Skip to main content

Finding the Orthogonal Hull of a Digital Object: A Combinatorial Approach

  • Conference paper
Book cover Combinatorial Image Analysis (IWCIA 2008)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4958))

Included in the following conference series:

Abstract

A combinatorial algorithm to compute the orthogonal hull of a digital object imposed on a background grid is presented in this paper. The resolution and complexity of the orthogonal hull can be controlled by varying the grid spacing, which may be used for a multiresolution analysis of a given object. Existing algorithms on finding the convex hull are based on divide and conquer strategy, sweepline approach, etc., whereas the proposed algorithm is combinatorial in nature whose time complexity depends on the object perimeter instead of the object area. For a larger grid spacing, the perimeter of an object decreases in length in terms of grid units, and hence the runtime of the algorithm reduces significantly. The algorithm uses only comparison and addition in the integer domain, thereby making it amenable to usage in real-world applications where speed is a prime factor. Experimental results including the CPU time demonstrate the elegance and efficacy of the proposed algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Avis, D., Bremner, D.: How good are convex hull algorithms? In: Symp. Computational Geometry, pp. 20–28 (1995)

    Google Scholar 

  2. Barber, B., Dobkin, D., Huhdanpaa, H.: The quickhull algorithm for convex hull. The Geometry Center, University of Minnesota, TR-GCG53 (July 1993)

    Google Scholar 

  3. Berg, M.D., Kreveld, M.V., Overmars, M., Schwarzkopf, O.: Computational Geo. Algo. & Appl. Springer, Heidelberg (2000)

    Google Scholar 

  4. Biswas, A., Bhowmick, P., Bhattacharya, B.B.: TIPS: On Finding a Tight Isothetic Polygonal Shape Covering a 2D Object. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 796–799. Springer, Heidelberg (2005)

    Google Scholar 

  5. Bookstein, F.: Morphometric Tools for Landmark Data: Geometry and Biology. Cambridge Univ. Press, Cambridge (1991)

    MATH  Google Scholar 

  6. Boxer, L.: Computing deviations from convexity in polygons. PRL 14, 163–167 (1993)

    MATH  Google Scholar 

  7. Chazelle, B.: An optimal convex hull algorithm in any fixed dimension. Discrete Comput. Geom. 10, 377–409 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chaudhuri, B.B., Rosenfeld, A.: On the computation of digital convex hull and circular hull of a digital region. Patt. Rec. 31, 2007–2016 (1998)

    Article  Google Scholar 

  9. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. PHI (2000)

    Google Scholar 

  10. Costa, L.daF., Cesar, J.R.M.: Shape Analysis and Classification. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  11. Edelsbrunner, H.: Weighted alpha shapes. TR-UIUCDCS-R-92-1760, Dept. Comput. Sci., Univ. Illinois, Urbana, IL (1992)

    Google Scholar 

  12. Graham, R.: An efficient algorithm for determining the convex hull of a finite point set. Info. Proc. Letters 1, 132–133 (1972)

    Article  MATH  Google Scholar 

  13. Jarvis, R.: On the identification of the convex hull of a finite set of points in the plane. Info. Proc. Letters 2, 18–21 (1973)

    Article  MATH  Google Scholar 

  14. Hyde, S., Andersson, S., Blum, Z., Lidin, S., Larsson, K., Landh, T., Ninham, B.: The Language of Shape. Elsevier, Amsterdam (1997)

    Google Scholar 

  15. Kirkpatrick, D., Seidel, R.: The ultimate planar convex hull algorithm? SIAM Jour. Comput. 15, 287–299 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  16. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Image Analysis. In: Morgan Kaufmann Series in Computer Graphics and Geometric Modeling, Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  17. Preparata, F.P., Shamos, M.I.: Computational Geometry – An Introduction. Springer, New York (1985)

    Google Scholar 

  18. Pitty, A.: Geomorphology. Blackwell, Malden (1984)

    Google Scholar 

  19. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, London (1976) (Second Edition, 1982)

    Google Scholar 

  20. Sklansky, J., Kibler, D.F.: A theory of nonuniformly digitized binary pictures. IEEE Transactions on Systems, Man, and Cybernetics SMC-6(9), 637–647 (1976)

    Article  MathSciNet  Google Scholar 

  21. Sonka, M., Hlavac, V., Boyle, R.: Image Processing, Analysis, and Machine Vision. Chapman and Hall, Boca Raton (1993)

    Google Scholar 

  22. Stern, H.: Polygonal entropy: A convexity measure. PRL 10, 229–235 (1989)

    MATH  Google Scholar 

  23. Swart, G.: Finding the convex hull facet by facet. Journal of Algorithms, 17–48 (1985)

    Google Scholar 

  24. Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. PAMI 26(7), 923–934 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Valentin E. Brimkov Reneta P. Barneva Herbert A. Hauptman

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Biswas, A., Bhowmick, P., Sarkar, M., Bhattacharya, B.B. (2008). Finding the Orthogonal Hull of a Digital Object: A Combinatorial Approach. In: Brimkov, V.E., Barneva, R.P., Hauptman, H.A. (eds) Combinatorial Image Analysis. IWCIA 2008. Lecture Notes in Computer Science, vol 4958. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-78275-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-78275-9_11

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-78274-2

  • Online ISBN: 978-3-540-78275-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics