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Foreword 

 
 
 
 
 
 
 
 
 
At the dawn of the new millennium, robotics is undergoing a major transformation in 
scope and dimension. From a largely dominant industrial focus, robotics is rapidly 
expanding into the challenges of unstructured environments. Interacting with, assist-
ing, serving, and exploring with humans, the emerging robots will increasingly touch 
people and their lives. 

The goal of the new series of Springer Tracts in Advanced Robotics (STAR) is to 
bring, in a timely fashion, the latest advances and developments in robotics on the basis 
of their significance and quality.  It is our hope that the wider dissemination of research 
developments will stimulate more exchanges and collaborations among the research 
community and contribute to further advancement of this rapidly growing field. 

The monograph written by Pierre Lamon is the second the series devoted to track-
ing and control of robots in rough terrain. Research in this area has been mainly fo-
cused on 2D localization, on the assumption of flat surfaces. Whenever the rover has 
to climb over obstacles in cluttered environments, accurate 3D position tracking is 
crucial for both autonomous navigation and obstacle negotiation, as discussed in the 
introductory chapter. The trade-off between scientific and technical solutions makes 
this volume unique in the wide field of autonomous mobile robotics. The finalization 
of the approach on a real rover experimental platform allows a clear understanding of 
the influence of mechanical design, locomotion control and sensing on the pose track-
ing problem. 

Remarkably, the monograph is based on the author’s doctoral thesis, which received 
the prize of the Sixth Edition of the EURON Georges Giralt PhD Award devoted to the 
best PhD thesis in Robotics in Europe. A very fine addition to the Series! 

 
 

Naples, Italy Bruno Siciliano 
December 2007 STAR Editor 

 



Preface

During the first year of my doctoral thesis I went to Carnegie Mellon University
for an internship. The goal was to implement the Mars Autonomy software1 on
Shrimp, a six wheeled rover with extended climbing capabilities. At that time,
Shrimp had limited sensing capabilities and was only able to travel autonomously
for about ten meters in a flat and simple environment. The robot couldn’t reach
farther goals because it rapidly lost track of its position. Thus, I decided to focus
my research on position tracking in order to extend the range of autonomous
navigation.

At that time, most of the research works in all-terrain rover navigation as-
sumed flat environments and addressed 2D localization. Even though 2D local-
ization is sufficient for many applications, the extension to 3D is necessary in
cluttered environment, when the rover has to climb over the encountered ob-
stacles. In such conditions, accurate 3D position tracking is crucial for both
autonomous navigation and obstacle negotiation. The subject of my thesis and,
a fortiori this book, was clear: 3D-position tracking and control for all-terrain
robots.

Methodology

Autonomous mobile robotics is a fascinating field of research that involves tech-
nical and scientific domains. Thus, the research community working in this field
is composed of people with very different backgrounds. One finds for exam-
ple mathematicians, physicians, computer scientists, engineers and biologists. It
is interesting to note that each researcher has his or her own definition of an
autonomous mobile robot and has an individual way to address a given prob-
lem. However, two main categories of approaches can be distinguished i.e., the
top-down and the bottom-up. One or the other is favored depending on the re-
searcher’s scientific and technical background. The top-down approach consists
in developing a theoretical formulation of the problem and proposing a solution
based on mathematical models. Although such a solution can be analyzed with
respect to e.g. optimality and mathematical complexity, it does not necessarily
1 The Mars Autonomy project: http://www.frc.ri.cmu.edu/projects/mars
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work for the real application. Indeed, it often occurs that the models do not fully
capture the reality or that they cannot be applied because they make use of un-
known parameters. A failure to apply a model happens when the abstraction
level is too high and when the technical constraints are not fully considered dur-
ing the development phase. On the other hand, the bottom-up approach starts
from a real application and proposes pragmatic solutions to given problems. The
risk with such an approach is to tailor solutions in an incremental way, that is,
to patch the system as problems arise. Such a reactive development favors the
use of heuristics that may limit the system’s performance and reliability.

The methodology used throughout this book is an attempt to reconcile the
top-down and the bottom-up approaches and to avoid their respective traps.
Even though the development was driven by the application, the bottom-up ap-
proach was not particularly favored. Thus, simple but valid heuristics were pro-
posed only when modeling was not applicable. On the other hand, the technical
constraints were considered during the modeling phases to avoid the generation
of inapplicable models. In other words, the methodology used in this book tries
to make the best tradeoff between scientific and technical solutions.
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Marie-José Pellaud, Nicola Tomatis, Daniel Burnier and my office-mate Gilles
Caprari for their psychological support. I’m grateful to everybody in the lab for
the great time I’ve spent during these four years.

Thanks also to the members of my thesis committee, Simon Lacroix, Paolo
Fiorini and Bertrand Merminod, for their careful reading of the thesis and for
their constructive feedback.

Lausanne, Switzerland Pierre Lamon
December 2007



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Autonomy in Rough Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Open Challenges of Rough Terrain Navigation . . . . . . . . . . . 2

1.2.1 Lack of Prior Information . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.2 Perception . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2.3 Locomotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Research Context and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 The SOLERO Rover . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Mechanical Design of SOLERO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Control Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Sensors and Actuators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Software Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 3D-Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1 3D-Odometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Bogie Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.2 3D Displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 Contact Angles Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Control in Rough-Terrain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1 Quasi-static Model of a Wheeled Rover . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Mobility Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.2 A 3D Static Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.2 Torque Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2.1 Wheel Slip Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2.2 Optimization Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.3 Torque Optimization for SOLERO. . . . . . . . . . . . . . . . . . . . 41



XVI Contents

4.3 Rover Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Simulation Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.4.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.5 Wheel-Ground Contact Angles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Position Tracking in Rough-Terrain . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.1 Sensor Selection for Motion Perception . . . . . . . . . . . . . . . . . . . . . . 53
5.2 Uncertainties Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.1 Coordinate Systems and Transformations . . . . . . . . . . . . . . 56
5.2.2 Error Propagation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.3 Sensor Fusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1 Sensor Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.3.2 State Prediction Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.4 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.4.1 Inertial Sensor and 3D-Odometry . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Enhancement with VME . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

A Kinematic and Quasi-static Model of SOLERO . . . . . . . . . . . . . 83
A.1 Kinematic Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

A.1.1 The Bogies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
A.1.2 The Main Body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
A.1.3 The Front Fork . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

A.2 The Quasi-static Model of SOLERO . . . . . . . . . . . . . . . . . . . . . . . . 86
A.2.1 Linear Dependence of the Wheel Torques . . . . . . . . . . . . . . 89
A.2.2 Equal Torque Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

B Linearized Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.1 Accelerometers Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
B.2 Gyroscopes State Transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

C The Gauss–Markov Process . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

D Visual Motion Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105




