
This is a repository copy of Is lazy abstraction a decision procedure for broadcast
protocols?.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/156483/

Version: Accepted Version

Proceedings Paper:
Dimitrova, R. and Podelski, A. (2008) Is lazy abstraction a decision procedure for
broadcast protocols? In: Logozzo, F., Peled, D.A. and Zuck, L.D., (eds.) Verification, Model
Checking, and Abstract Interpretation - VMCAI 2008. Verification, Model Checking, and
Abstract Interpretation - VMCAI 2008, 07-09 Jan 2008, San Francisco, USA. Lecture
Notes in Computer Science (4905). Springer , pp. 98-111. ISBN 9783540781622

https://doi.org/10.1007/978-3-540-78163-9_12

This is a post-peer-review, pre-copyedit version of an article published in VMCAI 2008
Proceedings. The final authenticated version is available online at:
http://dx.doi.org/10.1007/978-3-540-78163-9_12

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of
the full text version. This is indicated by the licence information on the White Rose Research Online record
for the item.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Is Lazy Abstraction a Decision Procedure for

Broadcast Protocols?

Rayna Dimitrova1 and Andreas Podelski2

1 Universität des Saarlandes
2 University of Freiburg

Abstract. Lazy abstraction builds up an abstract reachability tree by
locally refining abstractions in order to eliminate spurious counterexam-
ples in smaller and smaller subtrees. The method has proven useful to
verify systems code. It is still open how good the method is as a deci-
sion procedure, i.e., whether the method terminates for already known
decidable verification problems. In this paper, we answer the question
positively for broadcast protocols and other infinite-state models in the
class of so-called well-structured systems. This extends an existing result
on systems with a finite bisimulation quotient.

1 Introduction

Lazy abstraction [1] is an interesting verification method that deserves a study
on its own right. It defines the de-facto standard for verification based on the
scheme coined counterexample-guided abstraction refinement (CEGAR) in [2].
While lazy abstraction has demonstrated its practical usefulness [3, 4], it is still
open whether its practical performance is matched by its theoretical qualities.

In this paper, we investigate the suitability of lazy abstraction as a deci-
sion procedure. The general question is for what (already known) decidable
verification problems the method is guaranteed to terminate. We give a posi-
tive answer for the case of so-called well-structured systems. This class, which
contains broadcast protocols and other interesting infinite-state models, is well-
investigated [5–9]. The corresponding verification problem (called coverability)
is known to be decidable [10]. We prove that lazy abstraction is guaranteed to
terminate for every well-structured system; i.e., lazy abstraction is a decision
procedure for coverability.

The high-level formulation of lazy abstraction given in [1] specifies no control
for building up the abstract reachability tree. Strictly speaking, our positive
answer refers to a version of lazy abstraction with control. The control (for
building up the abstract reachability tree) implements a breadth-first strategy.
This corresponds to the default choice in the implementation of lazy abstraction,
e.g., in the tool BLAST [1, 3].

We also give a negative answer. If the lazy abstraction is implemented by a
non-deterministic algorithm (the control for choosing the branches for building
up the abstract reachability tree is non-deterministic choice), then there exists

an example of a well-structured system, an instance of the coverability problem
and a sequence of non-deterministic choices that results in non-termination.

In summary, the contribution of the paper is the comprehensive answer to the
question whether lazy abstraction is a decision procedure for broadcast protocols.

Related Work. Our result relates to two lines of work: the investigation of various
notions of completeness for lazy abstraction and other CEGAR methods, and,
respectively, the design of specific CEGAR methods as complete tests for well-
structured systems.

Completeness of CEGAR for finite-state systems is established in [2]. Sys-
tems with finite trace equivalence include finite-state systems but also timed
automata; lazy abstraction was shown complete for this class in [1]. The com-
pleteness proof exploits the termination guarantee of the finite-quotient con-
struction in [11]. Weaker notions of completeness are investigated in [12] (for
general CEGAR schemes) and in [13] (for lazy abstraction). The proofs em-
ploy combinatorial arguments which, again, are unrelated to the proof methods
employed in this paper.

The design of two specific CEGAR methods as complete tests for well-
structured systems is presented in [6]. The two methods differ from lazy ab-
straction. They lack its main characteristics, the incremental construction of an
abstract reachability tree with localized abstraction refinement for subtrees. The
proofs of the termination guarantee given in [6] and, respectively, in this paper,
both rely on the property defining well-structured systems. In [6], the proofs are
based on the saturation of the set of possible refinements. This is not sufficient
here, already because refinements refer to the (a priori unbounded) number of
subtrees in the abstract reachability tree.

To our knowledge, we are the first to investigate the logical intersection of
the two lines of work described above: the question of whether lazy abstraction
is already a complete test for well-structured systems.

2 Preliminaries

2.1 Well-Structured Systems and Coverability

Here we introduce the class of well-structured transition systems(WSS) following
the conceptual frameworks from [5] and [10]. The preorder � on a set S is
called a well-quasi order if for every infinite sequence s0, s1, s2, . . . of elements
of S, there exist indices i and j such that i is strictly less than j and si �
sj . Let (S,�) be a well-quasi ordered set. A subset A of S is upward-closed
if for every element s of A and for every element t of S such that s � t, it
holds that t is an element of A. The existence of such an order on the set of
states of an infinite-state system, combined with some compatibility property of
the transition relation with respect to this order, guarantees the termination of
certain fixpoint computations.

A labeled transition system S is a tuple 〈S, I, C, δ〉 where S is a possibly
infinite set of states, I ⊆ S is a set of initial states, C is a finite set of labels and

δ ⊆ S × C × S is a labeled transition relation. Transition systems are usually
represented symbolically using formulas over some set of atoms. Let V = X ∪X ′

be a set of variables. The set X ′ consists of the primed versions of the variables
in X . Let AP be a fixed infinite set of atomic formulas over the variables from
V . The language L is the closure of AP under Boolean connectives. For a finite
subset P of AP , we write L(P) for the closure of P under Boolean connectives.
The set of atomic formulas that appear in a formula ϕ we denote with atoms(ϕ).
A program is specified by a tuple 〈X, init, D〉 where X = {x1, . . . , xn} ⊆ X is
a finite set of program variables (including program counters), each of which
is associated with a domain, init(X) is a formula that denotes the set of initial
states, andD is a set of guarded commands that describes the transition relation.
Each guarded command is of the form ci : gi(X)∧x′1 = ei

1(X)∧ . . .∧x′n = ei
n(X)

where ci is the label of the command, gi is the guard and the other conjuncts
are the updates of the variables (the primed variables stand for the next-state
program variables). With each program S = 〈X, init, D〉 we associate a transition
system S = 〈S, I, C, δ〉, which describes its semantics, in the usual way. Each
formula ϕ over the variables in X denotes a set of states: the states in which
ϕ evaluates to true. From now on, we identify formulas over the variables in X

and the sets of states denoted by them. The symbolic operators post and pre

that map a label of a guarded command and a set of states to a set of states are
defined in the usual way.

Consider a transition system S equipped with some well-quasi order � on
the set of states S. Let the transition relation satisfy the following notion of
strong compatibility w.r.t. the labeled transitions, which is the strong compatibility
notion from [5]. That is: for every three states s1, s2 and t1 such that s1 � t1 and
(s1, c, s2) ∈ δ for some label c ∈ C, there exists a state t2 such that s2 � t2 and
(t1, c, t2) ∈ δ. Such labeled transition systems we call well-structured systems.

Let S be a WSS and the formula unsafe denote a set of error states which
is upward-closed w.r.t. the corresponding order �. The coverability problem is
to check whether the upward-closed set of error states is reachable in S. This
problem is known to be decidable for WSS [10].

2.2 Predicate Abstraction

We define abstraction and concretization functions w.r.t. some finite set of pred-
icates P in the usual way. Let |= denote entailment modulo some fixed theory.
The abstraction function αP is parameterized by the finite set of predicates P . It
maps a formula ϕ to the smallest w.r.t. |= formula over P that is greater than ϕ
w.r.t. |=, formally, αP (ϕ) = µ|=ψ ∈ L(P).ϕ |= ψ. The concretization function γP

is defined to be the identity. The functions αP and γP form a Galois connection.
Hence, they are monotone and ϕ |= γP (αP (ϕ)). If L(P) contains a formula that
is equivalent to a formula ϕ, then the abstraction of ϕ is equivalent to ϕ. If P is
a subset of the finite set of predicates Q then for every formula ϕ it holds that
γQ(αQ(ϕ)) |= γP (αP (ϕ)).

2.3 Lazy Abstraction

We recall the lazy abstraction algorithm(LA) from [1]. The algorithm iteratively
explores the abstract state space by constructing an abstract reachability tree. If
it terminates, it returns either a genuine counterexample (a path in the concrete
system from an initial to an error state) or an overapproximation of the set
of reachable states whose intersection with the set of error states is empty. In
order to simplify the presentation, in this section we present the general scheme
of lazy abstraction. In the next section we present in more detail a particular
instantiation of that scheme and then state our contribution.

We describe an algorithm scheme LA[⋆] parameterized by: (1) the strategy
for exploring the abstract state space, namely the operator choose-element used
to select the node of the abstract reachability tree that is going to be processed,
(2) the predicate covered that determines whether the subtree below a node can
be discarded, (3) the abstract operator p̂ost used to compute the regions of the
nodes in the tree and (4) the operator Φ that is used to select the refinement
predicates.

Each edge in the abstract reachability tree is labeled by a label of a guarded
command. The finite sequences of labels of guarded commands we call traces.
We characterize a node n by the trace σ that labels the path from the root
to n. Each node n in the tree is labeled by a pair (ϕ, P) called region, written
n:(ϕ, P). P is a finite set of predicates over the variables in X and ϕ is a Boolean
formula over P . The formula ϕ, which we call the reachable region of n, denotes
an overapproximation of the set of states reachable via the corresponding trace
σ. If the conjunction of ϕ and the formula unsafe is satisfiable then n is an error
node, otherwise we call it a safe node.

The procedure constructs a sequence of trees. We denote the current tree
at iteration k with Tk. The initial tree T0 consists of a single node r labeled
with the region (init, P0), where P0 consists of the atoms that appear in the
formula init and the atoms that appear in the formula unsafe. Each node in the
current tree has a mark that can be one of the following: unprocessed, covered
or uncovered. The list L consists of all nodes in the current tree that are marked
as unprocessed. These are nodes that have been added to the tree but have
not been processed yet. At each step the algorithm chooses a node n from L,
unless L is empty, and deletes it from the list. Then it processes the node n and
constructs the next tree Tk+1 as explained below or returns a counterexample. If
L is empty, the algorithm terminates with the formula Reach as a result, where
the formula Reach is defined to be the disjunction of the reachable regions of all
nodes in the current tree that are marked as uncovered.

When n is a safe node, the algorithm LA[⋆] proceeds as follows. If n should
be marked as covered, i.e., covered(ϕ) is true for the reachable region ϕ of n (this
holds if ϕ is contained in the disjunction of the reachable regions of some of the
nodes in the current tree that are marked as uncovered), then n is marked as cov-
ered and its children are not generated. Otherwise, it is marked as uncovered and
for each command c, the algorithm does the following. If post(c, ϕ) is not empty,
it adds a new node as a child of n and labels it with the region p̂ost(c, (ϕ, P)).

Algorithm 1: LA[⋆]

Input: a program S , a formula unsafe

Output: either “CORRECT” and a formula θ or
“NOT CORRECT” and counterexample σ
P0 := atoms(init) ∪ atoms(unsafe);
T consists of a single node r:(init, P0);
L := {r}; Reach = false;
repeat

n:(ϕ, P) :=choose–element(L);
remove n:(ϕ, P) from L;
if ϕ |= ¬unsafe then

if covered(ϕ) then
mark n as covered

else
mark n as uncovered;
Reach := Reach ∨ ϕ;
forall c ∈ C do

if post(c, ϕ) 6= ∅ then

add m:p̂ost(c, (ϕ,P)) as a child of n in T ;
label the edge from n to m with c;
mark m as unprocessed and add m to L

end

end

end

else
m:(ψ,Q) is the pivot node for n;
if m= ⊥ then

return (“NOT CORRECT”,the trace from the root to n)
else

τ is the trace from m to n;
relabel m with (ψ,Q ∪ Φ(ψ, τ, unsafe));
mark m as unprocessed and add it to L;
delete the subtrees that start from the children of m;
all nodes that were marked as covered after the last time m was
processed are marked as unprocessed and added to L;
Reach :=

∨
n
′:(ϕ′,P ′):uncovered ϕ

′

end

end

until L = ∅ ;
return (“CORRECT”, Reach)

The edge from n to the new node is labeled with c. All the children of n are
marked as unprocessed and added to the list L.

When the processed node n:(ϕ, P) is an error node, the procedure analyzes
the abstract counterexample backwards. The error region for a trace τ is defined
as pre(τ, unsafe). For each node n′ on the path, LA[⋆] computes the error region
for the trace from n′ to n until it finds the first (in backward direction) node
on the path, for which the conjunction of the corresponding reachable and error
regions is unsatisfiable. This is the pivot node m:(ψ,Q). Then, m is refined w.r.t.
the trace τ , where τ is the error trace – the sequence of the labels of the edges
on the path from m to n. The set of predicates of the pivot node is enhanced
with the predicates in Φ(ψ, τ, unsafe). The subtrees that start at the children of
the pivot node m are deleted, m is marked as unprocessed and so are all nodes
marked as covered after m was last processed.

Provided that the operator p̂ost fulfills the requirement: if p̂ost(c, (ϕ, P)) =
(ϕ′, P ′), then P ′ = P and post(c, ϕ) |= ϕ′, the following two properties of the
labels of the nodes are direct consequences of the construction of the sequence
of trees.

Property 1. Let n:(ϕ, P) be a node in the tree Ti. Let j be an index greater or
equal to i such that for every i ≤ k ≤ j, the node n is not deleted from the tree
Tk. Let m:(ψ,Q) be a node in Tj that is in the subtree rooted at n. Then, it
holds that P ⊆ Q.

Property 2. Let n:(ϕ, P) and m:(ψ,Q) be two nodes in some tree Ti such that
m is in the subtree rooted at n. Let σ be the sequence of labels on the path
from n to m. The set denoted by ψ is an overapproximation of the set of states
that can be reached from a state in ϕ by executing the sequence of commands
σ, formally, post(σ, ϕ) |= ψ.

3 Lazy Abstraction with Breadth-First Strategy: LA[BF]

We obtain the procedure LA[BF] by instantiating the algorithm scheme LA[⋆].
In particular, we impose more control on the abstract state-space exploration
by fixing the search strategy. We restrict the non-deterministic choice, which
node to be processed at the current iteration, to the set min-depth(L) of un-
processed nodes with minimal depth. We instantiate choose-element with the
operator pick-min-element, which selects non-deterministically an element of min-

depth(L). This amounts to a breadth-first exploration of the abstract reachability
tree. We mark a safe node n with reachable region ϕ as covered, i.e., covered(ϕ)
is true, exactly when ϕ |= Reachn, where the formula Reachn is defined to be
the disjunction of the reachable regions of the nodes in the current tree with
depth less than the depth of n that are marked as uncovered. The parameter
p̂ost is instantiated with the abstract post operator post#, which is defined as
post#(c, (ϕ, P)) = (αP (post(c, ϕ)), P).

Let m:(ψ,Q) be the pivot node that is to be refined by the procedure and τ be
the corresponding error trace. We define the focus operator Φ, which determines

the refinement predicates for the error trace τ , as follows. For a trace τ and
indices 1 ≤ i ≤ j ≤ |τ | + 1, we denote with τ [i, j) the subword of τ that starts
at position i and ends at position j − 1 (including the j − 1-th element). Then

Φ(ψ, τ, unsafe) =
⋃|τ |+1

i=1 atoms(pre(τ [i , |τ | + 1), unsafe)). The refinement consists
in enhancing the set of predicates of the pivot node m and deleting the subtrees
that originate from its children.

At each iteration LA[BF] processes an unprocessed node with minimal depth.
Therefore, the refinement satisfies the following property.

Lemma 1. Let n be the node that is processed by the procedure in the tree Ti

at some iteration i. Let σ be a trace and m:(ϕ, P) be a node in Ti such that the
sum of the length of σ and the depth of m is strictly less than the depth of the
node n. Then, ϕ ∧ pre(σ, unsafe) is not satisfiable.

Proof. The proof goes by induction on the length of σ.

Base case. The length of σ is 0. If we assume that for some node m:(ϕ, P) with
the stated property, the formula ϕ ∧ pre(σ, unsafe) is satisfiable, then m is an
error node. Hence, it cannot be marked as covered or uncovered. Therefore, it is
marked as unprocessed. Hence, in Ti there is an unprocessed node with depth
strictly less than the depth of the node n. This is a contradiction to the fact
that n is a node of minimal depth marked as unprocessed.

Induction step. Let σ be of the form c · σ′. By the induction hypothesis, for
every node r, such that the sum of the depth of r and the length of σ′ is strictly
less than the depth of n, the conjunction of the reachable region of r and the
error region for σ′ is not satisfiable. Assume for contradiction that for a node
m:(ϕ, P), the conjunction ϕ ∧ pre(σ, unsafe) is satisfiable and the sum of the
depth of m and the length of σ is strictly less than the depth of n. Then, there
is a state s that satisfies this conjunction. Hence, there is a state t, such that
there is a transition labeled by c from s to t and t is an element of pre(σ′, unsafe).

Since the depth of the node m is strictly less than the depth of the node
n, which the procedure processes in the current iteration, m should be marked
either as covered or as uncovered. If we assume that m is marked as covered,
then there exists a node m′ with reachable region ψ′ in Ti that is marked as
uncovered, has depth less than the depth of the node m and is such that the
state s satisfies ψ′. As t satisfies post(c, ψ′), there is a node m′′ in Ti that is a
child of m′ and the edge between m′ and m′′ is labeled by c. Let the reachable
region of m′′ be ψ′′. It contains the state t. If, on the other hand, we assume
that m is marked as uncovered, there is a node m′′ in Ti that is a child of m

and the edge between m and m′′ is labeled by c. If ψ′′ is the reachable region of
m′′, then the state t satisfies ψ′′.

Hence, in both cases there is a node m′′ such that the state t belongs to its
reachable region ψ′′ and the sum of the depth of m′′ and the length of σ′ is less
than or equal to the sum of the depth of m and the length of σ which is strictly
less than the depth of n. Therefore, we can apply the induction hypothesis, which

Algorithm 2: LA[BF]

Input: a program S , a formula unsafe

Output: either “CORRECT” and a formula θ or
“NOT CORRECT” and counterexample σ
P0 := atoms(init) ∪ atoms(unsafe);
T consists of a single node r:(init, P0);
L := {r}; Reach = false;
repeat

n:(ϕ, P) :=pick-min-element(L);
remove n:(ϕ, P) from L;
if ϕ |= ¬unsafe then

if ϕ |= Reachn then
mark n as covered

else
mark n as uncovered;
Reach := Reach ∨ ϕ;
forall c ∈ C do

if post(c, ϕ) 6= ∅ then

add m:post#(c, (ϕ,P)) as a child of n in T ;
label the edge from n to m with c;
mark m as unprocessed and add m to L;

end

end

end

else
m:(ψ,Q) is the pivot node for n;
if m= ⊥ then

return (“NOT CORRECT”,the trace from the root to n)
else

τ is the trace from m to n;

Q′ :=
⋃|τ |+1

i=1
atoms(pre(τ [i , |τ | + 1), unsafe));

relabel m with (ψ,Q ∪Q′);
mark m as unprocessed and add it to L;
delete the subtrees that start from the children of m;
all nodes that were marked as covered after the last time m was
processed are marked as unprocessed and added to L;
Reach :=

∨
n
′:(ϕ′,P ′):uncovered ϕ

′

end

end

until L = ∅ ;
return (“CORRECT”, Reach)

yields that the intersection of ψ′′ and pre(σ′, unsafe) is empty. This contradicts
to the fact that the state t is an element of both of them. This concludes the
proof. ⊓⊔

4 LA[BF] is a Decision Procedure

From now on, we assume that the program that is given as input to the procedure
LA[BF] denotes a WSS S with a well-quasi order � and that the set of error
states unsafe is upward-closed with respect to this order. We show that in this
case the procedure LA[BF] is guaranteed to terminate.

It is easy to see that if the number of performed refinement operations is
finite, then the procedure terminates. This is because with finitely many pred-
icates we can generate only finitely many non-equivalent regions. To show that
the number of iterations, at which the procedure performs a refinement, is finite,
we prove that the following two properties hold. First, we prove that each par-
ticular node cannot be refined as a pivot node infinitely often. Then, we show
that it is also impossible that the procedure refines infinitely many distinct pivot
nodes. In both cases the proof is by contradiction. We assume that the property
under consideration does not hold and show the existence of an infinite sequence
of states that are pairwise incomparable with respect to the order �. This can
not be true because � is a well-quasi order. To show the existence of such a
sequence, we make use of the fact that for each trace σ the set pre(σ, unsafe) is
upward-closed when unsafe is upward-closed. We first show several lemmas that
we use for proving the two main properties of LA[BF]. We begin with a lemma
that states the progress property of the refinement. Recall that if at the i-th
iteration, n is the pivot node and σ is the sequence of labels on the path from n

to the corresponding error node that is processed in the current tree Ti, we say
that n is refined w.r.t. σ in Ti.

Lemma 2. Let the node n:(ϕ, P) be refined in the tree Ti w.r.t. the trace σ. Let
j be an index greater than i such that for every index k with i ≤ k ≤ j, the
node n is not deleted from the tree Tk. Assume that the node m:(ψ,Q) is in the
subtree rooted at n in Tj, ψ |= ¬pre(σ, unsafe), the node m

′:(ψ′, Q′) is in the
subtree rooted at m and the path from m to m

′ is labeled by σ[1, l) for some l,
i.e., with a prefix of σ. Then, ψ′ |= ¬pre(σ[l, |σ| + 1), unsafe).

Proof. The proof goes by induction. For l such that 1 ≤ l ≤ |σ|+1, let ml:(ψl, Ql)
be the node in Tj such that the path from m to ml is labeled by σ[1, l), if
such nodes exists in Tj . For every l we show that if 1 ≤ l ≤ |σ| + 1 then
ψl |= ¬pre(σ[l, |σ|+1), unsafe). For l = 1 we have ψl = ψ and ψ |= ¬pre(σ[1, |σ|+
1), unsafe). Let l + 1 ≤ |σ| + 1. By induction hypothesis we have that ψl |=
¬pre(σ[l, |σ|+1), unsafe). This yields post(σ[l], ψl) |= ¬pre(σ[l+1, |σ|+1), unsafe).
Since by Property 1 atoms(pre(σ[l + 1, |σ| + 1), unsafe)) ⊆ Ql, we have that
αQl

(post(σ[l], ψl)) |= ¬pre(σ[l + 1, |σ| + 1), unsafe). Thus, ψl+1 |= ¬pre(σ[l +
1, |σ| + 1), unsafe). ⊓⊔

This lemma implies that once a node n is refined w.r.t. a trace σ, no node in
the subtree rooted at n will be refined w.r.t. the same trace at the next iterations,
provided that n is not deleted meanwhile.

Lemma 3. Let the node n be refined in the tree Ti w.r.t. the trace σ. Assume
that for some index j strictly greater than i, it holds that for every index k with
i ≤ k ≤ j, the node n is not deleted from the tree Tk. Then, for every node m

that is in the subtree of n in the tree Tj, it holds that m cannot be refined in the
tree Tj w.r.t. the trace σ.

Proof. Let the label of the node m in Tj be (ψ,Q). Assume that m is refined
in Tj w.r.t. the trace σ. Therefore, ψ |= ¬pre(σ, unsafe). Also, an error node
m′:(ψ′, Q′) is processed in Tj and the path from m to m′ is labeled with σ.
According to Lemma 2, ψ′ |= ¬pre(σ[|σ| + 1, |σ| + 1), unsafe), i.e. ψ′ |= ¬unsafe.
This contradicts to the fact that m′ is an error node. ⊓⊔

Now we are ready to prove that every node can be the refined as pivot node
at only finitely many iterations.

Proposition 1. A node n cannot be refined by LA[BF] infinitely often.

Proof. We first show that if some node is not deleted infinitely often from the
tree, then it cannot be refined infinitely often. Assume that the node n is refined
infinitely often and deleted only finitely often. Thus, there is an infinite sequence
of trees Tk0

, Tk1
, . . . such that the node n is refined in each tree Tki

w.r.t. some
trace σi and for every index k greater or equal to k0, the node n is not deleted
from the tree Tk. According to Lemma 3, all traces in the sequence σ0, σ1, . . .

must be pairwise different. Since the set of labels C is finite, w.l.o.g. we can
assume that for some label c, for each index i, the first element of the trace σi

is exactly c. Let τi be the trace obtained from the trace σi by removing its first
element, and the node m be the child of n with edge from n to m labeled with
c. Let the sequence of formulas ψ0, ψ1, . . . consist of the reachable regions of the
node m in the trees Tk0

, Tk1
, . . . respectively. For every index i, the conjunction

ψi ∧ pre(τi, unsafe) is satisfiable because the node n is refined in the tree Tki

w.r.t. the trace σi. So, for each index i we can choose a state si that satisfies
ψi ∧ pre(τi, unsafe). Since � is a well-quasi order, for the sequence of states
s0, s1, . . ., there exist indices i and j such that i is strictly smaller than j and
si � sj . The set of states pre(τi, unsafe) is upward-closed. Therefore, the state sj

is an element of the set pre(τi, unsafe). According to Lemma 2, the intersection
of the sets ψj and pre(τi, unsafe) is empty. This contradicts to the fact that the
state sj is an element of both sets.

It now remains to show that a node cannot be deleted infinitely often. The
proof is by induction on the depth of the node. The root node is never deleted.
Consider a node n different from the root. By the induction hypothesis we have
that each of the nodes on the path from the root to the node n is deleted only
finitely many times. Hence, as we showed already, each of these nodes can be
refined only a finite number of times. Since a node is deleted only when some

node on the path from the root to this node is refined, n can be deleted only
finitely many times. ⊓⊔

To show that it is not possible that the procedure refines infinitely many
different pivot nodes we need the next lemma, which states that if this is the
case then we can construct an infinite sequence of different nodes that are refined
by the procedure with the property that they belong to the same branch.

Lemma 4. If the procedure refines infinitely many pivot nodes, then there is
an infinite sequence Tk0

, Tk1
, . . . of trees and an infinite sequence n0,n1, . . . of

corresponding nodes in those trees, such that the following two conditions hold.
In the tree Tki+1

the node ni+1 is in the subtree rooted at ni. Each node ni is
refined in the tree Tki

and for each index k strictly greater than ki, ni is not
deleted from or refined in Tk.

Proof. Assume that the procedure refines infinitely many different pivot nodes.
Since the number of children of each node is bounded by |C| and no node is
deleted infinitely often, there exists a sequence Tl0 , Tl1 , . . . of trees and a sequence
m0,m1, . . . of corresponding nodes such that mi+1 is a child of the node mi in
the tree Tli+1

. As we showed, each of these nodes is refined as a pivot node at
only finitely many iterations. If we assume that only finitely many of them are
refined, it follows that there exists an index j, such that mj is subsumed by some
mi with index i < j, which is not possible since mj+1 is a child of mj. Thus,
infinitely many among those nodes are refined. The fact that a node cannot be
refined infinitely often implies that there is an infinite sequence Tk0

, Tk1
, . . . of

trees and a corresponding subsequence n0,n1, . . . of m0,m1, . . . such that each
node ni is refined in the tree Tki

and for each index k strictly greater than ki,
ni is not deleted from or refined in Tk. This concludes the proof. ⊓⊔

What remains now is to show the second property of the refinement, which
is stated below.

Proposition 2. The procedure LA[BF] refines only finitely many pivot nodes.

Proof. Assume that the procedure refines infinitely many pivot nodes and con-
sider an infinite sequence n0,n1, . . . of different nodes and an infinite sequence
Tk0

, Tk1
, . . . of trees that satisfy the conditions stated in Lemma 4. Let σi be the

trace, with respect to which the node ni is refined in the tree Tki
. As every node

ni in the sequence is not deleted in any tree Tk with index k greater than ki,
by Lemma 3 the traces σ0, σ1, . . . are pairwise different. As the set of labels C is
finite, we can assume w.l.o.g. that we have chosen the sequences in a way that
each trace has length strictly less than the length of the next. For each trace
σi, we denote with τi the trace obtained from σi by removing its first element.
Let the sequence of nodes m0,m1, . . . be such that each node mi is the child of
the node ni in the tree Tki

with the edge between them labeled with the first
element of σi. Let the formulas ϕi and ψi be the reachable regions in the tree Tki

of the nodes ni and mi respectively. The intersection of ψi and pre(τi, unsafe) is
not empty since the node ni is refined in the tree Tki

w.r.t. σi. Therefore, there

exists a sequence of states s0, s1, . . . such that each state si is an element of the
corresponding intersection ψi∧pre(τi, unsafe). Since � is a well-quasi order, there
exist indices i and j such that i < j and si � sj . The set of states pre(τi, unsafe)
is upward-closed. Therefore, as the state si is an element of this set and si � sj ,
sj is also an element of pre(τi, unsafe). The node nj is refined in the tree Tkj

w.r.t. the trace σj . Hence, a node n with depth equal to the sum of the depth
of mj and the length of τj is processed in this tree. We can apply Lemma 1 to
the node n, the node mj and the trace τi, because the length of the trace τi is
strictly less than the length of the trace τj . Thus, for the reachable region of the
node mj it holds that the intersection of ψj and pre(τi, unsafe) is empty. This
contradicts to the fact that the state sj is an element of both these sets. This
completes the proof by contradiction. ⊓⊔

Finally, the two propositions yield our main result.

Theorem 1. The procedure LA[BF] is a decision procedure for the coverability
problem for WSS.

5 LA[⋆] is not a Decision Procedure

We use LA[⋆] to refer to lazy abstraction with completely non-deterministic
control for building up the the abstract reachability tree. In this section we give
an example of a system and a sequence of non-deterministic choices that results
in non-termination.

Consider the program given below that has three variables x, y and z, each
of which ranges over IN. The guarded commands are given in Table 1 (we use
”syntactic sugar” and list only the ”true” updates). The set of initial states
is given by x = 0 ∧ y = 0 ∧ z = 0 and the set of error states is denoted by
z ≥ 2. The order � between the states of the corresponding transition system
is the pointwise ordering between the elements of IN3 defined by ≤. It is a well-
quasi order according to Dickson’s lemma [14]. The resulting transition system S
equipped with the order � is a WSS and the set of error states is upward-closed
w.r.t. this order. The system S is safe.

Table 1. Guarded commands

Label Guard Update

c1 true y := 1

c2 y > 1 x := 1 ∧ y := 0

c3 x > 0 x := x+ 1

c4 x > 0 x := x− 1 ∧ y := y + 1

c5 true z := x

c6 x > 0 y := y + 1

c7 y > 1 y := y − 1 ∧ x := x+ 1

c8 true z := y

0, 0, 0 0, 1, 0 0, 1, 1

c1
c8

c5

c5, c8 c1, c5 c1

Fig. 1. Transition system S

If we execute LA[⋆] with a sequence of non-deterministic choices that never
refines the root node as pivot node, then it creates longer and longer counterex-
amples (and refines pivot nodes deeper and deeper in the abstract reachability
tree). It adds predicates of the form x ≥ 2, x ≥ 3, . . . and y ≥ 2, y ≥ 3,
Thus, at each iteration it generates more and more non-subsumed regions. Since
it never refines the root, the initial overapproximation that occurs by approx-
imating y = 1 with y 6= 0 in the abstract execution of c1 is never eliminated.
Thus, the sequence of non-deterministic choices results in a non-terminating run
of the iterative refinement.

It is instructive to follow the execution of LA[BF] on this example. The
initial set of abstract predicates is P0 = {z ≥ 2, x = 0, y = 0, z = 0}. After a few
iterations the procedure LA[BF] refines the root node as pivot node w.r.t. the
trace c1c2c3c5 and adds the atoms y > 1 and x ≥ 2 to the set of predicates
for the root. After that there are no more abstract counterexamples and the
procedure LA[BF] terminates.

6 Conclusion

An abstraction-based algorithm trades higher efficiency with the loss of definite-
ness. It may return ”Don’t Know” answers in some cases; it implements only a
semi-test. A procedure based on counterexample-guided abstraction refinement
trades a higher degree of automation with the loss of the termination guaran-
tee. It may iterate forever without hitting a (“non-spurious”) counterexample
nor proving its absence; it implements only a semi-algorithm. Lazy abstraction
goes one step further towards trading a potential practical gain with the risk
of theoretical deficiencies (since it avoids redundant computations of abstract
subtrees by localizing refinements, with the risk of having to generate the same
predicate infinitely often). It is thus perhaps surprising that, as stated by our
result, lazy abstraction with deterministic control is a decision procedure for the
coverability problem for well-structured system.

It is not the point of this paper to advocate lazy abstraction as a promising
practical alternative to existing decision algorithms for well-structured systems,
including the other algorithms based on abstraction refinement. It is, however,
an outcome of the work presented in this paper that a thorough experimental
comparison on the wide range of well-structured systems (see, e.g., http://www.
ulb.ac.be/di/ssd/lvbegin/CST/#examples) has come to make sense.

References

1. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Lazy abstraction. In: POPL.
(2002) 58–70

2. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement. In Emerson, E.A., Sistla, A.P., eds.: CAV. Volume 1855 of
Lecture Notes in Computer Science., Springer (2000) 154–169

3. Henzinger, T.A., Jhala, R., Majumdar, R., Sutre, G.: Software verification with
BLAST. In Ball, T., Rajamani, S.K., eds.: SPIN. Volume 2648 of Lecture Notes
in Computer Science., Springer (2003) 235–239

4. Henzinger, T.A., Jhala, R., Majumdar, R., Necula, G.C., Sutre, G., Weimer, W.:
Temporal-safety proofs for systems code. In Brinksma, E., Larsen, K.G., eds.: CAV.
Volume 2404 of Lecture Notes in Computer Science., Springer (2002) 526–538

5. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1-2) (2001) 63–92

6. Ganty, P., Raskin, J.F., Begin, L.V.: A complete abstract interpretation framework
for coverability properties of wsts. In Emerson, E.A., Namjoshi, K.S., eds.: VMCAI.
Volume 3855 of Lecture Notes in Computer Science., Springer (2006) 49–64

7. Geeraerts, G., Raskin, J.F., Begin, L.V.: Expand, Enlarge, and Check: New al-
gorithms for the coverability problem of wsts. In Lodaya, K., Mahajan, M., eds.:
FSTTCS. Volume 3328 of Lecture Notes in Computer Science., Springer (2004)
287–298

8. Geeraerts, G., Raskin, J.F., Van Begin, L.: Expand, enlarge and check... made
efficient. In Rajjamani, S.K., Etessami, K., eds.: Poceedings of 17th International
Conference on Computer Aided Verification – CAV 2005. Number 3576 in Lecture
Notes in Computer Science, Springer Verlag (2005) 394–404 to appear.

9. Delzanno, G., Esparza, J., Podelski, A.: Constraint-based analysis of broadcast
protocols. In Flum, J., Rodŕıguez-Artalejo, M., eds.: CSL. Volume 1683 of Lecture
Notes in Computer Science., Springer (1999) 50–66

10. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.K.: General decidability theorems
for infinite-state systems. In: LICS. (1996) 313–321

11. Bouajjani, A., Fernandez, J.C., Halbwachs, N., Raymond, P.: Minimal state graph
generation. Sci. Comput. Program. 18(3) (1992) 247–269

12. Ball, T., Podelski, A., Rajamani, S.K.: Relative completeness of abstraction re-
finement for software model checking. In Katoen, J.P., Stevens, P., eds.: TACAS.
Volume 2280 of Lecture Notes in Computer Science., Springer (2002) 158–172

13. McMillan, K.L.: Lazy abstraction with interpolants. In Ball, T., Jones, R.B.,
eds.: CAV. Volume 4144 of Lecture Notes in Computer Science., Springer (2006)
123–136

14. Dickson, L.: Finiteness of the odd perfect and primitive abundant numbers with
n prime factors. Amer. J. Math. 35 (1913) 413–422

