Skip to main content

Stereo Vision Local Map Alignment for Robot Environment Mapping

  • Conference paper
Book cover Robot Vision (RobVis 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4931))

Included in the following conference series:

  • 2368 Accesses

Abstract

Finding correspondences between sensor measurements obtained at different places is a fundamental task for an autonomous mobile robot. Most matching methods search correspondences between salient features extracted from such measurements. However, finding explicit matches between features is a challenging and expensive task. In this paper we build a local map using a stereo head aided by sonars and propose a method for aligning local maps without searching explicit correspondences between primitives. From objects found by the stereo head, an object probability density distribution is built. Then, the Gauss-Newton algorithm is used to match correspondences, so that, no explicit correspondences are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cox, I.J.: Blanchean experiment in guidance and navigation of an autonomous robot vehicle. IEEE Transactions on Robotics and Automation 7(2), 193–203 (1991)

    Article  Google Scholar 

  2. Weiss, G., von Puttkamer, E.: A map based on laserscans without geometric interpretation. In: Intel. Aut. Systems. Karlsruhe, Germany, March 27-30, pp. 403–407 (1995)

    Google Scholar 

  3. Gutmann, J.-S., Schlegel, C.: AMOS: comparison of scan matching approaches for self-localization in indoor environments, p. 61 (1996)

    Google Scholar 

  4. Lu, F., Milios, E.: Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans. J. of Intelligent and Robotic Systems 18(3), 249–275 (1997)

    Article  Google Scholar 

  5. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. International Journal of Computer Vision 13(2), 119–152 (1994)

    Article  Google Scholar 

  6. Nüchter, A., et al.: 6D SLAM with an Application in autonomous mine mapping. In: Proc. of the IEEE International Conf. of Robotics and Automation, New Orleans, USA, April 2004, pp. 1998–2003 (2004)

    Google Scholar 

  7. Nieto, J., Bailey, T., Nebot, E.: Recursive scan-matching SLAM. Robotics and Autonomous Systems 55(1), 39–49 (2007)

    Article  Google Scholar 

  8. Nüchter, A., et al.: 6D SLAM with approximate data association. In: Proceedings of the 12th International Conference on Advanced Robotics (ICAR), Seattle, WA, July 2005, pp. 242–249 (2005)

    Google Scholar 

  9. Mühlmann, K., et al.: Calculating Dense Disparity Maps from Color Stereo Images, an Efficient Implementation. International Journal of Computer Vision 47(1–3), 79–88 (2002)

    Article  MATH  Google Scholar 

  10. Biber, P., Straßer, W.: The Normal Distributions Transform: A New Approach to Laser Scan Matching, IEEE/RJS Int. Conf. on Intel. Robots and Systems (2003)

    Google Scholar 

  11. Mikolajczyk, K., et al.: A comparison of affine region detectors. International Journal of Computer Vision 65(1/2), 43–72 (2005)

    Article  Google Scholar 

  12. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Transactions on Pattern Analysis & Machine Intelligence 10(27), 1615–1630 (2005)

    Article  Google Scholar 

  13. Newman, P., Ho, K.: SLAM- Loop Closing with Visually Salient Features. In: International Conference on Robotics and Automation, Barcelona (2005)

    Google Scholar 

  14. Levin, A., Szeliski, R.: Visual Odometry and Map Correlation, IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Los Alamitos, CA, USA, vol. 1, pp. 611–618 (2004)

    Google Scholar 

  15. Se, S., Lowe, D., Little, J.: Vision-based Mobile robot localization and mapping using scale-invariant features. In: Proceedings of the IEEE International Conference on Robotics and Automation (ICRA), Seoul, Korea, May 2001, pp. 2051–2058 (2001)

    Google Scholar 

  16. Davison, A.J., Mayol-Cuevas, W., Murray, D.W.: Real-Time Localisation and Mapping with Wearable Active Vision. In: IEEE International Symposium on Mixed and Augmented Reality (ISMAR), Washington, DC, USA, October 2003, p. 18 (2003)

    Google Scholar 

  17. Brown, M.Z., Burschka, D., Hager, G.D.: Advances in Computational Stereo. IEEE Trans. on Pattern Analysis & Machine Intel. 25(8), 993–1008 (2003)

    Article  Google Scholar 

  18. Mhlmann, K., et al.: Calculating Dense Disparity Maps from Color Stereo Images, an Efficient Implementation. International Journal of Computer Vision 47, 79–88 (2002)

    Google Scholar 

  19. Vincent, L., Soille, P.: Watersheds in Digital Spaces: An Efficient Algorithm Based on Immersion Simulations. IEEE Transactions on Pattern Analysis and Machine Intelligence 13(6), 583–598 (1991)

    Article  Google Scholar 

  20. Shum, H., Szeliski, R.: Panoramic image mosaics, Technical Report TR-97-23, Microsoft Research (1997)

    Google Scholar 

  21. Keller, Y., Averbuch, A.: Robust Multi-Sensor Image Registration Using Pixel Migration. In: Keller, Y., Averbuch, A. (eds.) IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM), Washington D.C, USA (August 2002)

    Google Scholar 

  22. Baker, S., Matthews, I.: Lucas-Kanade 20 Years On: A Unifying Framework. International Journal of Computer Vision 56(3), 221–255 (2004)

    Article  Google Scholar 

  23. Gill, P.E., Murray, W., Wright, M.H.: Practical Optimization. Academic Press, London and New York (1981)

    MATH  Google Scholar 

  24. Blank, D., et al.: Pyro: A python-based versatile programming environment for teaching robotics. Journal on Educational Resources in Computing (JERIC) 3(4), 1 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Gerald Sommer Reinhard Klette

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aldavert, D., Toledo, R. (2008). Stereo Vision Local Map Alignment for Robot Environment Mapping. In: Sommer, G., Klette, R. (eds) Robot Vision. RobVis 2008. Lecture Notes in Computer Science, vol 4931. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78157-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78157-8_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78156-1

  • Online ISBN: 978-3-540-78157-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics