zp to each pixel
p ∈ P , c is the assigned label for the 3D configuration of the second camera, namely
a 6-vector (x, y, z, α, β, γ). V (zp, zq) denotes the smoothness term, which is the cost
of assigning labels zp and zq to two adjacent pixels. In this case we use the follow-
ing V (zp, zq) = min(‖zp − zq‖ , θ), which captures the assumption that the scene has
smooth depth almost everywhere, except at certain locations (such as boundaries). Note
that this equation also defines the binary potential function associated with edges con-
necting two pixel nodes. The data term D(zp, c) computes the cost of simultaneously
assigning label zp to pixel p, and assigning configuration c to the second camera. We
use the following data term,

D(zp, c) = min(‖I2(Q(p, zp, c)) − I1(p)‖ , τ) . (14)

where the function Q(p, zp, c) takes the pixel p on the first image, its 3D depth zp, the
configuration c of the second camera, and returns the corresponding pixel on the second
image. Note that we also use a truncation value τ , which allows abrupt changes in image
intensity, and makes the data cost robust to occlusion and specularity. (14) also defines
the binary potential associated with edges connecting a pixel node and a camera node.

Minimizing the energy function E(z, c) is now equivalent to finding the maximum
posterior probability (MAP) estimate for the defined graphical model. For an energy
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Method nonocc all disc

Adapting BP 1.11 1.37 5.79
Graph cuts with occ 1.19 2.01 6.24
Our method 2.11 4.22 11.1
SSD + min-filter 5.23 7.07 24.1
Phase difference alg 4.89 7.11 16.3
Infection alg 7.95 9.54 28.9

Fig. 6. Comparative performance on the Tsukuba data with some other well-known stereo algo-
rithms, using the three performance measures, nonocc (ratio of bad pixels at nonoccluded re-
gions), all (ratio of bad pixels at all regions) and disc (ratio of bad pixels at regions near depth
discontinuities)

function of type (13), the max-product algorithm [26] can be used as the message up-
dating method, which becomes min-sum when performed in negative log.

As shown in Figure 5, we plot the estimated posterior distribution of the second
camera pose at each iteration, thus show that the distribution gradually approaches the
true state over time. Figure 4 shows the estimated depth map result on frame 3 of the
Tsukuba image sequence at convergence.

Finally, Figure 6 demonstrates the comparative performance on the Tsukuba data
with some other well-known stereo algorithms. As the labels we assign for pixels are
their true 3D depths instead of their disparities between the two images, in order to do
this, we quantize the output depth into a number of depth range equivalent to the number
of disparity levels used in the evaluation routine, as shown in [23] and the Middlebury
College Stereo Evaluation webpage (http://www.middlebury.edu/stereo).

5 Summary and Conclusions

In this paper we have demonstrated the application of the Particle-based Belief Propa-
gation algorithm to the problems of Structure from Motion, and the problem of Dense
Stereo with unknown camera constraints. To handle the cases with continuous-valued
variables, or discrete-valued variables with very large domains, our approach creates
a set of particles for each variable, representing samples from the posterior marginal.
The algorithm then continues to improve the current marginal estimate by constructing
a new sampling distribution and draw new sets of particles. It’s shown by experiments
that the algorithm is consistent, i.e. approaches the true values of the message and be-
lief functions with finite samples. Besides accuracy, PBP algorithm also provides good
estimate for properties of the distribution, and a represention of state uncertainty.

Although an “adaptive” choice for the sampling distribution, and such iterative re-
sampling processes require further work to analyze, our results seem to support the
notion of sampling from the current marginal estimates themselves, whether from fitted
distributions [6] or via a series of MCMC steps.

Acknowledgments. The authors would like to express their thanks to Dr. Alexander
Ihler of the Toyota Technological Institute at Chicago for his constructive comments
and suggestions.



Particle-Based Belief Propagation for Structure 27

References

1. Pearl, J.: Probabilistic Reasoning in Intelligent Systems. Morgan Kaufman, San Mateo
(1988)

2. Freeman, W.T., Pasztor, E.C., Carmichael, O.T.: Learning low-level vision. IJCV 40(1), 25–
47 (2000)

3. Coughlan, J.M., Ferreira, S.J.: Finding deformable shapes using loopy belief propagation.
ECCV 7, 453–468 (2002)

4. Coughlan, J.M., Shen, H.: Shape matching with belief propagation: Using dynamic quanti-
zation to accomodate occlusion and clutter. In: CVPR Workshop on Generative Model Based
Vision (2004)

5. Arulampalam, M.S., et al.: A tutorial on particle filters for online nonlinear/non-Gaussian
Bayesian tracking. IEEE Trans. SP 50(2), 174–188 (2002)

6. Koller, D., Lerner, U., Angelov, D.: A general algorithm for approximate inference and its
application to hybrid Bayes nets. UAI 15, 324–333 (1999)

7. Sudderth, E.B., et al.: Nonparametric belief propagation. In: CVPR (2003)
8. Isard, M.: PAMPAS: Real–valued graphical models for computer vision. In: CVPR (2003)
9. Neal, R.M., Beal, M.J., Roweis, S.T.: Inferring state sequences for non-linear systems with

embedded hidden Markov models. In: NIPS, vol.16 (2003)
10. Thrun, S., Fox, D., Burgard, W.: Monte carlo localization with mixture proposal distribution.

In: AAAI, pp. 859–865 (2000)
11. van der Merwe, R., et al.: The unscented particle filter. In: NIPS, vol. 13 (2001)
12. Doucet, A., de Freitas, N., Gordon, N. (eds.): Sequential Monte Carlo Methods in Practice.

Springer, New York (2001)
13. Godsill, S., Clapp, T.: Improvement strategies for Monte Carlo particle filters. In: Doucet,

J.F.G.D.F.A., Gordon, N.J. (eds.) Sequential Monte Carlo Methods in Practice, Springer,
New York (2001)

14. Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable num-
ber of interacting targets. IEEE Trans. PAMI, 1805–1918 (2005)

15. Clifford, P.: Markov random fields in statistics. In: Grimmett, G.R., Welsh, D.J.A. (eds.)
Disorder in Physical Systems, pp. 19–32. Oxford University Press, Oxford (1990)

16. Triggs, B., et al.: Bundle adjustment - a modern synthesis. In: Vision Algorithms (1999)
17. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cam-

bridge University Press, Cambridge (2004)
18. Kaucic, R., Hartley, R., Dano, N.: Plane-based projective reconstruction. In: ICCV 2001. Pro-

ceedings of the Ninth IEEE International Conference on Computer Vision. IEEE Computer
Society Press, Los Alamitos (2001)

19. Snavely, N., Seitz, S.M., Szeliski, R.: Photo tourism: Exploring photo collections in 3D.
ACM Transactions on Graphics 25(3), 835–846 (2006)

20. Lowe, D.G.: Object recognition from local scale-invariant features. In: Proc. of the Interna-
tional Conference on Computer Vision, Corfu., pp. 1150–1157 (1999)

21. Lourakis, M., Argyros, A.: The design and implementation of a generic sparse bundle
adjustment software package based on the levenberg-marquardt algorithm. In: Technical
Report 340, Institute of Computer Science - FORTH, Heraklion, Crete, Greece (2004),
http://www.ics.forth.gr/∼lourakis/sba

22. Ihler, A.T., et al.: Nonparametric belief propagation for self-calibration in sensor networks.
IEEE Trans. Jsac., 809–819 (2005)

23. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-frame stereo
correspondence algorithms (2001)

http://www.ics.forth.gr/~lourakis/sba


28 H. Trinh and D. McAllester

24. Sun, J., Zheng, N.N., Shum, H.Y.: Stereo matching using belief propagation. IEEE Trans.
Pattern Anal. Mach. Intell. 25(7), 787–800 (2003)

25. Felzenszwalb, P.F., Huttenlocher, D.P.: Efficient belief propagation for early vision. Int. J.
Comput. Vision 70(1), 41–54 (2006)

26. Weiss, F.: On the optimality of solutions of the max-product belief-propagation algorithm in
arbitrary graphs. IEEETIT: IEEE Transactions on Information Theory 47 (2001)


	Introduction
	Review of Belief Propagation
	Particle Belief Propagation
	Experimental Results
	Particle Belief Propagation for SfM
	Comparison with Bundle Adjustment
	Particle Belief Propagation for Dense Stereo with Unknown Camera Constraints

	Summary and Conclusions


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice


