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Abstract. A proposal of an extended version of the HINoV method for the iden-
tification of the noisy variables (Carmone et al [1999]) for nonmetric, mixed, and
symbolic interval data is presented in this paper. Proposed modifications are eval-
uated on simulated data from a variety of models. The models contain the known
structure of clusters. In addition, the models contain a different number of noisy
(irrelevant) variables added to obscure the underlying structure to be recovered.

1 Introduction

Choosing variables is the one of the most important steps in a cluster analysis.
Variables used in applied clustering should be selected and weighted carefully.
In a cluster analysis we should include only those variables that are believed
to help to discriminate the data (see Milligan [1996], p. 348). Two classes
of approaches, while choosing the variables for cluster analysis, can facilitate
a cluster recovery in the data (see e.g. Gnanadesikan et al [1995]; Milligan
[1996], pp. 347-352):

— variable selection (selecting a subset of relevant variables),

— variable weighting (introducing relative importance of the variables ac-
cording to their weights).

Carmone et al [1999] discussed the literature on the variable selection
and weighting (the characteristics of six methods and their limitations) and
proposed the HINoV method for the identification of the noisy variables, in
the area of the variable selection, to remedy problems with these methods.
They demonstrated its robustness with metric data and k-means algorithm.
The authors suggest further studies of the HINoV method with different types
of data and other clustering algorithms on p. 508.

In this paper we propose extended version of the HINoV method for non-
metric, mixed, and symbolic interval data. The proposed modifications are
evaluated for eight clustering algorithms on simulated data from a variety of
models.
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2 Characteristics of the HINoV method and its
modifications

Algorithm of Heuristic Identification of Noisy Variables (HINoV) method for
metric data (see Carmone et al [1999]) is following:

1. A data matrix [z;;] containing n objects and m normalized variables
measured on a metric scale (i =1,...,n; j =1,...,m) is a starting point.

2. Cluster, via kmeans method, the observed data separately for each j-
th variable for a given number of clusters u. It is possible to use clustering
methods based on a distance matrix (pam or any hierarchical agglomerative
method: single, complete, average, mcquitty, median, centroid, Ward).

3. Calculate adjusted Rand indices R;; (j,I = 1,..., m) for partitions
formed from all distinct pairs of the m variables (j # [). Due to a fact that
adjusted Rand index is symmetrical we need to calculate m(m — 1)/2 values.

4. Construct m x m adjusted Rand matrix (parim). Sum rows or columns

for each j-th variable Rj, = > Rj; (topri):
=1

Variable parim topri
M1 R12 s le Rlo
M2 R21 . RQm RQ.
M,, Ry Ra - - Rine
5. Rank topri values Rie, Roe, ..., Rme in a decreasing order (stopri) and

plot the scree diagram. The size of the topri values indicate a contribution of
that variable to the cluster structure. A scree diagram identifies sharp changes
in the topri values. Relatively low-valued topri variables (the noisy variables)
are identified and eliminated from the further analysis (say h variables).

6. Run a cluster analysis (based on the same classification method) with
the selected m — h variables.

The modification of the HINoV method for nonmetric data (where number
of objects is much more than a number of categories) differs in steps 1, 2, and
6 (see Walesiak [2005]):

1. A data matrix [z;;] containing n objects and m ordinal and/or nominal
variables is a starting point.

2. For each j-th variable we receive natural clusters, where the number of
clusters equals the number of categories for that variable (for instance five for
Likert scale or seven for semantic differential scale).

6. Run a cluster analysis with one of clustering methods based on a distance
appropriate to nonmetric data (GDM2 for ordinal data — see Jajuga et al
[2003]; Sokal and Michener distance for nominal data) with the selected m —h
variables.

The modification of the HINoV method for symbolic interval data differs
in steps 1 and 2:
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1. A symbolic data array containing n objects and m symbolic interval
variables is a starting point.

2. Cluster the observed data with one of clustering methods (pam, single,
complete, average, mcquitty, median, centroid, Ward) based on a distance ap-
propriate to the symbolic interval data (e.g. Hausdorff distance - see Billard
and Diday [2006], p. 246) separately for each j-th variable for a given number
of clusters wu.

Functions HINoV.Mod and HINoV.Symbolic of clusterSim computer pro-
gram working in R allow adequately using mixed (metric, nonmetric), and
the symbolic interval data. The proposed modifications of the HINoV method
are evaluated on simulated data from a variety of models.

3 Simulation models

We generate data sets in eleven different scenarios. The models contain the
known structure of clusters. In the models 2-11 the noisy variables are simu-
lated independently from the uniform distribution.

Model 1. No cluster structure. 200 observations are simulated from the
uniform distribution over the unit hypercube in 10 dimensions (see Tibshirani
et al [2001], p. 418).

Model 2. Two elongated clusters in 5 dimensions (3 noisy variables). Each
cluster contains 50 observations. The observations in each of the two clusters
are independent bivariate normal random variables with means (0, 0), (1, 5),
and covariance matrix ) (o;; = 1, g5, = —0.9).

Model 3. Three elongated clusters in 7 dimensions (5 noisy variables).
Each cluster is randomly chosen to have 60, 30, 30 observations, and the
observations are independently drawn from bivariate normal distribution with
means (0, 0), (1.5, 7), (3, 14) and covariance matrix 3, (¢;; = 1, 0, = —0.9).

Model 4. Three elongated clusters in 10 dimensions (7 noisy variables).
Each cluster is randomly chosen to have 70, 35, 35 observations, and the
observations are independently drawn from multivariate normal distribution
with means (1.5, 6, -3), (3, 12, -6), (4.5, 18, -9), and identity covariance
matrix ), where 0;; =1 (1 < j <3), 012 = 013 = —0.9, and 023 = 0.9.

Model 5. Five clusters in 3 dimensions that are not well separated (1
noisy variable). Each cluster contains 25 observations. The observations are
independently drawn from bivariate normal distribution with means (5, 5),
(-3, 3), (3, -3), (0, 0), (-5, —5), and identity covariance matrix » (o;; = 1,
041 = 09)

Model 6. Five clusters in 5 dimensions that are not well separated (2
noisy variables). Each cluster contains 30 observations. The observations are
independently drawn from multivariate normal distribution with means (5, 5,
5), (-3, 3, -3), (3, -3, 3), (0, 0, 0), (-5, -5, —5), and covariance matrix y_,
where 0;;, =1 (1<j<3),and 0;; =09 (1 <j#I1<3).
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Model 7. Five clusters in 10 dimensions (8 noisy variables). Each cluster is
randomly chosen to have 50, 20, 20, 20, 20 observations, and the observations
are independently drawn from bivariate normal distribution with means (0,
0), (0, 10), (5, 5), (10, 0), (10, 10), and identity covariance matrix ) (¢;j; = 1,
gj1 = 0)

Model 8. Five clusters in 9 dimensions (6 noisy variables). Each clus-
ter contains 30 observations. The observations are independently drawn from
multivariate normal distribution with means (0, 0, 0), (10, 10, 10), (-10, 10,
-10), (10, -10, 10), (-10, 10, 10), and identity covariance matrix » , where
O'JJ:3(1§]§3),and0'ﬂ:2(1§]§£l§3)

Model 9. Four clusters in 6 dimensions (4 noisy variables). Each cluster is
randomly chosen to have 50, 50, 25, 25 observations, and the observations are
independently drawn from bivariate normal distribution with means (-4, 5),
(5, 14), (14, 5), (5, —4), and identity covariance matrix ) (¢;; = 1, g5, = 0).

Model 10. Four clusters in 12 dimensions (9 noisy variables). Each clus-
ter contains 30 observations. The observations are independently drawn from
multivariate normal distribution with means (-4, 5, —4), (5, 14, 5), (14, 5, 14),
(5, 4, 5), and identity covariance matrix ), where ¢;; =1 (1 < j < 3), and
oi=0(1<jA1<3).

Model 11. Four clusters in 10 dimensions (9 noisy variables). Each cluster
contains 35 observations. The observations on the first variable are indepen-
dently drawn from univariate normal distribution with means -2, 4, 10, 16
respectively, and identity variance 0% = 0.5 (1 < j < 4).

Ordinal data. The clusters in models 1-11 contain continuous data and a
discretization process is performed on each variable to obtain ordinal data.
The number of categories k determines the width of each class intervals:

[max{:cij) — m_in{:cij}} / k. Independently for each variable each class interval

receive category 1,...,k and the actual value of variable x;; is replaced by
these categories. In simulation study k = 5 (for k = 7 we have received similar
results).

Symbolic interval data. To obtain symbolic interval data the data were
generated for each model twice into sets A and B and minimal (maximal)
value of {a;;, b;;} is treated as the beginning (the end) of an interval.

Fifty realizations were generated from each setting.

4 Discussion on the simulation results

In testing the robustness of the HINoV modified algorithm using simulated
ordinal or symbolic interval data, the major criterion was the identification
of the noisy variables. The HINoV-selected variables contain variables with
the highest topri values. In models 2-11 the number of nonnoisy variables
is known. Due to this fact, in simulation study, the number of the HINoV-
selected variables equals the number of nonnoisy variables in each model.
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When the noisy variables were identified, the next step was to run the one
of clustering methods based on distance matrix (pam, single, complete, aver-
age, mcquitty, median, centroid, Ward) with the nonnoisy subset of variables
(HINoV-selected variables) and with all variables. Then each clustering re-
sult was compared with the known cluster structure from models 2-11 using
Hubert and Arabie’s [1985] corrected Rand index (see Table 1 and 2).

Table 1. Cluster recovery for all variables and HINoV-selected subsets of variables
for ordinal data (five categories) by experimental model and clustering method

Model Clustering method

pam | ward | single |complete|average|mcquitty|median |centroid

9 @|0.38047(0.53576|0.00022| 0.11912 |0.42288| 0.25114 |0.00527| 0.00032
b|0.84218|0.90705(0.72206| 0.12010 |0.99680| 0.41796 |0.30451| 0.89835

3 @|0.27681(0.34071|0.00288| 0.29392 |0.40818| 0.35435 |0.04625| 0.00192
b|0.85946|0.60606(0.36121| 0.61090 |0.68223| 0.51487 |0.49199|0.61156

4 @|0.35609(0.44997]0.00127| 0.43860 |0.53509| 0.47083 |0.04677| 0.00295
b|0.83993|0.87224(0.56313| 0.56541 |0.80149| 0.62102 |0.54109| 0.80156

5 @|0.54746(0.60139|0.27610| 0.46735 |0.58050| 0.49842 |0.33303| 0.50178
5/0.91071|0.84888(0.48550| 0.73720 |0.81317| 0.79644 |0.72899| 0.74462

6 @|0.61074(0.60821|0.13400| 0.53296 |0.61037| 0.56426 |0.35113| 0.47885
b|0.83880(0.87183(0.56074| 0.75584 |0.86282| 0.81395 |0.71085| 0.79018

7 @|0.10848(0.11946|0.00517| 0.09267 |0.10945| 0.11883 |0.00389| 0.00659
5/0.80072|0.87399(0.27965| 0.87892 |0.94882| 0.77503 |0.74141|0.91638

8 @|0.31419(0.43180|0.00026| 0.29529 |0.40203| 0.36771 |0.00974| 0.00023
6/0.95261|0.96372(0.58026| 0.95596 |0.96627| 0.95507 [0.93701| 0.96582

9 @|0.37078(0.45915|0.01123| 0.12128 |0.50198| 0.31134 |0.04326| 0.00709
5/0.99966|0.98498(0.93077| 0.96993 |0.99626| 0.98024 |0.95461|0.99703

10 @|0.29727(0.41152|0.00020| 0.22358 |0.41107| 0.34663 |0.00030| 0.00007
b/1.00000{1.00000{0.99396| 0.99911 |1.00000| 1.00000 |0.99867| 1.00000
5/0.89378/0.88097|0.60858| 0.73259 |0.89642| 0.76384 (0.71212|0.85838
7(0.53130(0.44119|0.56066| 0.44540 0.45403| 0.39900 O.61883| 0.74730

cer 98.22% [98.00% | 94.44% | 90.67% (97.11% | 89.56% |98.89% | 98.44%
11 {a|0.04335|0.04394(0.00012| 0.04388 |0.03978| 0,03106 |0,00036| 0.00009
b|0.14320{0.08223(0.12471| 0.08497 |0.10373| 0,12355 |0,04626| 0,06419

a (b) — values represent Hubert and Arabie’s adjusted Rand indices averaged over
fifty replications for each model with all variables (with HINoV-selected variables);
7 = b — a; ccr — corrected cluster recovery.

Some conclusions can be drawn from the simulations results:

1. The cluster recovery that used only the HINoV-selected variables for
ordinal data (Table 1) and symbolic interval data (Table 2) was better than
the one that used all variables for all models 2-10 and each clustering method.

2. Among 450 simulated data sets (nine models with 50 runs) the HINoV
method was better (see cer in Table 1 and 2):
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Table 2. Cluster recovery for all variables and HINoV-selected subsets of variables
for symbolic interval data by experimental model and clustering method

Model Clustering method

pam | ward | single |complete| average |mcquitty|median |centroid

5 |0 0.86670(0.87920(0.08006| 0.28578 | 0.32479 | 0.49424 |0.02107|0.00004
5/0.99920{0.97987(0.91681| 0.99680 | 0.99524 | 0.98039 |0.85840|0.95739

3 |2 0.41934]0.39743|0.00368| 0.37361 | 0.38831 | 0.36597 |0.00088| 0.00476
b/1.00000{1.00000{1.00000| 1.00000 | 1.00000 | 1.00000 |0.99062| 1.00000

4 @ 0.04896|0.01641|0.00269| 0.01653 |-0.00075 | 0.01009 [0.00177|0.00023
b/1.00000{1.00000{1.00000| 1.00000 | 1.00000 | 1.00000 |1.00000| 1.00000

5 |2 0.71543|0.70144(0.73792| 0.47491 | 0.60960 | 0.53842 |0.34231|0.28338
6/0.99556(0.99718|0.98270| 0.91522 | 0.99478 | 0.99210 |0.90252| 0.97237

6 12 0.75308]0.67237(0.33392| 0.47230 | 0.67817 | 0.55727 |0.18194|0.10131
5/0.99631{0.99764/0.99169| 0.95100 | 0.98809 | 0.97881 |0.84463| 0.99866

7 1@ 0.36466|0.51262(0.00992| 0.32856 | 0.33905 | 0.39823 |0.00527| 0.00681
b/1.00000{0.99974[1.00000| 0.98493 | 0.99954 | 1.00000 |0.99974|0.99954

g |2 0.74711]0.85104(0.01675| 0.50459 | 0.51029 | 0.61615 |0.00056| 0.00023
b/1.00000{0.99966|0.99932| 0.99966 | 0.99966 | 0.99843 |0.99835| 1.00000

9 |2 0.86040{0.90306|0.30121| 0.26791 | 0.54639 | 0.62620 |0.00245|0.00419
b/1.00000{1.00000{1.00000| 1.00000 | 1.00000 | 1.00000 |1.00000| 1.00000

10 1@ 0.70324]0.91460(0.00941| 0.48929 | 0.47886 | 0.54275 |0.00007|0.00004
b/1.00000{1.00000{1.00000| 1.00000 | 1.00000 | 1.00000 |1.00000| 1.00000
5(0.99900(0.99712|0.98783| 0.98306 | 0.99747 | 0.99441 |0.95491(0.99199
7(0.39023(0.34732|0.82166| 0.62601 | 0.56687 | 0.53337 O.89310| 0.94744

cer 94.67%(91.78%(97.33%| 99.11% | 96.22% | 96.44% [99.56% | 99.78%
n e 0.05334|0.04188(0.00007| 0.03389 | 0.02904 | 0.03313 |0.00009| 0.00004
610.12282|0.04339(0.04590| 0.08259 | 0.08427 | 0.14440 |0.04380|0.08438

a (b); 7 = b—a; ccr — see Table 1.

— from 89.56% (mcquitty) to 98.89% (median) of runs for ordinal data,

— from 91.78% (ward) to 99,78% (centroid) of runs for symbolic interval
data.

3. Figure 1 shows the relationship between the values of adjusted Rand in-
dices averaged over fifty replications and models 2-10 with the HINoV-selected
variables (b) and values showing an improvement (7) of average adjusted Rand
indices (cluster recovery with the HINoV selected variables against all vari-
ables) separately for eight clustering methods and types of data (ordinal,
symbolic interval). Based on adjusted Rand indices averaged over fifty repli-
cations and models 2-10 the improvements in cluster recovery (HINoV selected
variables against all variables) are varying:

— for ordinal data from 0.3990 (mcquitty) to 0.7473 (centroid),

— for symbolic interval data from 0.3473 (ward) to 0.9474 (centroid).
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Fig. 1. The relationship between values of b and 7
Source: own research

5 Conclusions

The HINoV algorithm has limitations for analyzing nonmetric and symbolic
interval data almost the same as the ones mentioned in Carmone et al [1999]
article for metric data.

First, the HINoV is of a little use with a nonmetric data set or a symbolic
data array in which all variables are noisy (no cluster structure — see model
1). In this situation topri values are similar and close to zero (see Table 3).

Table 3. Mean and standard deviation of topri values for 10 variables in model 1

Variable Ordinal data with five categories Symbolic data array

mean sd mean sd
1 —0.00393 0.01627 0.00080 0.02090
2 -0.00175 0.01736 0.00322 0.02154
3 0.00082 0.02009 0.00179 0.01740
4 -0.00115 0.01890 —0.00206 0.02243
5 0.00214 0.02297 —0.00025 0.02074
6 0.00690 0.02030 —0.00312 0.02108
7 —0.00002 0.02253 —0.00440 0.02044
8 0.00106 0.01754 0.00359 0.01994
9 0.00442 0.01998 0.00394 0.02617
10 —0.00363 0.01959 0.00023 0.02152

Second, the HINoV method depends on the relationship between pairs of
variables. If we have only one variable with a cluster structure and the others
are noisy, the HINoV will not be able to isolate this nonnoisy variable (see
Table 4).
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Table 4. Mean and standard deviation of topri values for 10 variables in model 11

Variable Ordinal data with five categories Symbolic data array

mean sd mean sd
1 —0.00095 0.03050 0.00012 0.02961
2 —0.00198 0.02891 0.00070 0.03243
3 0.00078 0.02937 —0.00206 0.02969
4 —0.00155 0.02950 —0.00070 0.03185
5 0.00056 0.02997 —0.00152 0.03157
6 0.00148 0.03090 —0.00114 0.03064
7 —0.00246 0.02959 —0.00203 0.03019
8 —0.00274 0.03137 —0.00186 0.03021
9 —0.00099 0.02975 0.00088 0.03270
10 0.00023 0.02809 -0.00181 0.03126

Third, if all variables have the same cluster structure (no noisy variables)
the topri values will be large and similar for all variables. The suggested se-
lection process using a scree diagram will be ineffective.

Fourth, an important problem is to decide on a proper number of clusters
in stage two of the HINoV algorithm with symbolic interval data. To resolve
this problem we should initiate the HINoV algorithm with a different number
of clusters.
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