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Abstract. This paper proposes a statistical approach to labeling images using a
more natural graphical structure than the pixel grid (or some uniform derivation of
it such as square patches of pixels). Typically, low-level vision estimations based
on graphical models work on the regular pixel lattice (with a known clique struc-
ture and neighborhood). We move away from this regular lattice to more mean-
ingful statistics on which the graphical model, specifically the Markov network
is defined. We create the irregular graph based on superpixels, which results in
significantly fewer nodes and more natural neighborhood relationships between
the nodes of the graph. Superpixels are a local, coherent grouping of pixels which
preserves most of the structure necessary for segmentation. Their use reduces the
complexity of the inferences made from the graphs with little or no loss of ac-
curacy. Belief propagation (BP) is then used to efficiently find a local maximum
of the posterior probability for this Markov network. We apply this statistical in-
ference to finding (labeling) documents in a cluttered room (under moderately
different lighting conditions).

1 Introduction

Our goal in this paper is to label (natural) images based on generative models learned
from image data in a specific imaging domain, such as labeling an office scene as docu-
ments or background (see figure 1). It can be argued that object description and recog-
nition are the key goals in perception. Therefore, the labeling problem of inscribing
and affixing tags to objects in images (for identification or description) is at the core of
image analysis. But Duncan et al. [3] describe how a discrete model labeling problem
(where every point has only a constant number of candidate labels) is NP-complete. The
conventional way of solving this discrete labeling in computer vision is by stochastic
optimization such as simulated annealing [6]. These are guaranteed to converge to the
global optimum under some conditions, but are extremely slow to converge.

However, some efficient approximations based on combinatorial methods have been
recently proposed. One such approximation involves viewing the image labeling prob-
lem as computing marginalizations in a probability distribution over a Markov random
field (MRF). Inspired by the successes of MRF graphs in image analysis, and tractable
approximation solutions to inferencing using belief propagation (BP) [10] [9], several
other low level vision problems such as denoising, super-resolution, stereo etc., have
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Fig. 1. On the left is a sample of the training data for an office scene with documents, the middle
image is its superpixel representation (using normalized cuts, an over-segmentation of the orig-
inal) and the right image is the manually labeled version of the original showing the documents
as the foreground

been tackled by applying BP over Markov networks [5][15]. BP is an iterative sum-
product algorithm, for computing marginals of functions on a graphical model. Despite
recent advances, inference algorithms based on BP are still often too slow for practical
use [4].

In this paper, we present an algorithmic technique that represents our image data
with a Markov Random Field (MRF) graphical model defined on a more natural node
structure, the superpixels. We infer the labels using belief propagation (BP) but get away
from its drawbacks by substantially reducing the node structure of the graph. Thus, we
reduce the combinatorial search space and improve the algorithmic running time while
preserving the accuracy of the results.

Most stochastic models of images, are defined on the regular pixel grid, which is not a
natural representation of visual scenes but rather an “artifact” of the image digitization
process. We presume that it would be more natural, and more efficient, to work with
perceptually meaningful entities called superpixels, obtained from a low-level grouping
process [8], [16].

The organization of the paper is as follows: in section 2, we give a brief overview
of BP irrespective of the graph structure and describe the process of inferring via mes-
sage updates; in section 3, we describe our implementation of BP on an irregular graph
structure and provide some justification to the use of superpixels; in section 4 we de-
scribe our experiments and provide quantitative and qualitative results and finally in
section 5 we discuss some of the drawbacks of the technique, prescribe some means of
improvement and discuss our plans for future work.

2 Background on Belief Propagation (BP)

A Markov network graphical model is especially useful for low and high level vision
problems [5], [4] because the graphical model can explicitly express relationships be-
tween the nodes (pixels, patches, superpixels etc). We consider the undirected pairwise
MRF graph G = (V, E), V denoting the vertex (or node) set and E, the edge set. Each
node i ∈ V has a set of possible states C and also is affiliated with an observed state ri.
Given an observed state ri, the goal is to infer some information about the states ci ∈ C.
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The edges in the graph indicate statistical dependencies. In our document-labeling prob-
lem, the hidden states C are (1) the documents and (2) the office background.

In general, MRF models of images are defined on the pixel lattice, although this
restriction is not imposed by the definition of MRF. Pairwise-MRF models are well
suited to our labeling problem because they define (1) the relationship between a node’s
states and its observed value and (2) the relationship within a clique (a set of pairwise
adjacent nodes). We assume in here that the energies due to cliques greater than two are
zero.

If these two relationships can be defined statistically as are probabilities, then we can
define a joint probability function over the entire graph as:

p(c, r) =
1
Z

p(c1, c2 · · · cn, r1, · · · rn) (1)

=
1
Z

p(c1)p(r1|c1)p(r2|c2)p(c2|c1) · · · p(rn|cn)p(cn|cn−1) (2)

Z is a normalization constant such that
∑

c1∈C1,··· ,cn∈Cn
p(c1, c2, · · · , cn) = 1. It is

important to mention that the derivations in this section are done over a simplified graph
(the chain) but the solutions generalize sufficiently to more complex graph structures.

If we let ψab(ca, cb) = p(ca)p(cb|ca) and φa(ca, ra) = p(ra|ca) then the marginal
probability at any of the nodes is given by:

p(ci) = 1
Z

∑
c1

∑
c2

· · ·
∑

ci−1

∑
ci+1

· · ·
∑

cn
ψ1,2(c1, c2) (3)

ψ2,3(c2, c3) · · · ψn−1,n(cn−1, cn)
φ1(c1, r1)φ2(c2, r2) · · · φn(cn, rn)

Let f(c2) =
∑

c1

ψ1,2(c1, c2)

f(c3) =
∑

c2

ψ2,3(c2, c3)f(c2)

...

f(cn) =
∑

cn

ψn−1,n(cn−1, cn)f(cn−1)

(4)

The last line in equation (4) shows a recursive definition which we later take advantage
of in our implementation. The equation shows how functions of probabilities are prop-
agated from one node to the next. The “probabilities” are now converted to functionals
(functions of the initial probabilities).

If we replace the functional f(ci) with the message property mij where i is the
node to which the message are propagated and j is the node from which the message
originates, then we can define our marginal probability at a node in terms of message
updates. Also, if we replace our probability at a node p(ci) by the belief at the node
b(ci) (since the computed values are no longer strictly probability distributions), then
we can rewrite equation (4) as,

bi(ci) = φi(ci, ri)
∏

j∈N (i)

mij(ci) (5)
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where N (i) is the neighborhood of i. Equation (5) above shows how the derived func-
tions of probabilities (or messages) are propagated along a simplified graph. Under the
assumption that our solution so far generalizes to a more complex graph structure, we
can now extend our derivation to the joint probability on an MRF graph given as:

p(c) =
1
Z

∏

i,j

ψ(ci, cj)
∏

k

φ(ck, rk) (6)

The joint probability on the MRF graph is described in terms of two compatibility
functions, (1) between the states and observed nodes and (2) between neighboring
nodes.

We illustrate the message propagation process to node 2 in a five-node graph in
figure(2). In this simple example, the belief at a node i can now be given as:

bi(ci) =
∑

cj∈Cj ,1≤j≤5,j �=i

p(c1, · · · , c5); (7)

= φi(ci, ri)
∏

j∈N (i)

mji(ci)

mji(ci) =
∑

cj∈Cj

φj(cj , rj)ψji(cj , ci)
∏

k∈N (j)j �=i

mkj(cj)

Unfortunately, the complexity of general belief propagation is exponential in the size
of the largest clique. In many computer vision problems, belief propagation is pro-
hibitively slow. The high-dimensional summation in equation (3) has a complexity of
O(nMk), where M is the number of possible labels for each variable, k is the max-
imum clique size in the graph and n is the number of nodes in the graph. By using
the message updates, the complexity of the inference (for a non-loopy graph as de-
rived above) is reduced to O(nkM2). By extending this derivation to a more complex
graph structure, the convergence property of the inference algorithm is removed and it
is no longer guaranteed to converge. But in practice the algorithm consistently gives
a good solution. Also, by significantly reducing n, we further reduce the algorithmic
time.

Fig. 2. An example of computing the messages for node 2, involving only φ2, ψ2,1, ψ2,3 and any
messages to node 2 from its neighbors’ neighbors
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3 Labeling Images Using BP Inference

When doing labeling, the images are first abstracted into a superpixel representation
(described in more detail in section (3.1)). The Markov network is defined on this ir-
regular graph, and the compatibility functions are learned from labeled training data
(section 3.2). The BP is used to infer the labels on the image.

3.1 The Superpixel Representation

First, we need to chose a representation for the image and scene variables. The image
and scenes are arrays of single-valued superpixels. A superpixel is a homogenous seg-
ment obtained from a low-level grouping of the underlying pixels. Although irregular
when compared to the pixel-grid, we choose the superpixel grid because we believe
that it representationally more efficient: i.e. pairwise constraints exist between entire
segments, while they only exist for adjacent pixels on the pixel-grid. For a local model
such as the MRF model, this property is very appealing in that we can model much
longer-range interactions between superpixels segments. The use of superpixels is also
computationally more efficient because it reduces the combinatorial complexity of im-
ages from hundreds of thousands of pixels to only a few hundred superpixels.

There are many different algorithms that generate superpixels including the segre-
gated weighted algorithm (SWA) [12],[2], normalized cuts [13], constrained Delaunay
triangulation [11] etc. It is very important to use near-complete superpixel maps to
ensure that the original structures in the images are conserved. Therefore, we use the
region segmentation algorithm normalized cuts [13], which was emperically validated
and presented in [8]. Figure (3) shows an example of a natural image with its super-
pixel representation. For building superpixels using normalized cuts, the criterion for
partitioning the graph are (1) to minimize the sum of weights of connections across the
groups and (2) to maximize the sum of weights of connections within the groups. For
completeness, we now give a brief overview of the normalized cuts process.

We begin by defining a similarity matrix as S = [Sij ] over an image I(i, j). A
similarity matrix is a matrix of scores which express the similarity between any two
points in an image. If we define a graph G(V, E) where the node set is defined as the
relationship ij between nodes, and all edges e ∈ E have equal weight, we can define
the degree of a node as di =

∑
j Sij and the volume of a set in the graph as vol(A) =

∑
i∈A di, A ⊆ V . The cuts in the graph are therefore cut(A, Ā) =

∑
i ∈ A, j ∈ ĀSij .

Given these definitions, normalized cuts are described as the solution to:

Ncut = cut(A, B)
(

1
vol(A)

+
1

vol(B)

)

(8)

Our implementation of superpixel generation implements an approximate solution
using spectral clustering methods. The resulting superpixel representation is an over-
segmentation of the original image. We define the Markov network over this represen-
tation.
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Fig. 3. On the left is an example of a natural image, the middle image is the superpixel repre-
sentation (using normalized cuts, an over-segmentation of the original) and the right image the
superimposition of the two

3.2 Learning the Compatibility Functions

The model we assume for the document labeling images is generated from the training
images. The joint probability distribution is modeled using the image data and their cor-
responding labels. The joint probability is expressed in terms of the two compatibility
functions defined in equation(6).

If we let ri represent a superpixel segment in the training image and ci, its corre-
sponding label. The first compatibility function φ(ci, ri) can be computed by learning a
mixture of Gaussian models. The resulting Gaussian distributions will represent either
the document class or the background class. So although we have two real-life classes
(document and background), the number of states to be input to the BP problem will
have increased based on the output of the Gaussian Mixture Model (GMM), i.e. each
component of the GMM represents a distinct label.

The second compatibility function ψ(ci, cj) relates the superpixels to each other.
We use the simplest interacting Pott’s model where the function takes one of 2 values
−1, +1 and the interactions exists only for amongst neighbors with the same labels.
Our compatibility function between superpixels is therefore given as:

ψ(ci, cj) :=
{

+1 if ci and cj have the same initial label values,
−1 otherwise

(9)

So given a new image of a cluttered room, we can extract the documents in the image
by using the steps given in section (3.3). The distribution of the superpixels ri ∈ R
given the latent variables ci ∈ C can therefore be modeled graphically as:

P (R, C) ∝
∏

i

φ(ri, ci)
∏

(cj ,ck)

ψ(cj , ck) (10)

Equation (10) can also be viewed as the pairwise-MRF graphical representation of our
labeling problem, which can be solved using BP with the two parts of equation (7).

3.3 Putting All Together...

The general strategy for designing the label system can therefore be described as:

1. Use the training data to learn the latent parameters of the system. The number
of resulting latent parameter sets will give the number of states required for the
inference problem.
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2. Using the number of states obtained in the previous steps, design compatibility
functions such that eventually, only a single state can be allocated to each super-
pixel.

3. For the latent variable ci associated with every superpixel i, use the BP algorithm
to choose its best state.

4. If the state values correspond to labeling classes (as in the case of our document
labeling system), the selected state variables are converted to their associated class
labels

4 Experiments, Results and Discussion

The first round of experiments consisted of testing the BP labeling algorithm on synthet-
ically generated image data, whose values were samples drawn from a known distribu-
tion. We first generated synthetic scenes by drawing samples from Gaussian distribution
functions, and then added noise to the resulting images. These two datasets (clean and
noisy images) represented our observations in a controlled setting. To add X% noise, we
randomly selected unique X% of the pixels in the original image and the pixel values
were replaced by a random number between 0 and 255;

The scene (or hidden parameters) were represented by the parameters of our gener-
ating distributions. We modeled the relationships between the scenes and observations
with a pairwise-Markov network and used belief propagation (BP) to find the local
maximum of the posterior probability for the original scenes.

Figure (4) shows the results obtained from running the process on the synthetic data.
We also present a graph showing the sum-of squared-differences (SSD) between the
ground-truth data and varying levels of noise in figure (5).

We then extended this learning based scene-recovery approach to finding documents
in a cluttered room (under moderately different lighting conditions). Documents were
labeled in images of a cluttered room and used in training to obtain the prior and con-
ditional probability density functions. The labeled images were treated as scenes and
the goal was to infer these scenes given a new image from the same imaging domain
(pictures of offices) but not from the training set. For inferring scenes from given ob-
servations, the computed distributions were used as compatibility functions in the BP
message update process.

We learned our distributions from the training data using an EM-GMM algorithm
(Expectation Maximization for Gaussian Mixture Models) on 50 office images. The
training images consisted of images with different documents in a cluttered background,
all taken in one office. The document data was modeled with a mixture of three Gaus-
sian distributions while the background data was modeled with two Gaussian distribu-
tions. The resulting parameters (mean μi, variance σi and prior probability pi) from
training are:

– class 1: μ1 = 6.01; σ1 = 9.93; p1 = 0.1689
– class 2: μ2 = 86.19; σ2 = 147.79; p2 = 0.8311
– class 3: μ3 = 119.44; σ3 = 2510.6; p3 = 0.5105
– class 4: μ4 = 212.05; σ4 = 488.21; p4 = 0.2203
– class 5: μ5 = 190.98; σ5 = 2017; p5 = 0.2693
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Fig. 4. Top row: the left column shows an original synthetic image created from samples from
Gaussian distributions, the middle column is its near-correct superpixel representation and the
right column shows the resulting labeled image. Bottom row: the left column shows a noisy
version of the synthetic image, the middle column is its superpixel representation and the right
column also shows the resulting labeled image.

Fig. 5. Quantitative display of how the error increases exponentially with increasing noise

The resulting five classes were then treated as the states that any variable ci ∈ C in
the MRF graph could take. Classes 1 and 2 correspond to the background while classes
3,4 and 5 are the documents. Unfortunately, because the models were trained separately,
the prior probabilities are not reflective of the occurrences in the entire data, only in the
background/document data alone.
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Fig. 6. The top row shows sample of training data and the corresponding labeled image; the
bottom row shows a testing image (taken at a different time, in a different office. The output of
the detection is shown.

Fig. 7. The distributions of the foreground document and cluttered background classes

For testing, a new image was taken in a completely different office under moderately
different lighting conditions and the class labels were extracted. The pictorial results of
labeling the real-life rooms with documents are shown in figure (6).

We observed that even with applying relatively weak models (the synthetic images are
no longer strongly coupled to the generating distribution), we were able to successfully
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recover a labeled image for both synthetic and real-life data. A related drawback we faced
was the simplicity of our representation. We used grayscale values as the only statistic
in our document-finding system and this (as seen in figure (6)b), introduces artifacts into
our final labeling solution. Superpixels whose intensity values are close to those of the
trained documents can be mis-labeled.

Also, we observed that the use of superpixels reduced the number of nodes signifi-
cantly, thus reducing the computational time. Also, the segmentation results of our low
noise synthetic images and the real-life data were promising with superpixels. A draw-
back though is the limitation imposed by the superpixel representation. Although we
used a well tested and efficient superpixel implementation, we found that as the noise
levels increased in the images, the superpixels became more inaccurate and the errors
obtained in the representation were propagated into the system. Also, due to the loops in
the graph, it does not converge if run long enough, but we can still sufficiently recover
the true solution from the graphical structure.

5 Conclusion

In this paper, we have proposed a way of labeling irregular graphs generated by an
oversegmentation of an image, using BP inferences on MRF graphs. Because a common
limitation of graph models in low level image processing is often due to intractable node
size on the graph, we have reduced the computational intensity of the graph model by
introducing the use of superpixels, without any loss of generality on the definition of
the graph. We reduced the number of node variables from orders of tens of thousands
of pixels to about a hundred superpixels.

Furthermore, we define compatibility functions for inference based on learning the
statistical distributions of the real-life data.

In the future, we intend to base our statistics on more definitive features of the im-
ages (other than simply grayscale values) to model the real-life document and back-
ground data.. These could include textures at different scales, and other scale-invariant
measurements. We also plan to investigate the use of stronger inference methods by
relaxing the assumption that the cliques in our MRF graphs are only of size 2.
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