Skip to main content

Stereo Vision Based Self-localization of Autonomous Mobile Robots

  • Conference paper
Book cover Robot Vision (RobVis 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4931))

Included in the following conference series:

Abstract

This paper presents vision based self-localization of tiny autonomous mobile robots in a known but highly dynamic environment. The problem covers tracking the robot position with an initial estimate to global self-localization. The algorithm enables the robot to find its initial position and to verify its location during every movement. The global position of the robot is estimated using trilateration based techniques whenever distinct landmark features are extracted. Distance measurements are used as they require fewer landmarks compared to methods using angle measurements. However, the minimum required features for global position estimation are not available throughout the entire state space. Therefore, the robot position is tracked once a global position estimate is available. Extended Kalman filter is used to fuse information from multiple heterogeneous sensors. Simulation results show that the new method that combines the global position estimation with tracking results in significant performance gain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chong, K.S., Kleeman, L.: Accurate odometry and error modelling for a mobile robot. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2783–2788 (1997)

    Google Scholar 

  2. Borenstein, J., Everett, H.R., Feng, L.: Navigating Mobile Robots: Systems and Techniques. A. K. Peters, Ltd., (1996)

    Google Scholar 

  3. Bais, A., Sablatnig, R.: Landmark based global self-localization of mobile soccer robots. In: Narayanan, P.J., Nayar, S.K., Shum, H.-Y. (eds.) ACCV 2006. LNCS, vol. 3852, pp. 842–851. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Crowley, J.L.: Mathematical foundations of navigation and perception for an autonomous mobile robot. In: Proceedings of the International Workshop on Reasoning with Uncertainty in Robotics, pp. 9–51 (1995)

    Google Scholar 

  5. Newman, P.: An Introduction to Estimation and its Application to Mobile Robotics. Robotics Research Group, Department of Engineering Science, University of Oxford. 2.0 edn., Lecture notes (2005)

    Google Scholar 

  6. Lee, J.M., et al.: Localization of a mobile robot using the image of a moving object. IEEE Transactions on Industrial Electronics 50, 612–619 (2003)

    Article  Google Scholar 

  7. Ohno, K., Tsubouchi, T., Yuta, S.: Outdoor map building based on odometry and rtk-gps positioning fusion. In: Proceedings of the IEEE International Conference on Robotics and Automation, vol. 1, pp. 684–690 (2004)

    Google Scholar 

  8. Arras, K.O., et al.: Feature-based multi-hypothesis localization and tracking using geometric constraints. Robotics and Autonomous Systems 44, 41–53 (2003)

    Article  Google Scholar 

  9. Fox, D., et al.: Markov localization for mobile robots in dynamic environments. Artificial Intelligence 11, 391–427 (1999)

    MATH  Google Scholar 

  10. Thrun, S., et al.: Robust monte carlo localization for mobile robots. Artificial Intelligence 128, 99–141 (2001)

    Article  MATH  Google Scholar 

  11. Gutmann, J., Fox, D.: An experimental comparison of localization methods continued. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)

    Google Scholar 

  12. Bais, A., Deutsch, T., Novak, G.: Comparison of self-localization methods for soccer robots. In: Proceedings of the IEEE International Conference on Industrial Informatics (2007)

    Google Scholar 

  13. Lamon, P., et al.: Deriving and matching image fingerprint sequences for mobile robot localization. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1609–1614 (2001)

    Google Scholar 

  14. Nickerson, S.B., et al.: The ark project: Autonomous mobile robots for known industrial environments. Robotics and Autonomous Systems 25, 83–104 (1998)

    Article  Google Scholar 

  15. Bais, A., Sablatnig, R., Novak, G.: Line-based landmark recognition for self-localization of soccer robots. In: Proceedings of the IEEE International Conference on Emerging Technologies, pp. 132–137 (2005)

    Google Scholar 

  16. Bais, A., et al.: Active single landmark based global localization of autonomous mobile robots. In: Bebis, G., et al. (eds.) ISVC 2006. LNCS, vol. 4291, pp. 202–211. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Borenstein, J., Feng, L.: Measurement and correction of systematic odometry errors in mobile robots. IEEE Transactions on Robotics and Automation 12, 869–880 (1996)

    Article  Google Scholar 

  18. Bais, A., et al.: Location tracker for a mobile robot. In: Proceedings of the IEEE International Conference on Industrial Informatics, pp. 479–484 (2007)

    Google Scholar 

  19. Bais, A.: Real-Time Mobile Robot Self-localization - A Stereo Vision Based Approach. PhD thesis, Vienna University of Technology, Vienna, Austria (2007)

    Google Scholar 

  20. Matthies, L., Shafer, S.: Error modeling in stereo navigation. IEEE Transactions on Robotics and Automation RA-3, 239–248 (1987)

    Google Scholar 

  21. Panzieri, S., et al.: A low cost vision based localization system for mobile robots. In: Proceedings of the Mediterranean Conference on Control and Automation (2001)

    Google Scholar 

  22. Lingemann, K., et al.: High-speed laser localization for mobile robots. Robotics and Autonomous Systems 51, 275–296 (2005)

    Article  Google Scholar 

  23. Li, X.J., So, A.T.P., Tso, S.K.: Cad-vision-range-based self-localization for mobile robot using one landmark. Journal of Intelligent and Robotic Systems 35, 61–81 (2002)

    Article  MATH  Google Scholar 

  24. Novak, G., Mahlknecht, S.: TINYPHOON a tiny autonomous mobile robot. In: Proceedings of the IEEE International Symposium on Industrial Electronics, pp. 1533–1538 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bais, A. et al. (2008). Stereo Vision Based Self-localization of Autonomous Mobile Robots. In: Sommer, G., Klette, R. (eds) Robot Vision. RobVis 2008. Lecture Notes in Computer Science, vol 4931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78157-8_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78157-8_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78156-1

  • Online ISBN: 978-3-540-78157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics