
Preface

The theory of formal languages is widely accepted as the backbone of the-
oretical computer science. It mainly originated from mathematics (combi-
natorics, algebra, mathematical logic) and generative linguistics. Later, new
specializations emerged from areas of either computer science (concurrent and
distributed systems, computer graphics, artificial life), biology (plant develop-
ment, molecular genetics), linguistics (parsing, text searching), or mathemat-
ics (cryptography). All human problem solving capabilities can be considered,
in a certain sense, as a manipulation of symbols and structures composed by
symbols, which is actually the stem of formal language theory. Language – in
its two basic forms, natural and artificial – is a particular case of a symbol
system.

This wide range of motivations and inspirations explains the diverse ap-
plicability of formal language theory Ű and all these together explain the
very large number of monographs and collective volumes dealing with formal
language theory.

In 2004 Springer-Verlag published the volume Formal Languages and Ap-
plications, edited by C. Martín-Vide, V. Mitrana and G. Păun in the series
Studies in Fuzziness and Soft Computing 148, which was aimed at serving
as an overall course-aid and self-study material especially for PhD students
in formal language theory and applications. Actually, the volume emerged in
such a context: it contains the core information from many of the lectures de-
livered to the students of the International PhD School in Formal Languages
and Applications organized since 2002 by the Research Group on Mathemat-
ical Linguistics from Rovira i Virgili University, Tarragona, Spain.

During the editing process of the aforementioned volume, two situations
appeared:

Some important aspects, mostly extensions and applications of classical
formal language theory to different scientific areas, could not be covered, by
different reasons. New courses were promoted in the next editions of the PhD
School mentioned above.
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To intend to fill up this gap, the volume Recent Advances in Formal Lan-
guages and Applications, edited by Z. Ésik, C. Martín-Vide and V. Mitrana,
was published in 2006 by Springer-Verlag in the series Studies in Computa-
tional Intelligence 25.

The present volume is a continuation of this comprehensive publication
effort. We believe that, besides accomplishing its main goal of complementing
the previous volumes in representing a gate to formal language theory and
its applications, it will be also useful as a general source of information in
computation theory, both at the undergraduate and research level.

For the sake of uniformity, the introductory chapter of the first volume that
presents the mathematical prerequisites as well as most common concepts and
notations used throughout all chapters appears in the present volume as well.
However, it may happen that terms other than those in the introductory chap-
ter have different meanings in different chapters or different terms have the
same meaning. In each chapter, the subject is treated relatively independent
of the other chapters, even if several chapters are related. This way, the reader
gets in touch with diverse points of view on an aspect common to two or more
chapters. We are convinced of the usefulness of such an opportunity to a young
researcher.
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2.1 Introduction

Combinatorics on words, or sequences or strings of symbols over a finite al-
phabet, is a rather new field although the first papers were published at the
beginning of the 20th century [120, 121]. The interest in the study of com-
binatorics on words has been increasing since it finds applications in various
research areas of mathematics, computer science, and biology where the data
can be easily represented as words over some alphabet. Such areas may be
concerned with algorithms on strings [38, 48, 50, 51, 52, 69, 72, 84, 102, 118],
semigroups, automata and languages [2, 45, 55, 75, 82, 92, 93], molecular
genetics [78], or codes [5, 73, 79].

Motivated by molecular biology of nucleic acids, Berstel and Boasson in-
troduced in 1999 the notion of partial words which are sequences that may
contain a number of “do not know” symbols or “holes” [4]. DNA molecules are
the carriers of the genetic information in almost all organisms. Let us look
into the structure of such a molecule. A single stranded DNA molecule or a
DNA strand may be viewed as a sequence over the alphabet consisting of
the four nucleotides: a (adenine), c (cytosine), g (guanine), and t (thymine).
Each strand has two different ends: the 3′ end, and the 5′ end. The familiar
double helix of DNA, which was discovered by Watson and Crick, arises by
the bonding of a strand in the 5′ − 3′ direction with another strand in the
3′ − 5′ direction with the restriction that adenine bonds with thymine, and
cytosine bonds with guanine. Such a bonding gives rise to a double stranded
DNA molecule as in the figure

5′ - c c a c c t c g a c c c t c - 3′

3′ - g g t g g a g c t g g g a g - 5′

Because of Watson-Crick’s complementarity (a bonds to only t, and c bonds
only to g), we can view double stranded DNA sequences as single stranded
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strings by keeping the strand in the 5′ − 3′ direction. The molecule in the
example above can be viewed as

5′ - ccacctcgaccctc - 3′

or simply as ccacctcgaccctc, a word over the alphabet {a, c, g, t}. However
bonding is not always perfect in nature as in the figure

5′ - c c a c c t c g a c c c t c - 3′

3′ - g g t t g a g c c g g g a g - 5′

where there is an occurrence of c paired with t, and an occurrence of a paired
with c. In such a case, we can view the molecule as 5′ − cca�ctcg�ccctc− 3′ or
as cca�ctcg�ccctc, where the �’s stand for “do not know” symbols also called
“holes”. Thus, the latter example gives rise to a partial word with two holes
over the alphabet {a, c, g, t}. Processes in molecular biology can be seen as
operations on DNA sequences [72, 112]. If a set of DNA molecules fulfilling
a certain property has changed a little bit after some time or under some
influence, it is important to know whether the desired property still holds
[91].

Several interesting combinatorial properties of partial words have been in-
vestigated and connections have been made with problems in graph theory and
number theory, in particular, with problems concerning primitive sets of inte-
gers [23, 24], lattices [23, 24], partitions of integers and their generalizations
[14], chromatic polynomials [23], Sudoku games [107], vertex connectivity in
graphs [12, 29], etc. Partial words are useful in a new generation of pattern
matching algorithms that search for local similarities between sequences. In
this area, they are called “spaced seeds” and a lot of work has been dedicated
to their influence on the algorithms’ performance [40, 66, 83, 97, 103, 104].
Partial words have the potential for impacts in bio-inspired computing where
they have been considered, in particular, for finding good encodings for DNA
computations [90].

We provide here a few bibliographic remarks. Lothaire’s first book Com-
binatorics on Words appeared in 1983 [92], while recent developments culmi-
nated in a second book Algebraic Combinatorics on Words which appeared
in 2002 [93] and in a third book which appeared in 2005 [94]. Several books
have appeared quite recently that emphasize connections of combinatorics on
words to several research areas. We mention the book of Allouche and Shallit
where the emphasis is on automata theory [2], the book of Crochemore and
Rytter where the emphasis is on string algorithms [52], the book of Gusfield
where the emphasis is on algorithms related to biology [72], the book of de
Luca and Varrichio where the emphasis is on algebra [55], and finally the book
of Blanchet-Sadri where the emphasis is on partial words [10].

Research in combinatorics on partial words is underway where there are
several open problems that lay unexplored. After reviewing basic concepts
on words and partial words in Section 2.2, we will discuss some of these open
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problems which we have divided into sections: 2.3–2.5 study extensions to par-
tial words of three basic classical results on periodicity of words: The theorem
of Fine and Wilf which considers the simultaneous occurrence of different pe-
riods in one word [67], the critical factorization theorem which relates local
and global periodicity of words [43], and a theorem of Guibas and Odlyzko
which gives the structure of the set of periods of a word [71]. Section 2.6 deals
with the two word properties of primitiveness and borderedness and is con-
cerned, in particular, with the counting of primitive and unbordered partial
words. Section 2.7 solves some equations on partial words. Here the notion of
“equality” is replaced by that of “compatibility ”. Section 2.8 studies the con-
cept of unavoidable set of partial words, while Section 2.9 develops square- and
overlap-freeness of partial words. Finally, Section 2.10 discusses some other
open problems related to codes of partial words, punctured languages, and
tiling periodicity.

2.2 Preliminaries

This section is devoted to reviewing basic concepts on words and partial words.

2.2.1 Words

Let A be a nonempty finite set of symbols called an alphabet. Symbols in A
are called letters and any finite sequence of letters is called a word over A. The
empty word, that is, the word containing no letter, is denoted by ε. For any
word u over A, |u| denotes the number of letters occurring in u and is called
the length of u. In particular, |ε| = 0. The set of all words over A is denoted by
A∗. If we define the operation of two words u and v of A∗ by juxtaposition (or
concatenation), then A∗ is a monoid with identity ε. We call A+ = A∗ \ {ε}
the free semigroup generated by A and A∗ the free monoid generated by A.
The set A∗ can also be viewed as

⋃
n≥0 An where A0 = {ε} and An is the set

of all words of length n over A.
A word of length n over A can be defined by a total function u : {0, . . . , n−

1} → A and is usually represented as u = a0a1 . . . an−1 with ai ∈ A. A period
of u is a positive integer p such that ai = ai+p for 0 ≤ i < n − p. For a
word u, the powers of u are defined inductively by u0 = ε and, for any i ≥ 1,
ui = uui−1. The set of symbols occurring in a word u is denoted by α(u).
The reversal of u, denoted by rev(u), is defined as follows: If u = ε, then
rev(ε) = ε, and if u = a0a1 . . . an−1, then rev(u) = an−1 . . . a1a0. A word u is
a factor of the word v if there exist words x, y such that v = xuy. The factor
u is called proper if u �= ε and u �= v. The word u is a prefix (respectively,
suffix) of v if x = ε (respectively, y = ε).

A nonempty word u is primitive if there exists no word v such that u = vi

with i ≥ 2. Note the fact that the empty word is not primitive. If u is a
nonempty word, then there exist a unique primitive word v and a unique
positive integer i such that u = vi.
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2.2.2 Partial Words

A partial word u of length n over A is a partial function u : {0, . . . , n−1} → A.
For 0 ≤ i < n, if u(i) is defined, then i belongs to the domain of u, denoted by
i ∈ D(u), otherwise i belongs to the set of holes of u, denoted by i ∈ H(u). A
word over A is a partial word over A with an empty set of holes (we sometimes
refer to words as full words). The length of u or n is denoted by |u|.

If u is a partial word of length n over A, then the companion of u, denoted
by u�, is the total function u� : {0, . . . , n − 1} → A ∪ {�} defined by

u�(i) =
{

u(i) if i ∈ D(u)
� otherwise

The bijectivity of the map u �→ u� allows us to define for partial words
concepts such as concatenation, powers, etc in a trivial way. The word
u� = abb�bbcb is the companion of the partial word u of length |u| = 8 where
D(u) = {0, 1, 2, 4, 5, 6, 7} and H(u) = {3}. For convenience, we will refer to a
partial word over A as a word over the enlarged alphabet A� = A∪{�}, where
the additional symbol � plays the special role of a “do not know” symbol or
“hole”. This allows us to say for example “the partial word aba�aa�” instead
of “the partial word with companion aba�aa�”. The set of all partial words
over A with an arbitrary number of holes is denoted by A∗

� which is a monoid
under the operation of concatenation where ε serves as the identity.

A (strong) period of a partial word u over A is a positive integer p such
that u(i) = u(j) whenever i, j ∈ D(u) and i ≡ j mod p. In such a case, we
call u (strongly) p-periodic. Similarly, a weak period of u is a positive integer
p such that u(i) = u(i + p) whenever i, i + p ∈ D(u). In such a case, we call
u weakly p-periodic. The partial word abb�bbcbb is weakly 3-periodic but is
not strongly 3-periodic. The latter shows a difference between partial words
and full words since every weakly p-periodic full word is strongly p-periodic.
Another difference worth noting is the fact that even if the length of a partial
word u is a multiple of a weak period of u, then u is not necessarily a power
of a shorter partial word. The minimum period of u is denoted by p(u), and
the minimum weak period by p′(u). The set of all periods (respectively, weak
periods) of u is denoted by P(u) (respectively, P ′(u)).

For a partial word u, positive integer p and integer 0 ≤ i < p, define

ui,p = u(i)u(i + p)u(i + 2p) . . . u(i + jp)

where j is the largest nonnegative integer such that i + jp < |u|. Then u is
(strongly) p-periodic if and only if ui,p is (strongly) 1-periodic for all 0 ≤
i < p, and u is weakly p-periodic if and only if ui,p is weakly 1-periodic for
all 0 ≤ i < p. Strongly 1-periodic partial words as well as the full factors of
weakly 1-periodic partial words are over a singleton alphabet.

If u and v are two partial words of equal length, then u is said to be
contained in v, denoted by u ⊂ v, if all elements in D(u) are in D(v) and
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u(i) = v(i) for all i ∈ D(u). The order u ⊂ v on partial words is obtained
when we let � < a and a ≤ a for all a ∈ A. For example, a�b� �⊂ a��b and
a�b� �⊂ a�ab, while a�b� ⊂ a�bb.

A partial word u is primitive if there exists no word v such that u ⊂ vi

with i ≥ 2. Note that if v is primitive and v ⊂ u, then u is primitive as well.
It was shown in [9] that if u is a nonempty partial word, then there exist a
primitive word v and a positive integer i such that u ⊂ vi. However uniqueness
does not hold as seen with the partial word u = �a where u ⊂ a2 and u ⊂ ba
for distinct letters a, b.

Partial words u and v are compatible, denoted by u ↑ v, if there exists a
partial word w such that u ⊂ w and v ⊂ w. In other words, u(i) = v(i) for
every i ∈ D(u) ∩ D(v). Note that for full words, the notion of compatibility
is simply that of equality. For example, a�b�a� � ↑ a��cbb but a�bbc� ↑ �bb�c�.

In the rest of this section, we discuss commutativity and conjugacy in the
context of partial words.

Let us start with commutativity. The case of full words is well known and
is stated in the following theorem.

Theorem 1. Let x and y be nonempty words. Then xy = yx if and only if
there exists a word z such that x = zm and y = zn for some integers m,n.

For nonempty partial words x and y, if there exist a word z and integers
m,n such that x ⊂ zm and y ⊂ zn, then xy ⊂ zm+n, yx ⊂ zm+n, and xy ↑ yx.
The converse is not true in general: if x = �bb and y = abb�, then

xy = �bbabb� ↑ abb��bb = yx

but no desired z exists.
Let us first examine the case of one hole.

Theorem 2. [4] Let x, y be nonempty partial words such that xy has at most
one hole. If xy ↑ yx, then there exists a word z such that x ⊂ zm and y ⊂ zn

for some integers m,n.

Now, for the case of an arbitrary number of holes, let k, l be positive
integers satisfying k ≤ l. For 0 ≤ i < k + l, define

seqk,l(i) = (i0, i1, i2, . . . , in, in+1)

where i0 = i = in+1; for 1 ≤ j ≤ n, ij �= i; and for 1 ≤ j ≤ n + 1,

ij =
{

ij−1 + k if ij−1 < l
ij−1 − l otherwise

For example, seq6,8(0) = (0, 6, 12, 4, 10, 2, 8, 0).
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Definition 1. [11] Let k, l be positive integers satisfying k ≤ l and let z be
a partial word of length k + l. We say that z is (k, l)-special if there exists
0 ≤ i < k such that seqk,l(i) = (i0, i1, i2, . . . , in, in+1) contains (at least) two
positions that are holes of z while z(i0)z(i1)z(i2) . . . z(in+1) is not 1-periodic.

Example 1. Let z = cbca��cbc�caca, and let k = 6 and l = 8 so |z| = k+ l. We
wish to determine if z is (6, 8)-special. We already calculated seq6,8(0) and

z(0) z(6) z(12) z(4) z(10) z(2) z(8) z(0)
c c c � c c c c

This sequence does not satisfy the definition, and so we must continue with cal-
culating seq6,8(1) = (1, 7, 13, 5, 11, 3, 9, 1). The corresponding letter sequence
is

z(1) z(7) z(13) z(5) z(11) z(3) z(9) z(1)
b b a � a a � b

Here we have two positions in the sequence which are holes, and the sequence
is not 1-periodic. Hence, z is (6, 8)-special.

Under the extra condition that xy is not (|x|, |y|)-special, an extension of
Theorem 2 holds when xy has an arbitrary number of holes.

Theorem 3. [11] Let x, y be nonempty partial words such that |x| ≤ |y|. If
xy ↑ yx and xy is not (|x|, |y|)-special, then there exists a word z such that
x ⊂ zm and y ⊂ zn for some integers m,n.

Now, let us discuss conjugacy. Again, the case of full words is well known.

Theorem 4. Let x, y, z (x �= ε and y �= ε) be words such that xz = zy. Then
x = uv, y = vu, and z = (uv)nu for some words u, v and integer n ≥ 0.

For example, if x = abcda, y = daabc, and z = abc, then xz = zy because
(abcda)(abc) = (abc)(daabc). Here u = abc, v = da, and n = 0.

The case of partial words is more subtle.

Theorem 5. [28] Let x, y, z be partial words with x, y nonempty. If xz ↑ zy
and xz ∨ zy is |x|-periodic, then there exist words u, v such that x ⊂ uv,
y ⊂ vu, and z ⊂ (uv)nu for some integer n ≥ 0.

To illustrate Theorem 5, let x = �ba, y = �b�, and z = b�ab����. Then we
have

xz = � b a b � a b � � � �
zy = b � a b � � � � � b �

xz ∨ zy = b b a b � a b � � b �
It is clear that xz ↑ zy and xz ∨ zy is |x|-periodic. Putting u = bb and v = a,
we can verify that the conclusion does indeed hold.
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Corollary 1. [28] Let x, y be nonempty partial words, and let z be a full word.
If xz ↑ zy, then there exist words u, v such that x ⊂ uv, y ⊂ vu, and z ⊂
(uv)nu for some integer n ≥ 0.

Note that the above Corollary does not necessarily hold if z is not full
even if x, y are full. The partial words x = a, y = b, and z = �bb provide a
counterexample.

Two conjugacy theorems follow without any restriction on z.

Theorem 6. [13] Let x, y and z be partial words such that |x| = |y| > 0. Then
xz ↑ zy if and only if xzy is weakly |x|-periodic.

Theorem 7. [13]
Let x, y and z be partial words such that |x| = |y| > 0. Then the following

hold:

1. If xz ↑ zy, then xz and zy are weakly |x|-periodic.
2. If xz and zy are weakly |x|-periodic and � |z|

|x|� > 0, then xz ↑ zy.

The assumption � |z|
|x|� > 0 is necessary. To see this, consider x = aa, y = ba

and z = a. Here, xz and zy are weakly |x|-periodic, but xz �↑ zy.

2.3 Periods in Partial Words

Notions and techniques related to periodic structures in words find impor-
tant applications in virtually every area of theoretical and applied computer
science, notably in text processing [51, 52], data compression [49, 119, 123],
coding [5], computational biology [39, 72, 100, 112], string searching and pat-
tern matching algorithms [38, 50, 51, 52, 69, 72, 84, 102]. Repeated patterns
and related phenomena in words have played over the years a central role
in the development of combinatorics on words, and have been highly valu-
able tools for the design and analysis of algorithms [45, 92, 93, 94]. In many
practical applications, such as DNA sequence analysis, repetitions admit a
certain variation between copies of the repeated pattern because of errors due
to mutation, experiments, etc. Approximate repeated patterns, or repetitions
where errors are allowed, are playing a central role in different variants of
string searching and pattern matching problems [85, 86, 87, 88, 111]. Partial
words have acquired great importance in this context.

The notion of period is central in combinatorics on words and there are
many fundamental results on periods of words. Among them is the well known
periodicity result of Fine and Wilf [67] which intuitively determines how far
two periodic events have to match in order to guarantee a common period.
More precisely, any word u having two periods p, q and length at least p +
q − gcd(p, q) has also the greatest common divisor of p and q, gcd(p, q), as a
period. The bound p + q − gcd(p, q) is optimal since counterexamples can be
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provided for shorter lengths, that is, there exists an optimal word of length
p + q − gcd(p, q) − 1 having p and q as periods but not having gcd(p, q) as
period [45]. Extensions of Fine and Wilf’s result to more than two periods are
given in [42, 47, 80, 122]. For instance, in [47], Constantinescu and Ilie give
an extension for an arbitrary number of periods and prove that their bounds
are optimal.

Fine and Wilf’s result has been generalized to partial words in two ways:

• First, any partial word u with h holes and having two weak periods p, q
and length at least the so-denoted l(h, p, q) has also strong period gcd(p, q)
provided u satisfies the condition of not being (h, p, q)-special (this concept
will be defined below). This extension was done for one hole by Berstel
and Boasson where the class of (1, p, q)-special partial words is empty [4];
for two or three holes by Blanchet-Sadri and Hegstrom [25]; and for an
arbitrary number of holes by Blanchet-Sadri [8]. Elegant closed formulas
for the bounds l(h, p, q) were given and shown to be optimal.

• Second, any partial word u with h holes and having two strong periods
p, q and length at least the so-denoted L(h, p, q) has also strong period
gcd(p, q). The study of the bounds L(h, p, q) was initiated by Shur and
Gamzova [114]. In particular, they gave a closed formula for L(h, p, q) in
the case where h = 2 (the cases where h = 0 or h = 1 are implied by the
above mentioned results). In [12], Blanchet-Sadri, Bal and Sisodia gave
closed formulas for the optimal bounds L(h, p, q) in the case where p = 2
and also in the case where q is “large”. In addition, they gave upper bounds
when q is “small” and h = 3, 4, 5 or 6. Their proofs are based on connectiv-
ity in a graph G(p,q)(u) associated with a given p- and q-periodic partial
word u. More recently, in [29], Blanchet-Sadri, Mandel and Sisodia pursue
by studying two types of vertex connectivity on G(p,q)(u): the so-called
modified degree connectivity and r-set connectivity where r = q mod p.
As a result, they give an efficient algorithm for computing L(h, p, q), and
manage to give closed formulas in several cases including the h = 3 and
h = 4 cases.

In this section, we discuss in details the two ways Fine and Wilf’s pe-
riodicity result has been extended to partial words: Section 2.3.1 discusses
the weak periodicity generalizations and Section 2.3.2 the strong periodicity
generalizations. For easy reference, we recall Fine and Wilf’s result.

Theorem 8. [67]
Let p and q be positive integers. If a full word u is p-periodic and q-periodic

and |u| ≥ p + q − gcd(p, q), then u is gcd(p, q)-periodic.

2.3.1 Weak Periodicity

In this section, we review the generalizations related to weak periodicity.
We first recall Berstel and Boasson’s result for partial words with exactly

one hole where the bound p + q is optimal.
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Theorem 9. [4]
Let p and q be positive integers satisfying p < q. Let u be a partial word with

one hole. If u is weakly p-periodic and weakly q-periodic and |u| ≥ l(1, p, q) =
p + q, then u is strongly gcd(p, q)-periodic.

When we discuss partial words with h ≥ 2 holes, we need the extra as-
sumption of u not being (h, p, q)-special for a similar result to hold true. In-
deed, if p and q are positive integers satisfying p < q and gcd(p, q) = 1, then
the infinite sequence (abp−1�bq−p−1�bn)n>0 consists of (2, p, q)-special partial
words with two holes that are weakly p-periodic and weakly q-periodic but
not gcd(p, q)-periodic.

In order to define the concept of (h, p, q)-speciality, note that a partial
word u that is weakly p-periodic and weakly q-periodic can be represented as
a 2-dimensional structure. Consider for example the partial word

w = ababa���bab�bb�bbbbbbbbb
where p = 2 and q = 5. The array looks like:

u(0) u(5) u(10) u(15) u(20)
u(2) u(7) u(12) u(17) u(22)
u(4) u(9) u(14) u(19)

u(1) u(6) u(11) u(16) u(21)
u(3) u(8) u(13) u(18) u(23)

and its corresponding array of symbols looks like:

a � b b b
a � b b b
a a � b

b � � b b
b b b b b

In general, if gcd(p, q) = d, we get d arrays. Each of these arrays is asso-
ciated with a subgraph G = (V,E) of G(p,q)(u) as follows: V is the subset of
D(u) comprising the defined positions of u within the array, and E = Ep ∪Eq

where Ep = {{i, i − p} | i, i − p ∈ V } and Eq = {{i, i − q} | i, i − q ∈ V }. For
0 ≤ j < gcd(p, q), the subgraph of G(p,q)(u) corresponding to

D(u) ∩ {i | i ≥ 0 and i ≡ j mod gcd(p, q)}
will be denoted by Gj

(p,q)(u). Whenever gcd(p, q) = 1, G0
(p,q)(u) is just

G(p,q)(u). Referring to the partial word w above, the graph G(2,5)(w) is dis-
connected (w is (5, 2, 5)-special). Here, the �’s isolate the a’s from the b’s.

We now define the concept of speciality.
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Definition 2. [8]
Let p and q be positive integers satisfying p < q, and let h be a nonnegative

integer. Let

l(h, p, q) =
{

(h
2 + 1)(p + q) − gcd(p, q) if h is even

(�h
2 � + 1)(p + q) otherwise

Let u be a partial word with h holes of length at least l(h, p, q). Then u is
(h, p, q)-special if Gj

(p,q)(u) is disconnected for some 0 ≤ j < gcd(p, q).

It turns out that the bound l(h, p, q) is optimal for a number of holes h.

Theorem 10. [8]
Let p and q be positive integers satisfying p < q, and let u be a non (h, p, q)-

special partial word with h holes. If u is weakly p-periodic and weakly q-periodic
and |u| ≥ l(h, p, q), then u is strongly gcd(p, q)-periodic.

In [33], progress was made towards allowing an arbitrary number of holes
and an arbitrary number of weak periods. There, the authors proved that any
partial word u with h holes and having weak periods p1, . . . , pn and length
at least the so-denoted l(h, p1, . . . , pn) has also strong period gcd(p1, . . . , pn)
provided u satisfies some criteria. In addition to speciality, they discovered
that the concepts of intractable period sets and interference between periods
play a role.

Open problem 1 Give an algorithm which given a number of holes h and
weak periods p1, . . . , pn, computes the optimal bound l(h, p1, . . . , pn) and an
optimal partial word for that bound (a partial word u with h holes of length
l(h, p1, . . . , pn) − 1 is optimal for the bound l(h, p1, . . . , pn) if p1, . . . , pn are
weak periods of u but gcd(p1, . . . , pn) is not a strong period of u).

Open problem 2 Give closed formulas for the bounds l(h, p1, . . . , pn).

The optimality proof will probably be based on results of graphs associated
with bounds and tuples of weak periods.

2.3.2 Strong Periodicity

In this section, we review the generalizations related to strong periodicity.
There exists an integer L such that if a partial word u with h holes has strong
periods p, q satisfying p < q and |u| ≥ L, then u has strong period gcd(p, q)
(L(h, p, q) is the smallest such integer L) [115]. Recall that L(0, p, q) = p +
q − gcd(p, q).

The following result is a direct consequence of Berstel and Boasson’s result.

Theorem 11. [4] The equality L(1, p, q) = p + q holds.

For h = 2, 3 or 4, we have the following results.
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Theorem 12. [114, 115] The equality L(2, p, q) = 2p + q − gcd(p, q) holds.

Theorem 13. [29] The following equality holds:

L(3, p, q) =

⎧
⎪⎨

⎪⎩

2q + p if q − p < p
2

4p if p
2 < q − p < p

2p + q if p < q − p

Theorem 14. [29] The following equality holds:

L(4, p, q) =

⎧
⎪⎨

⎪⎩

q + 3p − gcd(p, q) if q − p < p
2

q + 3p if p
2 < q − p < p

q + 3p − gcd(p, q) if p < q − p

Other results follow.

Theorem 15. [12, 113, 114, 115] The equality L(h, 2, q) = (2�h
q � + 1)q +

h mod q + 1 holds.

Setting h = nq+r where 0 ≤ r < q, L(h, 2, q) = (2n+1)q+r+1. Consider
the word u = �rw(�qw)n where w is the unique full word of length q having
periods 2 and q but not having period 1. Note that u is an optimal word for
the bound L(h, 2, q). Indeed, |u| = (2n + 1)q + r, u has h holes, and since w
is not 1-periodic, we also have that u is not strongly 1-periodic. It is easy to
show that u is strongly 2- and q-periodic.

In [114], the authors proved that if q > p ≥ 3 and gcd(p, q) = 1 and h is
large enough, then

pq
p+q−2 (h + 1) ≤ L(h, p, q) < pqh

p+q−2 + 4(q − 1)

Open problem 3 Give closed formulas for the bounds L(h, p, q) where h >
4.

Any partial word with h holes and having n strong periods p1, . . . , pn and
length at least the so-denoted L(h, p1, . . . , pn) has also gcd(p1, . . . , pn) as a
strong period.

Open problem 4 Give an algorithm which given a number of holes h and
strong periods p1, . . . , pn, computes the optimal bound L(h, p1, . . . , pn) and an
optimal partial word for that bound (a partial word u with h holes of length
L(h, p1, . . . , pn) − 1 is optimal for the bound L(h, p1, . . . , pn) if p1, . . . , pn are
strong periods of u but gcd(p1, . . . , pn) is not a strong period of u).

Open problem 5 Give closed formulas for the bounds L(h, p1, . . . , pn).
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2.4 Critical Factorizations of Partial words

Results concerning periodicity include the well known and fundamental criti-
cal factorization theorem, of which several versions exist [43, 45, 60, 61, 59, 92,
93]. It intuitively states that the minimal period (or global period) of a word
of length at least two is always locally detectable in at least one position of
the word resulting in a corresponding critical factorization. More specifically,
given a word w and nonempty words u, v satisfying w = uv, the minimal local
period associated to the factorization (u, v) is the length of the shortest square
at position |u|−1. It is easy to see that no minimal local period is longer than
the global period of the word. The critical factorization theorem shows that
critical factorizations are unavoidable. Indeed, for any word, there is always a
factorization whose minimal local period is equal to the global period of the
word.

More precisely, we consider a word a0a1 . . . an−1 and, for any integer i (0 ≤
i < n−1), we look at the shortest repetition (a square) centered in this position,
that is, we look at the shortest (virtual) suffix of a0a1 . . . ai which is also a
(virtual) prefix of ai+1ai+2 . . . an−1. The minimal local period at position i is
defined as the length of this shortest square. The critical factorization theorem
states, roughly speaking, that the global period of a0a1 . . . an−1 is simply the
maximum among all minimal local periods. As an example, consider the word
w = babbaab with global period 6. The minimal local periods of w are 2, 3, 1,
6, 1 and 3 which means that the factorization (babb, aab) is critical.

Crochemore and Perrin showed that a critical factorization can be found
very efficiently from the computation of the maximal suffixes of the word with
respect to two total orderings on words: the lexicographic ordering related to
a fixed total ordering on the alphabet �l, and the lexicographic ordering ob-
tained by reversing the order of letters in the alphabet �r [50]. If v denotes
the maximal suffix of w with respect to �l and v′ the maximal suffix of w with
respect to �r, then let u, u′ be such that w = uv = u′v′. The factorization
(u, v) turns out to be critical when |v| ≤ |v′|, and the factorization (u′, v′) is
critical when |v| > |v′|. There exist linear time (in the length of w) algorithms
for such computations [50, 51, 101] (the latter two use the suffix tree construc-
tion). Returning to the example above, order the letters of the alphabet by
a ≺ b. Then the maximal suffix with respect to �l is v = bbaab and with re-
spect to �r is v′ = aab. Since |v| > |v′|, the factorization (u′, v′) = (babb, aab)
of w is critical.

In [22], Blanchet-Sadri and Duncan extended the critical factorization the-
orem to partial words with one hole. In this case, the concept of local period,
which characterizes a local periodic structure at each position of the word, is
defined as follows.

Definition 3. [22] Let w be a nonempty partial word. A positive integer p is
called a local period of w at position i if there exist partial words u, v, x, y
such that u, v �= ε, w = uv, |u| = i + 1, |x| = p, x ↑ y, and such that one of
the following conditions holds for some partial words r, s:
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1. u = rx and v = ys (internal square),
2. x = ru and v = ys (left-external square if r �= ε),
3. u = rx and y = vs (right-external square if s �= ε),
4. x = ru and y = vs (left- and right-external square if r, s �= ε).

In this context, a factorization is called critical if its minimal local period is
equal to the minimal weak period of the partial word. As an example, consider
the partial word with one hole w = ba�baab with minimal weak period 3. The
minimal local periods of w are 2 (left-external square), 1 (internal square), 1
(internal square), 3 (internal square), 1 (internal square) and 3 (right-external
square), and both (ba�b, aab) and (ba�baa, b) are critical.

It turns out that for partial words, critical factorizations may be avoidable.
Indeed, the partial word babdaab has no critical factorization. The class of the
so-called special partial words with one hole has been described that possibly
avoid critical factorizations. Refining the method based on the maximal suf-
fixes with respect to the lexicographic/ reverse lexicographic orderings leads
to a version of the critical factorization theorem for the nonspecial partial
words with one hole whose proof provides an efficient algorithm which, given
a partial word with one hole, outputs a critical factorization when one exists
or outputs “no such factorization exists”.

In [35], Blanchet-Sadri and Wetzler further investigated the relationship
between local and global periodicity of partial words: (1) They extended the
critical factorization theorem to partial words with an arbitrary number of
holes; (2) They characterized precisely the class of partial words that do not
admit critical factorizations; and (3) They developed an efficient algorithm
which computes a critical factorization when one exists.

Some open problems related to the critical factorization theorem follow.

Open problem 6 Discover some good criterion for the existence of a critical
factorization of an unbordered partial word defined as follows: A nonempty
partial word u is unbordered if no nonempty partial words x, v, w exist such
that u ⊂ xv and u ⊂ wx.

Open problem 7 In the framework of partial words, study the periodicity
theorem on words, which has strong analogies with the critical factorization
theorem, that was derived in [102].

In [62], the authors present an O(n) time algorithm for computing all
local periods of a given word of length n, assuming a constant-size alphabet.
This subsumes (but is substantially more powerful than) the computation of
the global period of the word and the computation of a critical factorization.
Their method consists of two parts: (1) They show how to compute all internal
minimal squares; and (2) They show how to compute left- and right-external
minimal squares, in particular for those positions for which no internal square
has been found.
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Open problem 8 Find the time complexity for the computation of all the
local periods of a given partial word.

Now, consider the language

CF = {w | w is a partial word over {a, b} that has a critical factorization}
What is the position of CF in the Chomsky hierarchy? It has been proved that
CF is a context sensitive language that is not regular. The question whether
or not CF is context-free remains open.

Theorem 16. [36] The language CF is not regular.

Theorem 17. [21] The language CF is context sensitive.

Open problem 9 Is the language CF context-free?

2.5 Correlations of Partial Words

In [71], Guibas and Odlyzko consider the period sets of words of length n over a
finite alphabet, and specific representations of them, (auto)correlations, which
are binary vectors of length n indicating the periods. Among the possible 2n

bit vectors, only a small subset are valid correlations. There, they provide
characterizations of correlations, asymptotic bounds on their number, and a
recurrence for the population size of a correlation, that is, the number of words
sharing a given correlation. In [108], Rivals and Rahmann show that there is
redundancy in period sets and introduce the notion of an irreducible period
set. They prove that Γn, the set of all correlations of length n, is a lattice
under set inclusion and does not satisfy the Jordan-Dedekind condition. They
propose the first efficient enumeration algorithm for Γn and improve upon the
previously known asymptotic lower bounds on the cardinality of Γn. Finally,
they provide a new recurrence to compute the number of words sharing a
given period set, and exhibit an algorithm to sample uniformly period sets
through irreducible period sets.

In [24], the combinatorics of possible sets of periods and weak periods of
partial words were studied in a similar way. There, the notions of binary and
ternary correlations were introduced, which are binary and ternary vectors
indicating the periods and weak periods of partial words. Extending the re-
sult of Guibas and Odlyzko, Blanchet-Sadri, Gafni and Wilson characterized
precisely which binary and ternary vectors represent the period and weak pe-
riod sets of partial words and proved that all valid correlations may be taken
over the binary alphabet (the one-hole case was proved earlier in [16]). They
showed that the sets of all such vectors of a given length form distributive
lattices under suitably defined partial orderings extending results of Rivals
and Rahmann. They also showed that there is a well defined minimal set of
generators for any binary correlation of length n, called an irreducible period
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set, and demonstrated that these generating sets are the primitive subsets of
{1, 2, . . . , n − 1}. These primitive sets of integers have been extensively stud-
ied by many researchers including Erdös [65]. Finally, they investigated the
number of partial word correlations of length n. More recently, recurrences for
computing the size of populations of partial word correlations were obtained
as well as random sampling of period and weak period sets [23].

We first define the greatest lower bound of two given partial words u and
v of equal length as the partial word u∧ v, where (u∧ v) ⊂ u and (u∧ v) ⊂ v,
and if w ⊂ u and w ⊂ v, then w ⊂ (u ∧ v). The following example illustrates
this new concept which plays a role in this section:

u = a b � c a a b � � a a
v = a c b c a a b � b b a

u ∧ v = a � � c a a b � � � a

The contents of Section 2.5 is as follows: In Section 2.5.1, we give charac-
terizations of correlations. In Section 2.5.2, we provide structural properties
of correlations. And in Section 2.5.3, we consider the problem of counting
correlations.

2.5.1 Characterizations of Correlations

Full word correlations are vectors representing sets of periods as stated in the
following definition.

Definition 4. Let u be a (full) word. Let v be the binary vector of length |u|
for which v0 = 1 and

vi =

{
1 if i ∈ P(u)
0 otherwise

We call v the correlation of u.

For instance, the word abbababbab has periods 5 and 8 (and 10) and thus
has correlation 1000010010.

Binary vectors may satisfy some propagation rules.

Definition 5. 1. A binary vector v of length n is said to satisfy the forward
propagation rule if for all 0 ≤ p < q < n such that vp = vq = 1 we have
that vp+i(q−p) = 1 for all 2 ≤ i < n−p

q−p .
2. A binary vector v of length n is said to satisfy the backward propagation

rule if for all 0 ≤ p < q < min(n, 2p) such that vp = vq = 1 and v2p−q = 0
we have that vp−i(q−p) = 0 for all 2 ≤ i ≤ min(� p

q−p�, �
n−p
q−p �).

Note that a binary vector v of length 12 satisfying v7 = v9 = 1 and the
forward propagation rule also satisfies v7+2(9−7) = v11 = 1. Note also that
setting p = 0 in the forward propagation rule implies that viq = 1 for all i
whenever vq = 1.
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Fundamental results on periodicity of words include the following unex-
pected result of Guibas and Odlyzko which gives a characterization of full
word correlations.

Theorem 18. [71] For correlation v of length n the following are equivalent:

1. There exists a word over the binary alphabet with correlation v.
2. There exists a word over some alphabet with correlation v.
3. The correlation v satisfies the forward and backward propagation rules.

Corollary 2. [71] For any word u over an alphabet A, there exists a binary
word v of length |u| such that P(v) = P(u).

Now, partial word correlations are defined according to the following def-
inition.

Definition 6. [24]

1. The binary correlation of a partial word u satisfying P(u) = P ′(u) is the
binary vector of length |u| such that v0 = 1 and

vi =

{
1 if i ∈ P(u)
0 otherwise

2. The ternary correlation of a partial word u is the ternary vector of length
|u| such that v0 = 1 and

vi =

⎧
⎪⎨

⎪⎩

1 if i ∈ P(u)
2 if i ∈ P ′(u) \ P(u)
0 otherwise

Considering the partial word abaca��acaba which has periods 9 and
11 (and 12) and strictly weak period 5, its ternary correlation vector is
100002000101.

A characterization of binary correlations follows.

Theorem 19. [24] Let n be a nonnegative integer. Then for any finite collec-
tion u1, u2, . . . , uk of full words of length n over an alphabet A, there exists
a partial word w of length n over the binary alphabet with P(w) = P ′(w) =
P(u1) ∪ P(u2) ∪ · · · ∪ P(uk).

Corollary 3. [24] The set of valid binary correlations over an alphabet A with
‖A‖ ≥ 2 is the same as the set of valid binary correlations over the binary
alphabet. Phrased differently, if u is a partial word over an alphabet A, then
there exists a binary partial word v of length |u| such that P(v) = P(u).

Follows is a characterization of valid ternary correlations.
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Theorem 20. [24] A ternary vector v of length n is the ternary correlation
of a partial word of length n over an alphabet A if and only if v0 = 1 and

1. If vp = 1, then for all 0 ≤ i < n
p we have that vip = 1.

2. If vp = 2, then there exists some 2 ≤ i < n
p such that vip = 0.

The proof is based on the following construction: For n ≥ 3 and 0 < p < n,
let n = kp + r where 0 ≤ r < p. Then define

ωp =

{
(abp−1)k if r = 0
(abp−1)kabr−1 if r > 0

ψp = abp−1�bn−p−1

Then given a valid ternary correlation v of length n, the partial word
(∧

p>0|vp=1 ωp

)
∧

(∧
p|vp=2 ψp

)

has ternary correlation v.
For example, given v = 100002000101, then abbbb�bbb�b� has correlation

v as computed in the following figure:

ω9 = a b b b b b b b b a b b
ω11 = a b b b b b b b b b b a
ψ5 = a b b b b � b b b b b b

a b b b b � b b b � b �
The following corollary implies that every partial word has a “binary equiv-

alent”.

Corollary 4. [24] The set of valid ternary correlations over an alphabet A
with ‖A‖ ≥ 2 is the same as the set of valid ternary correlations over the
binary alphabet. Phrased differently, if u is a partial word over an alphabet A,
then there exists a binary partial word v such that

1. |v| = |u| 2. P(v) = P(u) 3. P ′(v) = P ′(u)

In [74], Halava, Harju and Ilie gave a simple constructive proof of The-
orem 18 which computes v in linear time. This result was later proved for
partial words with one hole by extending Halava et al.’s approach [16]. More
specifically, given a partial word u with one hole over an alphabet A, a partial
word v over the binary alphabet exists such that Conditions 1–3 hold as well
as the following condition

4. H(v) ⊂ H(u)

However, Conditions 1–4 cannot be satisfied simultaneously in the two-hole
case. For the partial word abaca��acaba can be checked by brute force to have
no such binary equivalent (although it has the binary equivalent abbbb�bbb�b�
as discussed above).
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Open problem 10 Characterize the partial words that have an equivalent
over the binary alphabet {a, b} satisfying Conditions 1–4.

Open problem 11 Design an efficient algorithm for computing a binary
equivalent satisfying Conditions 1–4 when such equivalent exists.

Open problem 12 Can we always find an equivalent over the ternary al-
phabet {a, b, c} that satisfies Conditions 1–4?

2.5.2 Structural Properties of Correlations

A result of Rivals and Rahmann [108] states that Γn, the set of full word
correlations of length n, is a lattice under set inclusion which does not satisfy
the Jordan-Dedekind condition, a criterion which stipulates that all maximal
chains between two elements of a poset are of equal length. Violating the
Jordan-Dedekind condition implies that Γn is not distributive.

We now discuss corresponding results for partial words.

Theorem 21. [24] The set ∆n of partial word binary correlations of length n
is a distributive lattice under ⊂ where for u, v ∈ ∆n, u ⊂ v if P(u) ⊂ P(v),
and thus satisfies the Jordan-Dedekind condition. Here

1. The meet of u and v, u∩v, is the unique vector in ∆n such that P(u∩v) =
P(u) ∩ P(v).

2. The join of u and v, u∪v, is the unique vector in ∆n such that P(u∪v) =
P(u) ∪ P(v).

3. The null element is 10n−1.
4. The universal element is 1n.

The union of u and v, u ∪ v, is the vector in ∆′
n defined as (u ∪ v)i = 0 if

ui = vi = 0, 1 if either ui = 1 or vi = 1, and 2 otherwise. However, ∆′
n is not

closed under union. Considering the example

u = 1 0 2 0 0 0 1 0 1
v = 1 0 0 0 1 0 0 0 1

(u ∪ v) = 1 0 2 0 1 0 1 0 1

there is no i ≥ 2 such that (u ∪ v)i2 = 0, and therefore (u ∪ v) is not a valid
ternary correlation. However 101010101 is valid.

Theorem 22. [24] The set ∆′
n of partial word ternary correlations of length

n is a distributive lattice under ⊂ where for u, v ∈ ∆′
n, u ⊂ v if ui = 1 implies

vi = 1 and ui = 2 implies vi = 1 or vi = 2. Here

1. The meet of u and v, u∧v, is the vector (u∩v) in ∆′
n defined by P(u∧v) =

P(u) ∩ P(v) and P ′(u ∧ v) = P ′(u) ∩ P ′(v).
2. The join of u and v, u ∨ v, is the vector in ∆′

n defined by
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P ′(u ∨ v) = P ′(u) ∪ P ′(v)
P(u ∨ v) = P(u) ∪ P(v) ∪ B(u ∪ v)

where B(u∪ v) is the set of all 0 < p < n such that (u∪ v)p = 2 and there
exists no i ≥ 2 satisfying (u ∪ v)ip = 0.

In the case of full words, some periods are implied by other periods because
of the forward propagation rule. If a twelve-letter full word has periods 7 and
9 then it must also have period 11 since 11 = 7 + 2(9 − 7), so {7, 9, 11}
corresponds to the irreducible period set {7, 9}. Another result of Rivals and
Rahmann shows that the set Λn of these irreducible period sets is not a lattice
but does satisfy the Jordan-Dedekind condition as a poset [108].

However, forward propagation does not hold in the case of partial words
as can be seen with the partial word abbbbbb�b�bb which has periods 7 and 9
but does not have period 11. The set {7, 9, 11} is irreducible in the sense of
partial words, but not in the sense of full words.

This leads us to the definition of generating sets.

Definition 7. [24] A set P ⊂ {1, 2, . . . , n − 1} generates the correlation v ∈
∆n provided that for each 0 < i < n we have that vi = 1 if and only if there
exists p ∈ P and 0 < k < n

p such that i = kp.

For instance, if v = 1001001101, then {3, 6, 7, 9}, {3, 6, 7}, {3, 7, 9}, and
{3, 7} generate v. However, the set {3, 7} is the minimal generating set of v.

For every v ∈ ∆n there is a minimal generating set R(v) for v which we
call the irreducible period set of v. Namely, this is the set of p ∈ P(v) such
that for all q ∈ P(v) with q �= p we have that q does not divide p. Denoting
by Φn the set of irreducible period sets of partial words of length n, we see
that there is an obvious bijective correspondence between Φn and ∆n given
by

R : ∆n → Φn

v �→ R(v)

E : Φn → ∆n

P �→
⋃

p∈P 〈p〉n

For n ≥ 3, we see immediately that the poset (Φn,⊂) is not a join semi-
lattice since the sets {1} and {2} will never have a join because {1} is always
maximal. On the other hand, the following holds.

Proposition 1. [24] The set Φn of irreducible period sets of partial words of
length n is a meet semilattice under set inclusion which satisfies the Jordan-
Dedekind condition. Here the null element is ∅, and the meet of two elements
is simply their intersection.

Open problem 13 Is there an efficient enumeration algorithm for ∆n?
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2.5.3 Counting Correlations

In this section, we look at the number of valid correlations of a given length.
In the case of binary correlations, we give bounds and link the problem to one
in number theory. In the case of ternary correlations, we give an exact count.

A primitive set of integers is a subset S ⊂ {1, 2, . . .} such that for any two
distinct elements s, s′ ∈ S we have that neither s divides s′ nor s′ divides
s. The irreducible period sets of correlations v ∈ ∆n are precisely the finite
primitive subsets of {1, 2, . . . , n − 1}.

A result of Erdös can be stated as follows.

Theorem 23. [65] Let S be a finite primitive set of size k with elements less
than n. Then k ≤

⌊
n
2

⌋
. Moreover, this bound is sharp.

This bound shows that the number of binary correlations of length n is at
most the number of subsets of {1, 2, . . . , n−1} of size at most

⌊
n
2

⌋
. Moreover,

the sharpness of the bound gives us that

‖∆n‖ ≥ 2�
n
2 �

Thus
ln 2
2

≤ ln ‖∆n‖
n

≤ ln 2

Open problem 14 Refine this bound on the cardinality of ∆n, the set of all
partial word binary correlations of length n.

Guibas and Odlyzko [71] showed that as n → ∞
1

2 ln 2 + o(1) ≤ ln ‖Γn‖
(ln n)2 ≤ 1

2 ln( 3
2 )

+ o(1)

and Rivals and Rahmann [108] improved the lower bound to

ln ‖Γn‖
(ln n)2 ≥ 1

2 ln 2

(
1 − ln ln n

ln n

)2
+ 0.4139

ln n − 1.47123 ln ln n
(ln n)2 + O

(
1

(ln n)2

)

where Γn is the set of all full word correlations of length n. Thus the bounds
we give, which show explicitly that ln ‖∆n‖ = Θ(n), demonstrate that the
number of partial word binary correlations is much greater than the number
of full word correlations.

Lemma 1. [24]

1. Let u be a partial word of length n. Then p ∈ P(u) if and only if ip ∈ P ′(u)
for all 0 < i ≤ �n

p �.
2. If S ⊂ {1, 2, . . . , n−1}, then there exists a unique correlation v ∈ ∆′

n such
that P ′(v) \ {n} = S.

Consequently, the cardinality of ∆′
n, the set of valid ternary correlations

of length n, is the same as the cardinality of the power set of {1, 2, . . . , n−1},
and thus
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‖∆′
n‖ = 2n−1

We end this section with the following open problem.

Open problem 15 Exhibit an algorithm to sample uniformly (weak) period
sets through irreducible (weak) period sets.

2.6 Primitive and Unbordered Partial Words

The two fundamental concepts of primitiveness and borderedness play an im-
portant role in several research areas including coding theory [5, 6, 117], com-
binatorics on words [45, 92, 93, 94, 96], computational biology [39, 100], data
communication [41], data compression [49, 119, 123], formal language theory
[57, 58], and text algorithms [38, 50, 51, 52, 69, 72, 84, 102, 118]. A primitive
word is one that cannot be written as a power of another word, while an un-
bordered word is a primitive word such that none of its proper prefixes is one
of its suffixes. For example, abaab is bordered with border ab while abaabb is
unbordered. The number of primitive and unbordered words of a fixed length
over an alphabet of a fixed size is well known, the number of primitive words
being related to the Möbius function [92].

In this section, we discuss, in particular, the problems of counting primitive
and unbordered partial words.

2.6.1 Primitiveness

A word u is primitive if there exists no word v such that u = vi with i ≥ 2. A
natural algorithmic problem is how can we decide efficiently whether a given
word is primitive. The problem has a brute force quadratic solution: divide
the input word into two parts and check whether the right part is a power of
the left part. But how can we obtain a faster solution to the problem? Fast
algorithms for testing primitivity of words can be based on the combinatorial
result that a word u is primitive if and only if u is not an inside factor of its
square uu, that is, uu = xuy implies x = ε or y = ε [45]. Indeed, any linear
time string matching algorithm can be used to test whether the string u is a
proper factor of uu. If the answer is no, then the primitiveness of u has been
verified [51]. So testing whether or not a word is primitive can be done in
linear time in the length of the word.

Primitive partial words were defined in [9]: A partial word u is primitive if
there exists no word v such that u ⊂ vi with i ≥ 2. It turns out that a partial
word u with one hole is primitive if and only if uu ↑ xuy for some partial words
x, y implies x = ε or y = ε [9]. A linear time algorithm for testing primitivity
of partial words with one hole can be based on this combinatorial result.
As an application, the existence of a binary equivalent for any partial word
with one hole satisfying Conditions 1–4 discussed in Section 2.5 was obtained
[16]. In [11], a linear time algorithm was described to test primitivity on
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partial words with more than one hole. Here the concept of speciality related
to commutativity on partial words, which was discussed in Section 2.2, is
foundational in the design of the algorithm. More precisely, it was shown that
if u is a primitive partial word with more than one hole satisfying uu ↑ xuy for
some nonempty partial words x and y such that |x| < |y|, then u is (|x|, |y|)-
special. The partial words u = ab�bbb�b, x = a�, and y = c�bbcb illustrate
the fact that the condition of speciality plays a role when dealing with partial
words with more than one hole.

In [19], the very challenging problem of counting the number Ph,k(n) (re-
spectively, P ′

h,k(n)) of primitive (respectively, nonprimitive) partial words
with h holes of length n over a k-size alphabet was considered. There, for-
mulas for h = 1 and h = 2 in terms of the well known formula for h = 0 were
given. Denote by Th,k(n) the sum of Ph,k(n) and P ′

h,k(n).
We first recall the counting for primitive full words. Since there are exactly

kn words of length n over a k-size alphabet and every nonempty word w has
a unique primitive root v for which w = vn/d for some divisor d of n, the
following relation holds:

kn =
∑

d|n
P0,k(d)

Using the Möbius inversion formula, we obtain the following well-known ex-
pression for P0,k(n) [92, 105]:

P0,k(n) =
∑

d|n
µ(d)kn/d

where the Möbius function, denoted by µ, is defined as

µ(n) =

⎧
⎨

⎩

1 if n = 1
(−1)i if n is a product of i distinct primes
0 if n is divisible by the square of a prime

The cases where h = 1 and h = 2 are stated in the next two theorems.

Theorem 24. [19] The equality P ′
1,k(n) = nP ′

0,k(n) holds.

Theorem 25. [19]

1. For an odd positive integer n:

P ′
2,k(n) =

(
n

2

)

P ′
0,k(n)

2. For an even positive integer n:

P ′
2,k(n) =

(
n

2

)

P ′
0,k(n) − (k − 1)T1,k(

n

2
)
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Open problem 16 Count the number P ′
h,k(n) of nonprimitive partial words

with h holes of length n over a k-size alphabet for h > 2.

Another problem to investigate is the following.

Open problem 17 Study the language of primitive partial words as is done
for full primitive words in [105].

We end this section with the following remark. In [18], the authors ob-
tained consequences of the generalizations of Fine and Wilf’s periodicity result
to partial words. In particular, they generalized the following combinatorial
property: “For any word u over {a, b}, ua or ub is primitive.” This property
proves in some sense that there exist very many primitive words.

2.6.2 Borderedness

Unbordered partial words were also defined in [9]: A nonempty partial word
u is unbordered if no nonempty partial words x1, x2, v, w exist such that u =
x1v = wx2 and x1 ↑ x2. If such nonempty words exist and x is such that
x1 ⊂ x and x2 ⊂ x, then we call u bordered and x a border of u. A border x of
u is called minimal if |x| > |y| implies that y is not a border of u. Note that
there are two types of borders: x is an overlapping border if |x| > |v|, and
a nonoverlapping border otherwise. The partial word u = a��ab is bordered
with the nonoverlapping border ab and overlapping border aab, the first one
being minimal, while the partial word ab�c is unbordered.

We call a bordered partial word u simply bordered if a minimal border x
exists satisfying |u| ≥ 2|x|.

Proposition 2. [21] Let u be a nonempty bordered partial word. Let x be a
minimal border of u, and set u = x1v = wx2 where x1 ⊂ x and x2 ⊂ x. Then
the following hold:

1. The partial word x is unbordered.
2. If x1 is unbordered, then u = x1u

′x2 ⊂ xu′x for some u′.

Note that Proposition 2 implies that if u is a full bordered word, then
x1 = x is unbordered. In this case, u = xu′x where x is the minimal border
of u. Hence a bordered full word is always simply bordered.

Corollary 5. [21] Every bordered full word of length n has a unique minimal
border x. Moreover, x is unbordered and |x| ≤ �n

2 �.

In [20], the problem of enumerating all unbordered partial words with h
holes of length n over a k-letter alphabet was considered, a problem that yields
some open questions for further investigation. We will denote by Uh,k(n) the
number of such words.

Let us start with the problem of enumerating all unbordered full words
of length n over a k-letter alphabet which gives a conceptually simple and
elegant recursive formula: U0,k(0) = 1, U0,k(1) = k, and for n > 0,
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U0,k(2n) = kU0,k(2n − 1) − U0,k(n)
U0,k(2n + 1) = kU0,k(2n)

These equalities can be seen from the fact that if a word has odd length 2n+1
then it is unbordered if and only if it is unbordered after removing the middle
letter. If a word has even length 2n then it is unbordered if and only if it is
obtained from an unbordered word of length 2n − 1 by adding a letter next
to the middle position unless doing so creates a word that is a perfect square.

Using these formulas and Proposition 2, we can easily obtain a formula
for counting bordered full words. Let Bk(j, n) be the number of full words of
length n over a k-letter alphabet that have a minimal border of length j:

Bk(j, n) = U0,k(j)kn−2j

If we let Bk(n) be the number of full words of length n over a k-letter alphabet
with a border of any length, then we have that

Bk(n) =
�n

2 �∑

j=1

Bk(j, n)

When we allow words to have holes, counting bordered partial words is
made extremely more difficult by the failure of Corollary 5 since there is now
the possibility of a minimal border that is overlapping as in a�bb. We will first
concern ourselves with the simply bordered partial words. Note that because
borderedness in partial words is defined via containment, it no longer makes
sense to talk about the minimal border of a partial word, there could be many
possible borders of a certain length.

To see inside the structure of the partial words we are trying to count
we first define a function. Let fh,k(i, j, n) be the number of partial words of
length n with h > 0 holes over a k-letter alphabet that have a hole in position
i and a minimal border of length j. When i = 0:

fh,k(0, j, n) =
{(

n−1
h−1

)
kn−h if j = 1

0 if j > 1

It is clear that fh,k(i, j, n) has some symmetry, namely that, fh,k(i, j, n) =
fh,k(n − 1 − i, j, n). Throughout this section we will rely on this to consider
only i ≤ �n

2 �.
We have some general formulas for the evaluation of fh,k(i, j, n).

Proposition 3. [20]
If 0 < i < j − 1 and j < n

2 , then

fh,k(i, j, n) =
min(h,2j)∑

h′=1

fh′,k(i, j, 2j)
(

n − 2j

h − h′

)

kn−2j−h+h′

It is possible to see from the formula in Proposition 3 that we need only
really concern ourselves with the case when j = �n

2 �.
There is a similar simplification that can be made if j − 1 < i.
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Proposition 4. [20]
If j − 1 < i, then

fh,k(i, j, n) = 2
j−1∑

i′=0

min(h−1,2j)∑

h′=0

fh′,k(i′, j, 2j)
(

n − 2j − 1
h − 1 − h′

)

kn−2j−h+h′

If we restrict our attention to the case when h = 1, then we can present
many explicit formulas for the values f1,k(i, j, n). The exceptional case when
i = 0 is easily dispensed with:

f1,k(0, j, n) =
{

kn−1 if j = 1
0 if j > 1

Note that in the case where 0 < i < j − 1 and j < n
2 , the formula in Proposi-

tion 3 reduces to the very simple equality

f1,k(i, j, n) = f1,k(i, j, 2j)kn−2j

Similarly, in the case where j − 1 < i, the formula in Proposition 4 reduces to

f1,k(i, j, n) = U0,k(j)kn−2j−1

By the above discussion we can restrict our attention to the cases when i > 0,
n = 2m and j = m. These are partial words with a border that takes up
exactly half the length of the word. We wish to find a complete formula for
f1,k(i,m, 2m) where i = m − 1 − i′.

We proceed by induction on i′. When i′ = 0, we have the following.

Lemma 2. [20] For all m ≥ 2, f1,k(m − 1,m, 2m) = U0,k(m).

Continuing with the first interesting case i′ = 1, we have the following
lemma.

Lemma 3. [20]
For all m ≥ 3, f1,k(m − 2,m, 2m) = U0,k(m) − k(k − 1).

This kind of analysis quickly becomes much more complicated though.
The evaluation breaks up into cases depending on how the periodicity of the
words interacts with the length of the border in modular arithmetic.

Lemma 4. [20] For all m ≥ 4, the following holds:

f1,k(m − 3,m, 2m) =
{

U0,k(m) − k2(k − 1) − k(k − 1) if m ≡ 1 mod 2
U0,k(m) − k(k − 1)2 − k(k − 1) if m ≡ 0 mod 2

Lemma 5. [20] For all m ≥ 5, the following holds:

f1,k(m − 4,m, 2m) = U0,k(m) − k(k − 1) − g1(m) − g2(m)

where
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g1(m) =
{

k(k − 1)2 if m ≡ 0 mod 2
0 if m ≡ 1 mod 2

and

g2(m) =

⎧
⎨

⎩

k2(k − 1)2 if m ≡ 0 mod 3
U0,k(4) if m ≡ 1 mod 3
k2(k − 1)2 if m ≡ 2 mod 3

To give an idea of how the values for f1,k(i,m, 2m) behave unpredictably,
here is a table of values that has been put together through a brute force
count:

i 0 1 2 3 4 5 6 7
f1,2(i, 2, 4) 0 2
f1,2(i, 3, 6) 0 2 4
f1,2(i, 4, 8) 0 2 4 6
f1,2(i, 5, 10) 0 6 6 10 12
f1,2(i, 6, 12) 0 10 12 16 18 20
f1,2(i, 7, 14) 0 22 26 32 34 38 40
f1,2(i, 8, 16) 0 42 52 60 66 70 72 74

Open problem 18 Compute the values f1,k(m − i,m, 2m) for m > i.

Let Sh,k(n) be the number of simply bordered partial words of length n
with h holes over a k-letter alphabet. Clearly if h > n, then Sh,k(n) = 0. Note
that when h = 0, Sh,k(n) = Bk(n).

Theorem 26. [20]
If 0 < h ≤ n, then a formula for Sh,k(n) is given by:

Sh,k(2m + 1) = Sh−1,k(2m) + kSh,k(2m)

Sh,k(2m) =

2

m−1∑

i=0

m∑

j=1

fh,k(i, j, 2m)

h

We can check that

S1,k(n) =
n−1∑

i=0

�n
2 �∑

j=1

f1,k(i, j, n)

Let Nh,k(n) be the number of partial words with h holes, of length n,
over a k-letter alphabet that are not simply bordered. Obviously we can find
the value of this function by subtracting the value of Sh,k(n) from the total
number of partial words with those parameters, but it would be of interest to
find a direct formula for Nh,k(n). If h = 0, then
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N0,k(n) = U0,k(n)

since a bordered full word that is not simply bordered is an unbordered full
word. It is easy to see that N1,k(0) = 0, N1,k(1) = 1, N1,k(2) = 0, and for
h > 1 that Nh,k(1) = 0 and Nh,k(2) = 0. Now, for h > 0, the following formula
holds for odd n = 2m + 1:

Nh,k(2m + 1) = kNh,k(2m) + Nh−1,k(2m)

Open problem 19 What is Nh,k(2m)?

If we simplify the problem down to the h = 1 case, then we can again use
the values f1,k(i, j, n) to give a formula for N1,k(n):

N1,k(2m) = kN1,k(2m − 1) + 2U0,k(2m − 1) −
m∑

i=1

f1,k(i,m, 2m)

but it rests on the evaluation of the f1,k(i, j, 2j)’s as well.
Other interesting questions include the following.

Open problem 20 Count the number Oh,k(n) of overlapping bordered par-
tial words of length n with h holes over a k-letter alphabet for h > 0.

Open problem 21 Count the number Uh,k(n) of unbordered partial words of
length n with h holes over a k-letter alphabet for h > 0.

Another open question is suggested by the fact that every partial word of
length 5 that has more than two holes is simply bordered. The partial word
a��bb shows that this bound on the number of holes for length 5 is tight. For
length 6, every partial word with more than 2 holes is simply bordered as well.

Open problem 22 What is the maximum number of holes M(n) a partial
word of length n can have and still fail to be simply bordered? Some values for
small n follow.

n M(n)
5 2
6 2
7 3
8 4
9 5
10 5
11 6
12 7
13 8
14 8
15 9
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We end this section by discussing another open problem related to bor-
deredness in the context of partial words.

In 1979, Ehrenfeucht and Silberger initiated a line of research to explore the
relationship between the minimal period of a word w of length n, p(w), and the
maximum length of its unbordered factors, µ(w) [64]. Clearly, µ(w) ≤ p(w).
They conjectured that if n ≥ 2µ(w), then µ(w) = p(w). In [3], a counterex-
ample was given and it was conjectured that 3µ(w) is the precise bound. In
1982, it was established that if n ≥ 4µ(w) − 6, then µ(w) = p(w) [61]. In
2003, the bound was improved to 3µ(w) − 2 in [76] where it is believed that
the precise bound can be achieved with methods similar to those presented in
that paper.

Open problem 23 Investigate the relationship between the minimal weak pe-
riod of a partial word and the maximum length of its unbordered factors.

2.7 Equations on Partial Words

As was seen in Section 2.2, some of the most basic properties of words, like the
commutativity and the conjugacy properties, can be expressed as solutions of
the word equations xy = yx and xz = zy respectively. It is also well known
that the equation xm = ynzp has only periodic solutions in a free semigroup,
that is, if xm = ynzp holds with integers m,n, p ≥ 2, then there exists a
word w such that x, y, z are powers of w. This result, which received a lot of
attention, was first proved by Lyndon and Schützenberger for free groups [96].
Their proof implied the case for free semigroups since every free semigroup
can be embedded in a free group. Direct proofs for free semigroups appear in
[46, 77, 92].

In this section, we study equations on partial words. When we speak about
them, we replace the notion of equality with compatibility. But compatibility
is not transitive! We already solved the commutativity equation xy ↑ yx as
well as the conjugacy equation xz ↑ zy in Section 2.2. As an application of
the commutativity equation, we mention the linear time algorithm for testing
primitivity on partial words that was discussed in Section 2.6 [11], and as
an application of the conjugacy equation, we mention the efficient algorithm
for computing a critical factorization when one exists that was discussed in
Section 2.4 [22, 35]. Here, we solve three equations: xm ↑ yn, x2 ↑ ymz, and
xm ↑ ynzp.

First, let us consider the equation xm ↑ yn, also called the “good pairs”
equation. If x and y are full words, then xm = yn for some positive integers
m,n if and only if there exists a word z such that x = zk and y = zl for some
integers k, l. When dealing with partial words x and y, if there exists a partial
word z such that x ⊂ zk and y ⊂ zl for some integers k, l, then xm ↑ yn for
some positive integers m,n.

For the converse, we need a couple of lemmas.
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Lemma 6. [13]
Let x, y be partial words and let m,n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. Call |x|/n = |y|/m = p. If there exists an integer i such
that 0 ≤ i < p and xi,p is not 1-periodic, then D(yi,p) is empty.

Lemma 7. [13]
Let x be a partial word, let m, p be positive integers, and let i be an integer

such that 0 ≤ i < p. Then the relation

xm
i,p = xi,px(i−|x|) mod p,p . . . x(i−(m−1)|x|) mod p,p

holds.

The “good pairs” theorem is stated as follows.

Theorem 27. [13]
Let x, y be partial words and let m,n be positive integers such that xm ↑ yn

with gcd(m,n) = 1. Assume that (x, y) is a good pair, that is,

1. For all i ∈ H(x) the word yn
i,|x| is 1-periodic,

2. For all i ∈ H(y) the word xm
i,|y| is 1-periodic.

Then there exists a partial word z such that x ⊂ zk and y ⊂ zl for some
integers k, l.

The assumption of (x, y) being a good pair is necessary in the “good pairs”
theorem. Indeed, x2 = (a�b)2 ↑ (acbadb)1 = y1 but y(1)y(4) = cd is not
1-periodic, and there exists no partial word z as desired.

Corollary 6. [13]
Let x and y be primitive partial words such that (x, y) is a good pair. If

xm ↑ yn for some positive integers m and n, then x ↑ y.

Note that if both x and y are full words, then (x, y) is a good pair. The
corollary hence implies that if x, y are primitive full words satisfying xm = yn

for some positive integers m and n, then x = y.
Second, we consider the “good triples” equation x2 ↑ ymz. Here, it is

assumed that m is a positive integer and z is a prefix of y.
Nontrivial solutions exist! A solution is trivial if x, y, z are contained in

powers of a common word. The equation x2 ↑ ymz has nontrivial solutions.
For instance, (a��a)2 ↑ (aab)2aa where x = a��a, y = aab, and z = aa.

The “good triples” theorem follows.

Theorem 28. [13]
Let x, y, z be partial words such that z is a proper prefix of y. Then x2 ↑ ymz

for some positive integer m if and only if there exist partial words

u, v, u0, v0, . . . , um−1, vm−1, zx
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such that u �= ε, v �= ε, y = uv,

x = (u0v0) . . . (un−1vn−1)un (2.1)
= vn(un+1vn+1) . . . (um−1vm−1)zx (2.2)

where 0 ≤ n < m, u ↑ ui and v ↑ vi for all 0 ≤ i < m, z ↑ zx, and where one
of the following holds:

1. m = 2n, |u| < |v|, and there exist partial words u′, u′
n such that zx = u′un,

z = uu′
n, u ↑ u′ and un ↑ u′

n.
2. m = 2n + 1, |u| > |v|, and there exist partial words v′

2n and z′x such that
un = v2nzx, u = v′

2nz′x, v2n ↑ v′
2n and zx ↑ z′x.

A triple of partial words (x, y, z) which satisfy these properties we will refer
to as a good triple.

Two corollaries can be deduced.

Corollary 7. [13]
Let x, y, z be partial words such that z is a prefix of y. Assume that x, y

are primitive and that x2 ↑ ymz for some integer m ≥ 2. If x has at most one
hole and y is full, then x ↑ y.

Corollary 8. [13]
Let x, y, z be words such that z is a prefix of y. If x, y are primitive and

x2 = ymz for some integer m ≥ 2, then x = y.

Note that the corollaries do not hold when m = 1. Indeed, the words
x = aba, y = abaab and z = a provide a counterexample. Also, the first
corollary does not hold when x is full and y has one hole as is seen by setting
x = abaabb, y = ab� and z = ε.

Third, let us consider the equation xmyn ↑ zp. The case of full words is
well known.

Theorem 29. [96]
Let x, y, z be full words and let m,n, p be integers such that m ≥ 2, n ≥ 2

and p ≥ 2. Then the equation xmyn = zp has only trivial solutions, that is,
x, y, and z are each a power of a common element.

When we deal with partial words, the equation xmyn ↑ zp certainly has
a solution when x, y, and z are contained in powers of a common word (we
call such solutions the trivial solutions). However, there may be nontrivial
solutions as is seen with the compatibility relation

(a�b)2(b�a)2 ↑ (abba)3

We will classify solutions as Type 1 (or trivial) solutions when there exists
a partial word w such that x, y, z are contained in powers of w, and as Type
2 solutions when the partial words x, y, z satisfy x ↑ z and y ↑ z. Note that if
z is full, then Type 2 solutions are trivial solutions.

The case p ≥ 4 is stated in the following theorem.
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Theorem 30. [13] Let x, y, z be primitive partial words such that (x, z) and
(y, z) are good pairs. Let m,n, p be integers such that m ≥ 2, n ≥ 2 and p ≥ 4.
Then the equation xmyn ↑ zp has only solutions of Type 1 or Type 2 unless
one of the following holds:

1. x2 ↑ zkzp for some integer k ≥ 2 and nonempty prefix zp of z,
2. z2 ↑ xlxp for some integer l ≥ 2 and nonempty prefix xp of x.

Open problem 24 Solve the equation xmyn ↑ zp on partial words for inte-
gers m ≥ 2, n ≥ 2 and p ∈ {2, 3}.

2.8 Unavoidable Sets of Partial Words

A set of (full) words X over a finite alphabet A is unavoidable if no two-sided
infinite word over A avoids X, that is, X is unavoidable if every two-sided
infinite word over A has a factor in X. For instance, the set X = {a, bbb}
is unavoidable (if a two-sided infinite word w does not have a as a factor,
then w consists only of b’s). This concept was explicitly introduced in 1983 in
connection with an attempt to characterize the rational languages among the
context-free ones [63]. It is clear from the definition that from each unavoidable
set we can extract a finite unavoidable subset, so the study can be reduced to
finite unavoidable sets. There is a vast literature on unavoidable sets of words
and we refer the reader to [44, 93, 109, 110] for more information.

Unavoidable sets of partial words were introduced recently in [15], where
the problem of classifying such sets of small cardinality was initiated, in partic-
ular, those with two elements. The authors showed that this problem reduces
to the one of classifying unavoidable sets of the form

{a�m1a . . . a�mka, b�n1b . . . b�nlb}
where m1, . . . ,mk, n1, . . . , nl are nonnegative integers and a, b are distinct let-
ters. They gave an elegant characterization of the special case of this problem
when k = 1 and l = 1. They proposed a conjecture characterizing the case
where k = 1 and l = 2 and proved one direction of the conjecture. They then
gave partial results towards the other direction and in particular proved that
the conjecture is easy to verify in a large number of cases. Finally, they proved
that verifying this conjecture is sufficient for solving the problem for larger
values of k and l. In [27], the authors built on the previous work by examining,
in particular, unavoidable sets of size three.

In [15], the question was raised as to whether there is an efficient algorithm
to determine if a finite set of partial words is unavoidable. In [26], it was shown
that this problem is NP-hard by using techniques similar to those used in a
recent paper on the complexity of computing the capacity of codes that avoid
forbidden difference patterns [37]. This is in contrast with the well known
feasibility results for unavoidability of a set of full words [93].
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The contents of Section 2.8 is as follows: In Section 2.8.1, we review basics
on unavoidable sets of partial words. In Section 2.8.2, we discuss classifying
such sets of size two. And in Section2.8.3, we discuss testing unavoidability of
sets of partial words.

2.8.1 Unavoidable Sets

We first define some basic terminology. A two-sided infinite word over A is
a total function w : Z → A. A finite word u is a factor of w if there exists
some i ∈ Z such that u = w(i)w(i + 1) . . . w(i + |u| − 1). A period of w is
a positive integer p such that w(i) = w(i + p) for all i ∈ Z. If w has period
p for some p, then we call w periodic. If v is a finite word, then vZ denotes
the two-sided infinite word w with period |v| satisfying w(0) . . . w(|v| − 1) =
v. If X is a set of partial words, then X̂ denotes the set of all full words
compatible with a member of X. For instance, if X = {a��a, b�b}, then X̂ =
{aaaa, aaba, abaa, abba, bab, bbb}.

The concept of an unavoidable set of full words is defined as follows.

Definition 8. Let X ⊂ A∗.

1. A two-sided infinite word w avoids X if no factor of w is a member of X.
2. The set X is unavoidable if no two-sided infinite word over A avoids X,

that is, X is unavoidable if every two-sided infinite word over A has a
factor in X.

If A = {a, b}, then the following sets are unavoidable: X1 = {ε} (ε is a
factor of every two-sided infinite word); X2 = {a, bbb}; X3 = {aa, ab, ba, bb}
(this is the set of all words of length 2); and for any n ∈ N, An is unavoidable.

If X ⊂ A∗ is finite, then the following three statements are equivalent:
(1) X is unavoidable; (2) There are only finitely many words in A∗ with no
member of X as a factor; and (3) No periodic two-sided infinite word avoids
X.

An unavoidable set of partial words is defined as follows.

Definition 9. Let X ⊂ A∗
�.

1. A two-sided infinite word w avoids X if no factor of w is a member of X̂.
2. The set X is unavoidable if no two-sided infinite word over A avoids X,

that is, X is unavoidable if every two-sided infinite word over A has a
factor in X̂.

If A = {a, b}, then the following sets are unavoidable: X1 = {a�, �b};
X2 = {�n} for any nonnegative integer n as well as any set containing X2 as
a subset (let us call such sets the trivial unavoidable sets); and X3 = {a, bbb}
since of course Definition 9 is equivalent to Definition 8 if every member of X
is full. We will explore some less trivial examples soon.
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By the definition of X̂, a two-sided infinite word w has a factor in X̂ if
and only if that factor is compatible with a member of X. Thus the two-sided
infinite words which avoid X ⊂ A∗

� are exactly those which avoid X̂ ⊂ A∗,
and X ⊂ A∗

� is unavoidable if and only if X̂ ⊂ A∗ is unavoidable. Thus with
regards to unavoidability, a set of partial words serves as a representation of
a set of full words. The set {a��a, b�b} represents

{aaaa, aaba, abaa, abba, bab, bbb}
We will shortly prove that this set is unavoidable.

The smaller X is, the more information is gained by identifying X as
unavoidable. Thus it is natural to begin investigating the unavoidable sets
of partial words of small cardinality. Of course, every two-sided infinite word
avoids the empty set and thus, there are no unavoidable sets of size 0. Unless
the alphabet is unary, the only unavoidable sets of size 1 are trivial. If the
alphabet is unary, then every nonempty set is unavoidable and in that case
there is only one two-sided infinite word. Thus the unary alphabet is not
interesting so we will not consider it further. Classifying the unavoidable sets
of size 2 is the focus of the next section.

2.8.2 Classifying Unavoidable Sets of Size Two

If X is a two-element unavoidable set, then every two-sided infinite unary word
has a factor compatible with a member of X. In particular, X cannot have
fewer elements than the alphabet. Thus if X has size 2, then the alphabet
is unary or binary. We hence assume that the alphabet is binary say with
distinct letters a and b since we said above that the unary alphabet is not
interesting. So one element of X is compatible with a factor of aZ and the
other element is compatible with a factor of bZ, since this is the only way to
guarantee that both aZ and bZ will not avoid X. Thus we can restrict our
attention to sets of the form

Xm1,...,mk|n1,...,nl
= {a�m1a . . . a�mka, b�n1b . . . b�nlb} (2.3)

for some nonnegative integers m1, . . . ,mk and n1, . . . , nl. For which integers
m1, . . . ,mk, n1, . . . , nl is Xm1,...,mk|n1,...,nl

unavoidable?
A simplification is stated in the next lemma.

Lemma 8. [15] If p is a nonnegative integer, then set

X = Xm1,...,mk|n1,...,nl

and

Y = Xp(m1+1)−1,...,p(mk+1)−1|p(n1+1)−1,...,p(nl+1)−1

Then X is unavoidable if and only if Y is unavoidable.
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The easiest place to start is with small values of k and l. Of course, the set
{a, b�n1b . . . b�nlb} is always unavoidable for if w is a two-sided infinite word
which does not have a as a factor, then w = bZ. This handles the case where
k = 0 (and symmetrically l = 0).

An elegant characterization for the case where k = l = 1 is stated in the
following theorem.

Theorem 31. [15] The set Xm|n = {a�ma, b�nb} is avoidable if and only if
m + 1 and n + 1 have the same greatest power of 2 dividing them.

The next natural step is to look at k = 1 and l = 2, that is, sets of the
form

Xm|n1,n2 = {a�ma, b�n1b�n2b}
On the one hand, we have identified a large number of avoidable sets

of the form {a�ma, b�nb}. For Xm|n1,n2 to be avoidable it is sufficient that
{a�ma, b�n1b}, {a�ma, b�n2b} or {a�ma, b�n1+n2+1b} be avoidable. On the
other hand, the structure of words avoiding {a�ma, b�n1b�n2b} is not nearly
as nice as those avoiding {a�ma, b�nb}. Thus a simple characterization seems
unlikely, unless perhaps there are no unavoidable sets of this form at all. But
there are! The set

{a�7a, b�b�3b}
is unavoidable. Seeing that it is provides a nice example of the techniques that
can be used. Referring to the figure below,

. . . -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 . . .
. . . b b . . .
. . . a . . .
. . . b . . .
. . . a . . .
. . . a . . .
. . . b . . .
. . . a . . .

suppose instead that there exists a two-sided infinite word w which avoids
it. We know from Theorem 31 that {a�7a, b�b} is unavoidable, thus w must
have a factor compatible with b�b. Say without loss of generality that w(0) =
w(2) = b. This implies that w(6) = a, which in turn implies that w(−2) = b.
Then we have that w(−2) = w(0) = b, forcing w(4) = a. This propagation
continues: w(−4) = w(−2) = b and so w(2) = a, which makes w(−6) = b
giving w(0) = a, a contradiction.

The perpetuating patterns phenomenon of the previous example is a spe-
cial case of a more general result.

Theorem 32. [15] If m = n2 − n1 − 1 or m = 2n1 + n2 + 2, and the highest
power of 2 dividing n1 + 1 is less than the highest power of 2 dividing m + 1,
then Xm|n1,n2 is unavoidable.
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Here are other unavoidability results for k = 1 and l = 2.

Proposition 5. [15] The set Xm|n1,n2 is unavoidable if Conditions 1 or Con-
ditions 2 or Conditions 3 hold:

1. {a�ma, b�n1b} is unavoidable, m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and
n1 + 1 divides n2 + 1.

2. n1 < n2, 2m = n1 + n2 and m − n1 divides m + 1.
3. m = 6, n1 = 1 and n2 = 3.

Extensive experimentation suggests that these results (and their symmet-
ric equivalents) give a complete characterization of when Xm|n1,n2 is unavoid-
able.

Conjecture 1 [15] The set Xm|n1,n2 is unavoidable if and only if one of the
following conditions (or symmetric equivalents) holds:

1. {a�ma, b�n1b} is unavoidable, m = 2n1 + n2 + 2 or m = n2 − n1 − 1, and
n1 + 1 divides n2 + 1.

2. m = n2 −n1 − 1 or m = 2n1 +n2 +2, and the highest power of 2 dividing
n1 + 1 is less than the highest power of 2 dividing m + 1.

3. n1 < n2, 2m = n1 + n2 and m − n1 divides m + 1.
4. m = 6, n1 = 1 and n2 = 3.

Open problem 25 Is Conjecture 1 true or false?

If true, then Conjecture 1 implies that the unavoidable sets of size two
have been completely classified as stated in the following proposition.

Proposition 6. [15] If Conjecture 1 is true, then Xm1,...,mk|n1,...,nl
is avoid-

able for k = 1 and l ≥ 3, and for k > 1 and l ≥ 2.

In order to prove the conjecture, only one direction remains. We must show
that if none of the aforementioned conditions hold, then Xm|n1,n2 is avoidable.
There are some partial results towards this goal. In particular there is an easy
way of verifying the conjecture for even values of m.

Proposition 7. [15] Assume m is even and 2m ≤ min(n1, n2). Then Xm|n1,n2

is avoidable.

Thus for any fixed even m we only need to verify the conjecture for finitely
many values of n1 and n2, which is generally easy. For

1. m = 0: X0|n1,n2 is always avoidable, and indeed this is the case.
2. m = 2: X2|n1,n2 is avoidable except for n1 = 1, n2 = 3 or n1 = 3, n2 = 1.

It is easy to find avoiding two-sided infinite words for other values of n1

and n2 less than 5 when m = 2. This is all that is necessary to confirm
the conjecture for m = 2.
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In this way the conjecture has been verified for all even m up to very large
values via computer.

The odd values of m seem to be much more difficult. The following propo-
sition shows that the conjecture is true for m = 1.

Proposition 8. [15] Conjecture 1 is true for m = 1, that is, X1|n1,n2 is un-
avoidable if and only if n1 and n2 are even numbers with |n1 − n2| = 2.

Other results on the avoidability of Xm|n1,n2 include the following.

Proposition 9. [15]

1. Let s ∈ N with s < m − 2. Then for n > 2(m + 1)2 + m − 1,
Xm|m+s,n = {a�ma, b�m+sb�nb} is avoidable. Intuitively this means that
if m and n1 are relatively close in value, then the set of integers n2 which
make Xm|n1,n2 unavoidable is finite.

2. If max(n1, n2) < m < n1 + n2 + 2, then Xm|n1,n2 is avoidable.
3. The set X = {a�ma, bbb} is avoidable.

Classifying the unavoidable sets of partial words of size greater than or
equal to two remains an open question.

Open problem 26 Classify the unavoidable sets of partial words of size l ≥ 2
over a k-letter alphabet where k ≤ l.

2.8.3 Testing Unavoidability

Efficient algorithms to determine if a finite set of full words is unavoidable are
well known [45, 93]. For example, we can check whether there is a loop in the
finite automaton of Aho and Corasick [1] recognizing A∗ \ A∗XA∗. Another
approach is the following. We say that a set of words Y is obtained from a
finite set of words X by an elementary derivation if

1. Type 1 elementary derivation: There exist words x, y ∈ X such that x is
a proper prefix of y, and Y = X \ {y} (this will be denoted by X

1→ Y ).
2. Type 2 elementary derivation: There exists a word x = ya ∈ X with a ∈ A

such that, for each letter b ∈ A there is a suffix z of y such that zb ∈ X,
and Y = (X \ {x}) ∪ {y} (this will be denoted by X

2→ Y ).

A derivation is a sequence of elementary derivations. We say that Y is derived
from X if Y is obtained from X by a derivation. If Y is derived from X, then
X is unavoidable if and only if Y is unavoidable.

Example 2. The following sequence of elementary derivations shows that X =
{aaaa, aaba, abaa, abba, bab, bbb} derives {ε}:
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X
2→ {aaaa, aaba, aba, abba, bab, bbb}
2→ {aaaa, aaba, aba, abb, bab, bbb}
2→ {aaaa, aaba, ab, bab, bbb}
2→ {aaa, aaba, ab, bab, bbb}
2→ {aa, aaba, ab, bab, bbb}
1→ {aa, ab, bab, bbb}
2→ {a, ab, bab, bbb}
1→ {a, bab, bbb}
2→ {a, ba, bbb}
2→ {a, ba, bb}
2→ {a, b, bb}
2→ {a, b}
2→ {ε, b}
1→ {ε}

The notion of a derivation gives an algorithm to check whether a set is un-
avoidable: A finite set X is unavoidable if and only if there is a derivation from
X to the set {ε}. The above derivation shows that {aaaa, aaba, abaa, abba, bab,
bbb} is unavoidable.

These algorithms to determine if a finite set of full words is unavoidable,
like the one just described, can be used to decide if a finite set of partial
words X is unavoidable by determining the unavoidability of X̂. However
this incurs a dramatic loss in efficiency, as each partial word u in X can
contribute as many as ‖A‖‖H(u)‖ elements to X̂. The above derivation shows
that {a��a, b�b} is unavoidable as is confirmed by Theorem 31 since m + 1 =
2 + 1 = 3 = 203 and n + 1 = 1 + 1 = 2 = 21.

In [15], the question was raised as to whether there is an efficient algorithm
to determine if a finite set of partial words is unavoidable. In [26], it was proved
that testing the unavoidability of a finite set of partial words is much harder to
handle than the similar problem for full words. Indeed, the following theorem
holds (note that the case k = 1 is trivial).

Theorem 33. [26] The problem of deciding whether a finite set of partial
words over a k-letter alphabet where k ≥ 2 is unavoidable is NP-hard.

The proof proceeds by reduction from the 3SAT problem that is known
to be NP-complete (see [70]). In the 3SAT problem, we are given n binary
variables x1, . . . , xn and m clauses that each contain three literals (a literal
can be a variable or its negation), and we search a truth assignment for the
variables such that each clause has at least one true literal.

In [26], the following related questions on avoidability of sets of partial
words were raised.
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Open problem 27 Is the decision problem of the avoidability of a set of
partial words in NP?

A similar (stronger) question is the following one.

Open problem 28 For any set of partial words X, does there always exist
a two-sided infinite periodic word that avoids X, whose period is polynomial
in the size of X?

2.9 Freeness of Partial Words

In [99], Manea and Mercaş introduce freeness of partial words. There, they
extend in a natural way the concepts of square- and overlap-freeness of words
to partial words. In [31, 30], some more basic freeness properties of partial
words are investigated generalizing the well-known freeness properties of full
words.

A one-sided infinite word over the alphabet A is a function from N to A.
The Thue-Morse word is an example of a one-sided infinite word defined by
iterating a morphism. Let φ : {a, b}∗ → {a, b}∗ be the morphism defined by
φ(a) = ab and φ(b) = ba. We define t0 = a and ti = φi(a), for all i ≥ 1.
Note that ti+1 = φ(ti) and that ti+1 = titi, where x̄ is the word obtained
from x by replacing each occurrence of a with b and each occurrence of b with
a. Thus, the limit (the infinite word) t = limi→∞ ti exists. The Thue-Morse
word is defined as t, a fixed point for the morphism φ. Computations show
that t1 = ab, t2 = abba, t3 = abbabaab, t4 = abbabaabbaababba, and

t5 = abbabaabbaababbabaababbaabbabaab (2.4)

and so on.
A one-sided infinite word w is k-free if there is no word x such that xk is

a factor of w (a word that is 2-free is also called square-free and a word that
is 3-free is called cube-free). It is called overlap-free if it does not contain any
factor of the form cycyc with c ∈ A. Any overlap-free word is clearly k-free
for all k ≥ 3.

Theorem 34. [120, 121] The Thue-Morse infinite word t is overlap-free and
hence k-free for all k ≥ 3.

A one-sided infinite partial word w over the alphabet A is a partial function
from N to A. We call w k-free if for any nonempty factor x1 . . . xk of w, no
partial word x exists such that xi ⊂ x for all 1 ≤ i ≤ k. And it is said to be
overlap-free if for any factor c1y1c2y2c3 of w no letter c ∈ A and partial word
y over A exist such that ci ⊂ c for all 1 ≤ i ≤ 3 and yj ⊂ y for all 1 ≤ j ≤ 2.
In [99], the authors propose an efficient algorithm to test whether or not a
partial word of length n is k-free. Both the time and space complexities of
the algorithm are O(n

k ). In case of full words, the time complexity can be
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reduced to O(n log n) using suffix arrays [98]. In [99], the authors also give an
efficient algorithm to construct in O(n) time a cube-free (and hence k-free for
all k ≥ 3) partial word with n holes, and modify the algorithm in the case of
a four-letter alphabet to produce such a partial word of minimal length 3n−2
(which is the minimal length among all the possible cube-free words with n
holes regardless of the alphabet over which these words are constructed).

Theorem 35. [99] For k ≥ 3, there exist infinitely many k-free infinite partial
words over a two-letter alphabet containing an arbitrary number of holes.

Note that it is enough to show the result for k = 3. The idea of the proof
is to show that there exist infinitely many cube-free infinite partial words
containing exactly one hole over a two-letter alphabet. In order to do this,
observe that if the underlined b in Equality 2.4 is replaced by �, then the
resulting partial word is still cube-free. Since there is an infinite number of
occurrences of t5 in t, any replacement of the underlined b in such occurrences
leads to an infinite partial word with one hole that is cube-free. The result
follows since there is an infinite number of nonoverlapping occurrences of t5
in t.

A surprising result holds for an alphabet of size four.

Theorem 36. [99] There exists an infinite cube-free word over a four-letter
alphabet in which we can randomly replace letters by holes and obtain in this
way an infinite partial word that is cube-free as long as each pair of two con-
secutive holes are separated by at least two letters of the alphabet. Moreover,
such a word does not exist over a three-letter alphabet.

We discuss the concept of square-freeness of partial words in Section 2.9.1
and of overlap-freeness of partial words in Section 2.9.2.

2.9.1 Square-Freeness

Let us now consider the k = 2 case. A well known result from Thue states
that over a three-letter alphabet there exist infinitely many infinite words
that are square-free [120, 121]. To generalize Thue’s result, we wish to find a
square-free partial word with infinitely many holes, and an infinite full word
that remains square-free even after replacing an arbitrary selection of letters
with holes. Unfortunately, every partial word containing at least one hole
and having length at least two contains a square (either a� or �a cannot
be avoided, where a denotes a letter from the alphabet). Furthermore, it is
obvious that if we replace 2n consecutive letters in a full word with holes,
then the corresponding factor of the resulting partial word will be a square.

Motivated by these observations, we call a word non-trivial square-free if
it contains no factors of the form wk, k ≥ 2, except when |w| ∈ {1, 2} and
k = 2. Notice that the cube aaa is considered to be a non-trivial square. For
the sake of readability, we shall use the terms non-trivial square and square
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interchangeably. The study of non-trivial squares is not new. In [106], several
iterating morphisms are given for infinite words avoiding non-trivial squares.
In particular, the authors give an infinite binary word avoiding both cubes xxx
and squares yy with |y| ≥ 4 and an infinite binary word avoiding all squares
except 02, 12, and (01)2 using a construction that is somewhat simpler than
the original one from Fraenkel and Simpson [68].

Remark 1. When we introduce holes into arbitrary positions of a word, we
impose the restriction that every two holes must have at least two non-hole
symbols between them.

With this restriction, the study of square-free partial words becomes much
more subtle and interesting.

Theorem 37. [31] There exists an infinite word over an eight-letter alphabet
that remains square-free after replacing an arbitrary selection of its letters
with holes, and none exists over a smaller alphabet.

A suggested problem for investigation is the following. Let g(n) be the
length of a longest binary full word containing at most n distinct squares.
How does the sequence {g(n)} behave? A complete answer appears in [68].

Open problem 29 Compute the maximum number of distinct squares in a
partial word with h holes of length n over a k-letter alphabet.

2.9.2 Overlap-Freeness

A well known result of Thue states that over a binary alphabet there exist
infinitely many overlap-free words [120, 121]. In [99], the question was raised
as to whether there exist overlap-free infinite partial words, and to construct
them over a binary alphabet if such exist. The following result settles this
question.

Theorem 38. [31] There exist overlap-free infinite partial words with one hole
over a two-letter alphabet, and none exists with more than one hole.

The following result relates to a three-letter alphabet.

Theorem 39. [31] There exist infinitely many overlap-free infinite partial
words with an arbitrary number of holes over a three-letter alphabet.

For the following result, we adhere to the restriction described in Remark
1 when replacing an arbitrary selection of letters in a word with holes.

Theorem 40. [31] There exists an infinite overlap-free word over a six-letter
alphabet that remains overlap-free after an arbitrary selection of its letters are
changed to holes, and none exists over a four-letter alphabet.
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The case of a five-letter alphabet remains open.

Open problem 30 Does there exist an infinite word over a five-letter alpha-
bet that remains overlap-free after an arbitrary insertion of holes?

Other problems are suggested in [31].

Open problem 31 Extend the concept of square-free (respectively, overlap-
free or cube-free) morphism to partial words.

From [31, 99], some of the properties of this kind of morphisms already
start to be obvious. A further analysis might give additional properties that
such morphisms should fulfill. Following the approach of Dejean [56], another
interesting problem to analyze is the following.

Open problem 32 Identify the exact value of k (related to k-freeness) for a
given alphabet size. This value would represent the repetitiveness threshold in
an n-letter alphabet.

If for full words this value is known for alphabets up to size 11 and it is
conjectured that for bigger size alphabets the value is n+1

n , for partial words
this value has not yet been investigated.

2.10 Other Open Problems

The theory of codes has been widely developed in connection with combi-
natorics on words [5]. In [7, 32], a new line of research was initiated by in-
troducing pcodes in connection with combinatorics on partial words, and a
theoretical framework for pcodes was developed by revisiting the theory of
codes of words, as exposited in [5], starting from pcodes of partial words.
Pcodes are defined in terms of the compatibility relation as follows.

Definition 10. [7] Let X be a nonempty set of partial words over an alphabet
A. Then X is called a pcode over A if for all positive integers m,n and partial
words u1, . . . , um, v1, . . . , vn ∈ X, the condition

u1u2 . . . um ↑ v1v2 . . . vn

implies m = n and ui = vi for i = 1, . . . ,m.

An area of current interest for the study of pcodes is data communication
where some information may be missing, lost, or unknown. While a code of
words X does not allow two distinct decipherings of some word in X+, a
pcode of partial words Y does not allow two distinct compatible decipherings
in Y +. Various ways have been described for defining and analyzing pcodes. In
particular, many pcodes can be obtained as antichains with respect to certain
partial orderings. Adapting a graph technique related to dominoes [6, 73, 79],
the pcode property was shown to be decidable for finite sets of partial words.
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For example, the set X = {a�, a�b} is a pcode over {a, b}, but the set
Y = {u1, u2, u3, u4} where u1 = a�b, u2 = aa�bba, u3 = �b, and u4 = ba is not
a pcode over {a, b} since u1u3u3u4u3 ↑ u2u3u1 is a nontrivial compatibility
relation over Y .

It is well known that the two-element set of words {u, v} is a code if and
only if uv �= vu. However, this is not true in general for partial words. For
instance, the set {u, v} where u = a�b and v = abbaab satisfies uv �↑ vu, but
{u, v} is not a pcode since u2 ↑ v.

Open problem 33 Find a necessary and sufficient condition for a two-
element set of partial words to be a pcode.

Other suggested problems are the following.

Open problem 34 Investigate the concept of tiling periodicity introduced
recently by Karhumäki, Lifshits and Rytter’s [81]. There, the authors suggest
a number of questions for further work on this new concept.

Punctured languages are sets whose elements are partial words. In [91],
Lischke investigated to which extent restoration of punctured languages is
possible if the number of holes or the proportion of holes per word, respec-
tively, is bounded, and studied their relationships for different boundings.
The considered restoration classes coincide with similarity classes according
to some kind of similarity for languages. Thus all results he can also formulate
in the language of similarity. He shows some hierarchies of similarity classes
for each class of the Chomsky hierarchy, and proves the existence of linear
languages which are not δ-similar to any regular language for any δ < 1

2 .

Open problem 35 For 1
2 ≤ δ, do there exist linear languages which are not

δ-similar to any regular language? If they exist, then they must be non-slender.
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